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ABSTRACT

The possibility of spinodal decomposition during
isothermal immersion precipitation for membrane
formation was studied. It was found that the
diffusional fluxes at the spinodal must obey (1) all
fluxes are zero, or (2) J\/J, =D /Dy, =D;»/Dys In
addition, the effects from local random concentration
fluctuations on the diffusional fluxes were considered.
And the diffusion trajectories were computed.

1. Flux Equations for Multi-component Systems

As a homogeneous multi-component solution
with its initial composition outside the spinodal
envelope is subject to external concentration boundary
conditions, isothermal mass transfer of each
component take place, and there will be some
circumstances under which the system may be forced
to approach the spinodal. In such instance, it is
interesting to return to the question of whether the
spinodal condition of the ternary system places any
restriction on the diffusional flux of each component.

Considering a “c+1” component system
undergoes isothermal mass transfer. There are, in
this case, only “c” independent diffusion flows, since
one of the components is selected as the reference

component, and all other diffusion flows are
determined by their velocities relative to the
reference  component. The phenomenological

expressions for these diffusion fluxes are given by’
-J.=2LnVu. GLj=1L2,...,0) (1

where J; is the molar flux of component i relative to
the velocity of the reference component, L; is the
phenomenological coefficient, which satisfies the
Onsager's relation’, i.e. L;=L;i, and p; is the chemical
potential of component j, which is assumed depends
only on concentrations. The one-dimensional
chemical potential gradient of component-j can be
obtained
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From Eqn. (2), the relative one dimension diffusional
fluxes of component-i can be expressed as
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where Dy, is the diffusion coefficient. Eqn (3) can be

rewritten in matrix form:

Do=-J (4)
where D is a ¢ x ¢ coefficient matrix composed of Dy
terms, @ is a c-dimensional column vector composed
of og, /oxterms, and J is a c-dimensional column
vector. Coefficient matrix D can be shown to be
equivalent to the products of the matrices given in
Eqn. (5).
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where L is the matrix containing only L;; terms which
satisfies the Onsager’s conditions so that its
determinant is > 0. g is the matrix composed of

6/1,- /a¢k terms.

Eqn. (4) is said to be consistent (i.e., has at least
one solution) if and only if the rank of the coefficient
matrix D, r(D), is equal to the rank of the augmented
matrix, r(D | J), where D|J is defined in Eqn .(6).
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D|J=
D, D, ... D, J,
D, D, ... D, J,
More specifically, Eqn (4) has
(i) no solution if and only if (D)= (D]J);
(ii)) a unique solution if and only if

r(D)=r(D|J)=c;
(iii) a (c-r)-parameter family of solutions if and
only if r(D)=r(D|J)=r islessthanc.
If systems are in the stable region, matrix g is positive
definite. From Eqn (5), matrix D must be positive
definite. Therefore, matrix D is not singular and is of

rank c. It can be shown from Eqn (6) that
t(D)=r(D|J)=c . Therefore, Eqn (4) is always
consistent.

However, if systems are at the limit of stability,
Eqn (5) shows that the coefficient matrix D becomes
positive semi-definite since matrix g is positive



semi-definite. Matrix D is said to be positive
semi-definite if it is singular and all of its principle
minors are zero or still positive. Therefore, the rank of
the coefficient matrix D is equal to c-1 if all its
principle minors are positive. Now, for Eqn. (4) to be
consistent, the rank of the augmented matrix ((p|J)
must be also equal to c-1. If all fluxes approach zero
at spinodal compositions, in such instance Egn. (4)
becomes a homogeneous system:

Dp=0 @)
For a homogeneous system, it must surely be true that
(D)=r(D|J)=c-1. Since matrix D is singular at the
limit of stability, Eqn. (7) is always consistent. Hence,
spinodal is a barrier for isothermal mass transfer if all
fluxes are zero at spinodal compositions, and the
system of equations D¢ = 0 is consistent.

However, if all the fluxes in the augmented
matrix p| g are nonzero, for r(D|J)=c—1, it must
follow that at least, any two rows or columns in the
matrix D |J are proportional to each other, i.e.,

D, - D, — - D :Ji_-l (8)
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Hence, Eqn. (4) is still consistent and there exists a
one-parameter family of solutions. Since fluxes exist
as the system approaches spinodal compositions, the
latter is not an absolute barrier to isothermal mass
transfer.

Lets first consider the one dimensional diffusion
problem encountered in the formation of a membrane
from isothermal precipitation process. The polymer
solution used in the process consists of nonsolvent
(1)-solvent(2)-polymer(3). Initially, the homogeneous
polymer solution is immersed in the nonsolvent bath
at time zero. Because of the chemical potential
gradients, nonsolvent diffuses into and solvent
diffuses out of the membrane with fluxes J; and J,,
respectively. Consider a thin layer / of polymer
solution in the membrane, which moves with the same
velocity as the polymer. At time zero, the composition
of this layer is essentially the initial polymer
concentration, which is represented by point A in the
phase diagram shown in Figure 1. At time t’, mass
transfer process brings the composition of this layer
from point A to point B as shown in Figure 1. At time
t’’, the composition of this layer reaches a spinodal
composition represented by point S in Figure 1. At
point S, the diffusion coefficient matrix becomes
singular and hence is of rank 1. Hence, the rank
augmented matrix, (D|J), given in Eqn (9), must be
equalto 1.
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The condition for ((p|y) = 1 is: (i) both fluxes

approach zero at spinodal compositions; or (ii) if J;

and J, are both nonzero J; and J, must follow:
D, _D, _J

(D] J)= ©)

(10)
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Since fluxes may exist as layer / approaches spinodal,
mass transfer process is allowed in this layer.
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Fig. 1: Compositions of layer / at different time
after immersion. (a) t = 0, point A; (b) t=1t’, point B
cyt=t”, point S.

2. Cahn-Hilliard Theory For Ternary Mixtures

The free energy due to composition fluctuation
can be expressed in terms of the gradients of volume
fractions giving a relation of the form

Ag,'=0gy +k (V0. +k, (W, )" +k,,(Vo (Vo) (1)
where Ag,’ is the extended Gibbs free energy of
mixing per volume that includes the contributions of
volume fraction fluctuations, Ag,’ is the homogeneous
expression of the Gibbs free energy of mixing per

volume, and k (vs,)’ +k,(Vé, ) +k,,(V$, XV9,) is the
gradient energy terms arising from local fluctuations
of the volume fractions, where k; k,, and k,, are the
gradient energy parameters>” and they are all assumed
to be non-negative; otherwise another kind of
instability may exist®.

The total Gibbs energy of mixing for ternary
system including contribution from the volume
fraction fluctuation can then be expressed by the
so-called Landau-Ginzburg functional®:

86 = [ {og! +k, (78, K, (78, ) + ko (78, )70, )}av (12)
We follow the procedure of Cahn and Hilliard* to
determine the corresponding generalized chemical
potentials for a system whose free energy of mixing of
a phase is given by Eqn. (12). These generalized
chemical potentials must satisfy two requirements: (1)
they must reduce to the classical aag" /ap, s When the

gradient energy parameters are zero; (2)at equilibrium,
they are constant throughout the system. In a ternary
system, the free energy can be expressed in terms of
two component volume fractions since one of the
component volume fractions is a dependent variable.
However, there is no need to decide a priori which
one of the three volume fractions is a dependent
variable. The ordinary rules for partial differentiation
are applied whether or not ¢; appears explicitly in the
function being differentiated. Therefore, all three
variables are treated as though they were independent
until a specific choice of dependent variable is made.



Since a system at equilibrium has minimum
free energy, the required potentials should minimize
Eqn. (12) subject to the following material balance
constrains:

%'[/(bldv:d_)l (13)
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where ¢ (i =1~ 3)are the average volume fractions of
the system. Minimization of Eqn. (12) subject to the
constrains given by Eqn. (13)-(15) is a classical
problem in the calculus of variations, and this will
give the partial differential forms of Euler-Lagrange
equations with the assumption that k;; are constant™’
[%] 2KV, ~k, V7, =, (a constant) (16)
My ),
(a constant) (17)
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These generalized chemical potentials are the
necessary conditions for AG to be a minimum and
they remain true regardless of when material constrain
Z‘/" =] is used. Suppose that all the partial

0
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(a constant) (18)

derivatives are non-zero, then the chain rule gives
dag), :[aAg‘cj do, +[6Ag‘¢] d¢, +[aAg‘¢J dé,
LER $i-$ é

o, \ a0, ), , do | 06, ),, do, \ 3, ), do,
(19)
dAgQ:[aAgzj %{M] &{Mgt} dé,
do, \ o6 ), , db, | o, ),, a6, (a6, ), do,
(20)

We now set ¢; = 1 - ¢, - ¢, to obtain
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(22)

Integration of Eqn. (16)-(18) will give, respectively
Ag\ = oy, + kl(v¢l)2 + klz(V¢1Xv¢2)+f1(¢z’¢3) (23)
Ag, = 4,7, +k2(V¢2)2 +ku(V¢1)(V¢z)+fz(¢u¢3) (24

Agg =¢373 +f3(¢|,¢2) (25)

Comparing these equations and choosing ¢; as
dependent variable will give

Agi’, =0y, +0,Y, +0,7; +k1(v¢1 )Z +k2(V¢Z)Z +k, z(V¢JXV¢2)

=(Yl "Ys)d’l +(Y2 _73)¢z +1;+k, (V¢1 )2 "'kz(Vd’z)2 +k|z(V¢| Xv¢z)
(26)
Solving Eqn. (21),(22), and (26) for y,, v, and v; gives
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These equations can also be expressed in terms of
chemical potential changes®”

Y= 'Avh = AVL_ [kl(v¢| )2 + kz(V(i)z)2 +ky, (V¢| Xv‘bz)]
_[(1 _‘bl xzklvz‘bl + k|2V1¢2)—¢2(2k2V2¢2 + k|2v2¢l )]
(30)

Y. = %: AVH(Z _[kl(v¢|)z +kz(V¢2)l + kll(v¢lxv¢2)]
_[(1 —¢1)(2szz<|)2 +k,2V2¢|)— ¢1(2klvz¢‘| +k|zvz¢z )]
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+ [0,k 7%, + Kk, %0, )+ 0, (K., +k, 979, )]
(32)

where superscript “0” refers to homogeneous property.
Eqn. (30)-(32) are the generalized chemical potential
changes that include the gradient energy terms arising
from local fluctuations of the volume fractions.
Cheng® have studied the ternary mass transfer
processes from for membrane formations by
isothermal immersion precipitation in nonsolvent(1)
-solvent(2)-polymer(3) systems. If the gradient energy
contributions due to the local volume fluctuations of
components are included, the diffusional flux
equations used by Cheng have to be modified. Using
the generalized expressions for chemical potential
change given in Eqn. (30)-(32) the one-dimensional
diffusional fluxes ( J, ')3 can be expressed as
N 2 9%, | (i=1,2)
= {0 S0 2%
where (Ji)3 is the diffusional flux used by Cheng,

(33)

and ‘¥j, which account for the contributions from
local volume fluctuations, are equal to

W, = 4[L11V2¢| -L,v,(1- ¢|)]k1 +2[L11V|¢z -L,v,(1- ¢2)]k,2
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Y, = 2[L|2Vz¢1 -L,v( ‘4’1)1‘(12 + 4[L11V1¢2 -L,v,d _¢2)]kz

(35)

Wy = 4[L22V2¢| - L12V|(1_¢1)]k1 +2[L|2V|¢z -Lyv,(l —‘bz)]klz

(36)

WY, = 2[L12V2¢1 - L12V1(1“¢|)]k|2 +4[L12V|¢z -Lyv,( —‘bz)]kz
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The diffusion equations for the membrane

solution used by Cheng can be modified by replacing

the classic diffusional fluxes with the generalized

form, and this gives
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Eqn. (38) can be non-dimensionalized by introducing

(Dt (39)
M
m
_m (40)
" M

where D, (cm?/s) is a scaling factor for numerical
procedure. M is the total volume per unit area of the
initial membrane solution.
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Using Eqn.(41), the concentration profiles for
immersion procedure can be calculated. By comparing
the concentration profiles calculated by Cheng and
that by Eqn. (41), we can estimate the contribution
from local concentration fluctuations for each
precipitation stage.

3. Gradient Energy Parameters for Nonsolvent
-Solvent-Polymer systems
The gradient energy parameters, k; and k;;, given
in Eqn. (11) are known to have both enthalpic and
entropic components*’:
k; =k +Kig (42)
kij = i + Kijs (43)
Here subscripts H and S refer to enthalpic and
entropic contributions to the gradient energy
parameters, and subscripts i and j refer to solvent or
nonsolvent components of the system. The enthalpic
contribution is due to interactions between different
molecules in the system, while the entropic
contribution is due to the arrangements of the chains
that constitute the polymer molecules®®. For small
molecules, the entropic contribution does not exist.
Following Ariyapadi et al*'’ for a system
consisting of nonsolvent (1)-solvent (2)-polymer (3),
the gradient energy parameters are summarized as

follows:
2 H—
"%—{X—J (i=1,2) (44)
Vi 1-¢)
Kk :_l_ R2 Xis R2 X2 (45)
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where Rg; (i = 1, 2) is the radius of gyration of a
polymer molecule dissolved in solvent i, and can be
evaluated by™*

1
Rq, = <alp™N (46)
where a; is an empirical function'', which depends
strongly on solvent, B is the effective segment length
of the polymer molecules, and N is the degree of
polymerization of the polymer. For poor solvent o ~ 1

and for ideal or concentrated solution o = 1.

4. Concentration fluctuation for the immersion
precipitation process

The Flory-Huggins interaction parameters for

water(1)-formic acid(2)-polyamide(3) systems, are
given by Cheng®. The gradient energy parameters are
evaluated by Eqn. (44)-(45). The concentration
fluctuations for different precipitation stages are given
in Figures 2 and 3.
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Fig. 2. Concentration fluctuation profiles o

component 1 as a function of distance fro
membrane-bath interface for the water(1)-formi
acid(2)-polyamide(3) system for dope C [in ref. 6
into a pure water bath.
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Fig. 3. Concentration fluctuation profiles o

component 2 as a function of distance fro
membrane-bath interface for the water(1)-formic
acid(2)-polyamide(3) system for dope C [in ref. 6
into a pure water bath.
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