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Among many infrastructures, bridge structures are specifically crucial in terms of the
development of a country since they in general are responsible for connecting cities culturally and
economically. Most of the cross-river bridges, due to their longer span, are considered to be
cable-supported style to meet both the esthetical and mechanical needs. In addition, the trend
toward using newly developed stronger and lighter material in construction further makes the
design of cable-supported bridges with longer span plausible. However, the increased flexibility
by the longer span will aggravate the wind effect on bridge structures. The induced vibration
becomes large enough to initiate the occurrence of flutter — the most prominent aeroelasticity that
can even cause the structural instability under a critical wind speed (flutter speed). A typical

example is the collapse of Tacoma Narrows suspension bridge in 1940.

Basically, the flutter speed is obtained from the calculation of the so-called flutter derivatives,
which are the essential quantities in the self-excited forces. Because of the bluff body nature of
bridge decks in civil infrastructures, the flutter derivatives are best configured by directly
performing wind tunnel tests on bridge section models. The methodology of the conventional free
vibration approach has been well developed and widely used in many actual practices to date.
However, the typical shortcomings out of it include (1) the lack of consistency because of high
sensitivity of free vibration responses to test condition and environment, and (2) the discrepancy

inherently inherited by treating the free vibration frequency as the excitation frequency.

To overcome these, this project proposes a new approach to identify flutter derivatives using
white-noise forced actuation technique, which can be categorized to the scope of inverse problem.
A two-axes actuating device, which is composed of two independent electric servo-motors, was
used to indirectly drive the motion of the bridge section model through the serial connection of
springs. This project is scheduled to be completed in three years. The main task of the 2" year
(2008/8-2009/7), the main objective is to develop the identification scheme and technique for
determining the coupled flutter derivatives, and also perform verification tests for a chamfered plate

section model that simulates thin plate.
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1. INTRODUCTION

In wind engineering, the importance of bridge aero-elasticity is well recognized because it could
potentially cause devastation. It has drawn much attention on researches in the last few decades,
among which the most important initiative of modeling such behavior was proposed by [Scanlan et
al. (1971)] by introducing the idea of flutter derivatives. Because of the bluff body nature on civil
bridge sections, the flutter derivatives are usually determined by performing wind tunnel tests on
section models. The typical shortcomings by the conventional approach that basically uses free
vibration technique include (1) the lack of consistency because of high sensitivity of free vibration
responses to test condition/environment, and (2) the discrepancy inherently inherited by treating the
free vibration frequency as the excitation frequency. To overcome these, this paper presents a new
approach for identifying flutter derivatives, with emphasis on the coupled ones, by using
white-noise forced actuation technique.

2. EXPERIMENTAL SETUP AND PERTINENT FORMULATION
2.1 Equation of Bridge Motion Subjected to Smooth Wind Flow and Forced Actuation

Consider a schematic diagram of the experimental setup shown in Fig. 1. Under smooth wind flow
and forced actuation, the equations of motion can be expressed respectively as
JO+cyO+kyO=2c,r%0y+2k r?0y+L, M(); 1)
mh+c,h+k, h=2c, hy+2k hy+L, L(7) (2)

in which m and J are mass and mass moment of
inertia; 2 and @ are heaving and pitching
displacement; ¢, =(2¢c, +2c))r* | ky =(2k, +2k)r? ;
¢, =2c, +2¢;; ky =k, +2k)); ky, kyand c,, c; are

Wilg

\Wind Tunnel

spring stiffnesses and internal damping coefficients,
r is spring location to the elastic center of the deck;
L, is length of bridge section, L() and Mm() A ‘/gnm

] ) ) . 2-Axes Actuating Device
are motion-induced lift and moment per unit length;

n, and g, are heaving displacement and pitching Fig. 1: Configuration of Experimental Setup
angle generated by the actuating device. For identifying the bridge model dynamics, the responses
were measured due solely to the forced excitation by assigning a white noise to 4, and #,
independently. The uncoupled damping ratios (¢,, &,) and natural frequencies (o,, ®,) can be
determined by curve-fitting the frequency response functions. In addition, the mass m and mass
moment of inertia J can be identified by traditional calibration. With the aid of knowing the
values of J (or m), the values of ¢,, %,, ¢,, k, aswellas ¢, k, canthus be obtained.

2.2 ldentification of Coupled Flutter Derivatives

2.2.1A4ero-elasticity Formulation
The motion-induced M(r) and L(r) per unit length under smooth wind flow can be expressed as

[Scanlan et al. (1971)]
L(t)=pU?B[K H; h(t)/U +K H, BO(t)IU + K*H, 0(t) + K*H} h(t)/ B] 3)



M()=pU?B? [K A h(t)/U+K A;BO(1) U +K?* A3 0(t)+ K> 4, h(r)! B] 4)
in which p is air density; U is mean wind velocity; B is bridge section width, K is
non-dimensional frequency defined as k =Bw/U; @ is excitation frequency in radian/sec; (4,
45, H, and Hy)and (4, 4,, H, and ;) are called uncoupled and coupled flutter derivatives.
By taking Fourier transform on Eqgs. (3) and (4), their expressions in frequency domain lead to
L(K) = Hy,(K) 7 +Hp,(iK)-0 5 Hy,(K)=pU?[i Hy + Hy1K?; H,,(iK)=pU? B[i Hy, + H31K*  (5)
M(iK)= H y, K )-h + H 1y (iK)- 0 5 H 5, (iK) = pU?Bi 4y + A1 K? 5 H 3 (K )= pU? B? [i 4, + 431K (6)
Since H,,(ik) represents the frequency response function of L induced by 6, it is conceivable to
assume that H,,(ik) can be realized by an equivalent linear system that has a form of frequency
response function

H g (iK) = pU[b3y (K ) + bypg (K ) + by (K ) +bopg 1/ [GK ) + @ (iK' + @] ©)

=01 (i©)+ Dy +[ey g (o) +corg]/ [i0)? +ay(im) +aq]

01y =pU?BB/U)byyy 5 Dyy =pU?B by —@ybary) 5 cup =pUB(BU) [glLH —bap @y — @ (byrg — @ Bsw)] ;
corp =pU*B (B/U)? [Bow —ag (byrp — @ an)] sa = (B/UY ' ag=a (B/U)? (8)

In Eq. (7), &, b,, are dimensionless constant coefficients to be determined. The same
realization can be applied to #,,(x), H,,@K) and H,,(k) and thus the corresponding
coefficients with subscripts LA, Mh and M6 will appear in the formation that is omitted herein. In
fact, the identification scheme for determining coefficients for uncoupled frequency response

functions H,,(ik) and H,,(ik) (and thus the uncoupled flutter derivatives) has been proposed in
[Wu et al. (2006)], and the results of @, @y, by borys buss borns bavor bosgs by aNA by
will be used in this paper as the given parameters for identifying coupled flutter derivatives.

According to linear system theory, the motion-induced lift L and moment A in Egs. (5) and (6)
can be converted into state space equation in time domain as

N1=Am+B,x; F=Cn+D,x+Q, x 9)

n=| " ix=| [F=| [5A,= A= B, = ,B=| |;C = ;
zZ, 6 M 0 A 1 0 0 B 0" " |Cy Cup

Cui=lay, copliCro=lay coroliCum=lenyy  corpliCumo =leny  copmls
[D D} {Q Q} (10)
D, = Q=
DMh DM9 QMh QMO
When the section model is subjected to the actuation of 4, and wind flow, the incorporation of
aero-elasticity expressed in Egs. (9) and (10) into the equations of motion, Egs. (1) and (2), yields
an overall state equation in time domain with the output % given by

qZAq q+Bq ho (11)
h=Cqq
X 02x2 I2x2 02x4 02xl
a=| X[’ A =|-M'K, -M;'C, M;'C,L |’ B,=|MH|’5 Cq=[2k 0 2¢ 0 0,,]

Bn 02X2 A‘l] 04Xl

n
C, :[ch O}_Ls .|:QLh QLH:|;Ka =|:kh O}_Ls .|:DLh DLH:|;H=|:1:| (12)
0 ¢ O Qo 0 Ky Dy D 0



Therefore, with the aero-elasticity incorporated, the frequency response function of / induced by 4
can be given by

H,y, (i0)=C, ()1 -A, )" B, (13)

In the same manner, if the section model is subjected to the actuation of & and wind flow, the
frequency response function of & due to ¢, 1, (iw), can be obtained by following the same

equations shown in Egs. (11)-(13) except that 4o and % should be replaced by & and & and H and

C, should be rewritten as qulo 2k, r* 0 2¢,r? 01X4J and H=[0 1", respectively.

2.2.2 Identification Scheme

Under wind flow, by measuring the frequency response function g,, induced by actuation of /o,

/i

and H,, induced by actuation of ¢, the coefficients »,,’s and b,,,’s (totally 8 parameters) can

be determined properly by minimizing a performance index

u, N N
Pi= % (S o) 1% B )50 )
U=U; = =

in which Hj), (iw,), Hgy (i) and f;,, f5; represent the theoretical and experimental

frequency response function at the 4-th frequency under mean wind velocity U; and wy, and wj,

are weightings. In addition, the minimization problem should be constrained by the conditions
that A and A, are all stable. To ensure global minimization in the optimal search, the genetic
algorithm (GA) [Man, Tang and Kwong (1999)] and gradient method are used in cooperation.

Once b,, and b,, are determined, the flutter derivatives (H,, Hj;) and (4, , 4,) can be

computed by considering the imaginary and real parts accordingly, as shown in Egs. (5) and (6).

3. EXPERIMENTAL RESULTS

For demonstration, the bridge deck of a chamfered plate with a — —
width/depth ratio of 27, as shown in Fig. 2, was placed in a iy 2. Bridge Deck Section

wind tunnel to conduct the identification. Wind tunnel tests at 4

different wind velocities under white-noise actuation were performed. Following the approach

presented, the identified flutter derivatives #,, H, and 4;, 4, versus the reduced wind speed

U (U=UyB; fis the excitation frequency) are shown in Fig. 3 (a)-(d), respectively, in which the
flutter derivatives from Theodorsen functions are also plotted for comparison. Time history
analysis was also simulated for verifying the identification results and the comparison with the



experimental data shows excellent correlation.
4. CONCLUSION

This paper presents a new approach to identify the coupled flutter derivatives of bridge decks by
using white-noise forced actuation. A bridge deck composed of a chamfered plate with a
width/depth ratio of 27 has been used to successfully demonstrate the applicability of this approach.
This approach also provides a direct link between flutter derivatives and state space equations,
which can facilitate the time domain analysis for buffeting responses of bridges. For instance,
when the bridge is subjected to buffeting lift force, Egs. (11) and (12) can be used to simulate the

heaving response by replacing 4o by the external buffeting lift force and rewriting ¢, by

Cy=[L 0 0 0 0y4]
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Fig. 3: Comparisons of Identified Coupled Flutter Derivatives with Those from Theodorsen Functions
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