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隨機性成本估價之風險評估模式 

Stochastic estimation model for uncertain cost elements 
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執行期限：94年 8月 1日至 95年 7月 31日 

主持人：楊亦東  執行機構及單位名稱： 淡江大學土木工程系 

一、摘要 
 
本研究提出以蒙地卡羅方法從事不確定性營建專案估價之模式。研究方法為應用多

變量隨機亂數產生法中之高斯關連結構來處理具相關特性之成本項目。為求突破其他模

式之限制，本研究提出之模式將處理：(1)成本項目具有不同的統計分佈型式(有些為連
續分佈、有些為間斷分佈；有些為對稱分佈、有些為偏態分佈)；(2)相關特性可以用傳
統線性或等級相關係數加以描述；(3)成本項目具有複雜的相關情況；(4)自動化近似非
半正定性相關值矩陣以滿足數學理論要求。模式流程為：首先近似相關值矩陣；再就可

行之相關性調整具高斯分佈之隨機亂數；依據各式分佈之反函數將高斯隨機亂數轉換為

各式成本項目之估計值；最後就所有估計值進行不確定性營建專案估價。本研究提出之

模式已應用於實務案例，並就結果之統計相關性與原先設定加以比較驗證。模擬結果實

證指出成本項目之相關特性對專案成本造成之顯著影響。 
 
 
關鍵詞：專案估價、風險評估、蒙地卡羅方法、高斯關連結構、統計分析 

 

Abstract 
 
This study proposes a Monte Carlo method to incorporate correlations between cost 

elements in the process of cost estimation. The method being considered is the Gaussian 
copula in the field of multivatiate random number generation. The uniqueness of the proposed 
model lies in the capability to treat the situations when (1) distributions of cost elements have 
various types and shapes; (2) correlations are described by either Pearson or Spearman 
coefficients; (3) cost elements have complex correlations; and (4) a negative semidefinite 
correlation matrix shall be adjusted to the closest feasible one. The proposed method first 
checks the feasibility of the correlation matrix, adjusts it by an eigenvalue correction method, 
then uses the correlations to generate correlated multivariate random vectors, which are 
employed to model possible outcomes of the cost elements. The method has been applied to a 
practical dataset to indicate that the impact of correlations is significant and may cause 
serious problems if neglected. The result is also used to validate that the proposed method can 
capture the correlations with relatively small deviations. 

 
 

Keywords: Cost estimation, Risk assessment, Monte Carlo method, Gaussian copula, 
Statistic analysis 
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二、研究目的 

Cost estimation begins in the early stages of construction projects and may repeat 

frequently during the entire life cycle. The reliability of cost estimation is important to ensure 

the success of the project since it serves as the foundation for making critical financial 

decisions. 

In construction projects, the prices of all the resources (material, equipment, and labor) are 

exposed to certain levels of uncertainty (Russell and Ranasinghe 1992). To manage such 

inherent uncertainty, Monte Carlo simulation methods have been widely applied for various 

types of projects, such as (Touran 1993; Elkjaer 2000). In Monte Carlo simulation, a 

mathematical model is constructed based on pre-specified probability distributions, which 

describes the possible outcomes of major cost elements involved in a project, and run to see 

what the overall project cost will be for each simulation replication. After a certain number of 

replications, the collected samples are used to derive the output distribution of the overall 

project cost. 

An important enhancement of ordinary simulation methods has been directed to consider 

statistical correlations (dependencies) between cost elements. The correlation represents the 

co-movement of two cost elements; when one is more expensive, the other tends to cost more 

as well (or cost less for a negative correlation). Arguments and evidences for the existence of 

correlations and their profound impact on simulation results have been presented in the 

literature (Diekmann 1983; Wall 1997). To treat the correlations, various approaches have 

been proposed, such as (Touran and Wiser 1992; Wang 2002). 

The goal of this project is to develop a simulation-based method, which incorporates 

correlations between cost elements with more modeling capabilities. The present method 

fulfills the following requirements: 

1. To allow the distributions (i.e., marginal distributions) of individual cost elements to be of 
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different types. Namely, some of them may only be expressed with discrete and finite 

options whereas others can be expressed as continuous functions. In addition, those 

continuous distributions may come from different families (e.g., some are lognormal 

while some are beta). 

2. To provide an automatic procedure to check the feasibility (a mathematical definition will 

be given later) of a correlation matrix and adjust it if infeasible. 

三、研究內容 

The proposed method takes two sets of input: marginal distributions of the cost elements 

(measured in unit cost, for example £/m2) and a correlation matrix between these elements. 

The method is composed of two stages, which will be explained below. 

Setup stage 

The proposed method starts with a check on the feasibility of the original correlation 

matrix. If it is already positive semi-definite, one can immediately begin the simulation steps 

described in the next section; otherwise, we adopt the eigenvalue correction method from 

Ghosh and Henderson 2003) to approximate the infeasible correlation matrix into a feasible 

one. 

The setup stage consists of the following steps: 

1.  Decompose the correlation matrix M into a diagonal vector D of the eigenvalues and a 

full matrix V whose columns are the corresponding eigenvectors so that 

MV=VD (1)

2.  Locate the negative eigenvalues and change them to a tiny positive number ε to yield a 

new diagonal vector D . 

3. Adjust the correlation matrix M by 

TVDVM =  (2)

4.  Take the diagonal elements of M and store their inverses as the diagonals in a full matrix 
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ij   

(3)

5.  Normalize the diagonal elements to ensure unit diagonals (fundamental requirement for a 

correlation matrix): 

 EMEM =  (4)

where M  is the new (approximated) correlation matrix. 

A preliminary test is performed to ensure the effectiveness of the setup stage. We use a 

documented 19  × 19 correlation matrix (Chau 1995) as an example. This correlation matrix 

has been proved to be non-positive-semidefinite (Ranasinghe 2000). Our tasks here are to 

apply the proposed steps and to check if the differences between the approximated values and 

the original specifications are small enough. The differences are quantified in two metrics: 

Lave (average) and Lmax (maximum): 

2
)1(

|MM| *

−

−
=
∑
>

nnL ji
ave  

(5

)

where M is the specified correlation matrix and M* is the approximated one; n is the number 

of cost elements. 

|MM|max *
max −=

> ji
L  (6

)

After performing the correction steps, Lave is 18108954.4 −×  and Lmax is 15107208.1 −× . 

This shows empirically that the setup stage can adjust the infeasible correlation matrix to a 

feasible one with ignorable changes. 

The setup stage is to treat possible infeasibility, which may result from either erroneous 

input or inconsistent estimation. In other words, the setup stage would not be of any good if 

the correlation coefficients are incorrect or inconsistent. Thus a careful review is critical to 
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ensure the correlation coefficients can reflect the true behavior of the correlation 

relationships. 

Simulation stage 

The fundamental concept of the simulation stage is to generate a vector of correlated 

normal variates, transform them into uniform variates by the aid of the cumulative normal 

probability function, and then map the variates into their individual marginal distributions by 

the inverse transform method. The generated random variates are used to model the cost 

elements with the desired correlation structure. The procedure described here incorporates 

ideas from a new correlated multivariate generation technique (Normal To Anything, NORTA) 

(Cario and Nelson 1997). In what follows, we enumerate all the steps and provide 

computational guidelines.   

1. Apply the Cholesky decomposition to the correlation matrix so that M=CCT where C 

represents the Cholesky triangular. 

2. Generate an IID (independent and identically distributed) unit scaled uniform random 

vector, Y=(Y1, Y2, …, Yn) where n is the number of cost elements. 

3. Translate Y into a standard-normal random vector P=(P1, P2, …, Pn). 

4. Transform P into a correlated standard-normal random vector Z=(Z1, Z2, …, Zn). 

5. Compute )( ii ZU Φ=  for i = 1, 2, … n, where (.)Φ  denotes the standard normal 

cumulative distribution function (CDF). 

6. Compute )(1
iii UFX −=  for i = 1, 2, … n, where )(1

ii UF −  represents the inverse of the 

ith marginal CDF. 

7. Return iX  as the estimate for cost element i. 

8. Compute the total project unit cost by summing up all the cost elements. 

9. Repeat Steps 2 through 8 for each simulation replication, j =1, 2, …, m. 

10. Return summary statistics on all simulation replications. 
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For Step 1, there exist several efficient algorithms to perform the Cholesky decomposition. 

The generation of a uniform random vector in Step 2 is a standard feature supported by 

almost all the popular computer languages (such as C++, Java, Visual Basic, FORTRAN). 

The transformation in Step 3 can be approximated by the following equation:  

Pi=(Yi
0.135-(1-Yi) 0.135)/0.1975 (7)

The transformation in Step 4 is 

∑
=

=
i

j
jiji PcZ

1

 for ∈ijc  C 
(8)

Step 5 involves the following integral 

dxeU iZ x
i ∫ ∞−

−= 2/2

2
1
π

  (9)

, which can be approximated by 
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where |)|2316419.01/(1 iZt ×+=  

319381530.01 =b  

356563782.02 −=b  

781477937.13 =b  

821255978.14 −=b  

330274429.15 =b  

(10

)

The marginal CDF in Step 6 can be of any type of distribution as long as their inverses can 

be calculated either directly or via approximation. This is why the proposed method is able to 

treat different kinds of distributions simultaneously. It is much easier when the marginal 

distribution has a closed-form inverse (such as uniform or triangular). Otherwise, one has to 

rely on numerical approximation algorithms to find the inverses of the commonly-used 
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distributions, such as beta, gamma, and normal distributions. Step 7 is self-explanatory. 

By using iX  as the estimate of the ith cost element, Step 8 is simply 

   
1
∑
=

=
n

i
ij XE   

(11

)

where Ej is the jth observation of the unit cost of the project. To make the addition meaningful, 

the estimates of different cost elements should be converted into the same unit of measure, 

such as £/m2. 

四、結果與討論 

The proposed method is applied to the British data set described in (Wall 1997) to 

demonstrate its practical use. The data set is drawn from 216 office buildings built between 

1980 and 1994 and consists of 8 major cost elements. The dataset has been standardized 

based on the times and locations the buildings were built. 

All the cost elements and their marginal distributions are shown in Table 1. The value of 

each cost element is expressed as £/m2. Here a cost element represents a relatively large work 

package, which may consist of several tasks. For example, “superstructure” involves 

formwork, steelwork, and concrete pouring. This level of granularity is suitable for higher 

level estimation. Moreover, the measure of £/m2 can be changed to reflect the usual unit for 

progress measurement, if the proposed method is applied to other construction projects. For 

instance, a reasonable measure of cost elements for a highway project may be £/m while that 

for a residential community project may be £/house. 

In the example, we consider three families of distributions, i.e., lognormal, beta, and 

discrete. The lognormal distributions are used because they fit the data better as argued by 

Wall. The use of the other two is based on a pragmatic situation when a cost estimator prefers 

not using historical data but rather using a discrete distribution to describe possible outcomes 

of “fitting and furnishings”, and beta distributions (three points) to estimate the distributions 
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of “services” and “external works”. These arrangements have been justified in previous 

sections. 

Table 2 shows the rank correlation coefficients between the cost elements of the full data 

set. Before applying the proposed method, the rank correlation coefficients are reviewed and 

adjusted to verify (1) if they can reflect the actual behavior of the correlations and (2) if they, 

derived from past data, are suitable for the current project. This process is based on practical 

judgments and can complement pure mathematic analysis. In this example, the rank 

correlation coefficients between “external works” and other cost elements are adjusted to be 

zero. 

A simulation experiment is designed to implement the proposed method and to evaluate 

the impact of correlations between cost elements. In the experiment, every simulation 

replication leads to a sample of the project cost by simply summing up cost elements drawn 

from individual distribution. The output statistics can then be used to assess the behavior of 

the true project cost.  

After 1000 simulation replications, Table 3 lists the descriptive statistics for the unit cost 

of the project. To assess the impact of correlations, we compare two scenarios: including and 

excluding correlations. Fig. 1 is a box-and-whisker plot which is used to visually compare the 

distributions of the two scenarios. The first observation is that both distributions are skewed 

to the right because the mean (shown as the cross) is larger than the median. 

The second observation is that the scenario of “including correlations” has a much longer 

tail to the right than that of “excluding correlation”. This indicates the former has a larger 

variability (uncertainty) than the latter. This conclusion is unsurprising because the former 

has a much greater standard deviation that the latter (149.55 versus 108.92, a 37% difference). 

Consequently, the 95% confidence interval of the former is much wider than that of the latter. 

Fig. 2 plots the CDFs of both scenarios. A practical use of the chart is to estimate the 



  9 
 
 

unit cost of the project with a certain probability. Taking correlations into consideration, the 

unit cost with a 0.90 probability is 958.50 £/m2, which would be profoundly underestimated 

as 903.52 £/m2 if the correlations are neglected. The difference of 54.98 £/m2 is greater than 

the cost of “substructure” (with a mean of 47.2 £/m2 in Table 1). In other words, by 

neglecting the correlations, the error can be as serious as doing the substructure for free. 

The proposed method is an approximation because of the following reasons. First, it is 

assumed that the correlation between Xi and Xj in Step 7 (denoted by MX) is close to the 

correlation between Zi and Zj in Step 4 (denoted by MZ). Theoretically, to find a proper MZ 

that leads to the desired MX requires solving n(n-1)/2 nonlinear equations but the computation 

can be cumbersome (Chen 2001). Second, Steps 3, 5, and 6 require numerical approximation. 

Since the proposed method is an approximation, it is necessary to check the aggregated 

difference between the original specified correlation matrix and the generated one on the 

aforementioned metrics: Lave and Lmax. For this particular application, Lave is 0.018 and Lmax is 

0.051. Moreover, the standard deviation of the differences is 0.015. Thus the confidence 

limits for the mean of the difference is estimated to be 0.018 ± 0.0059 at a two-tailed 

significance level of 0.05 with 27 degrees of freedom. The results provide us confidence that 

the proposed method, despite being an approximation, can model the desired rank correlations 

with relatively small deviations and thereby can help assess the true impact of correlations on 

cost estimation. 

五、計畫成果自評 

The proposed method is more general than previous approaches because (1) it can treat 

different types of marginal distributions (discrete or continuous, different families 

distributions) for cost elements in one framework and (2) it can automatically adjust an 

infeasible correlation matrix into a close and feasible one very efficiently. Details of the 

proposed method have been published in (Yang 2005). 
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The modeling capabilities of the proposed method are empirically validated by an 

application to a modified British data set consisted of 216 office buildings. With the modeling 

capabilities, the proposed method helps cost estimators assess the true impact of correlations 

between cost elements on the project unit cost. The impact has been shown significant and 

should be considered with caution. 
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七、圖表 
 

Table 1. Descriptive estimates for cost elements (distributions and parameters) 

Cost Elements Descriptive Estimate (in £/m2) 
Substructure Lognormal (47.2,30.9) a 
Superstructure Lognormal (263.6,82.4) a 
Internal finishes Lognormal (63.2,24.4) a 
Fittings and furnishings Discrete (7,0.2; 8,0.5; 9,0.2; 10,0.1)b

Services Beta (150,180,220) c 
External works Beta (70,85,120) c 
Preliminaries Lognormal (76.4,47.3) a 
Contingencies Lognormal (21.2,13.2)a 
a Lognormal (mean, standard deviation); the lognormal distributions are estimated by the 
historical approach based on 216 buildings.  
b Discrete (outcome, probability); the discrete distribution is subjectively specified  
c Beta (minimum, mode, maximum); the three parameters are subjectively specified  
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Table 2. Rank correlation coefficients between cost elements a 
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Substructure 1.00               
Superstructure 0.33 1.00             
Internal finishes 0.26 0.52 1.00           
Fittings and furnishings 0.10 0.26 0.28 1.00         
Services 0.28 0.57 0.64 0.33 1.00       
External works 0.00b 0.00b 0.00b 0.00b 0.00b 1.00     
Preliminaries 0.35 0.37 0.44 0.18 0.39 0.00b 1.00   
Contingencies 0.23 0.28 0.34 0.21 0.29 0.00b 0.36 1.00 
a Correlations above 0.10 significant at 95% confidence 
b Subjective correlations    
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Table 3. Statistics of two scenarios: including and excluding correlation (in £/m2) 

Statistics Excluding correlations Including correlations 
Mean 759.21  756.88  

Standard Deviation 108.92  149.55  
Minimum 514.50  470.50  

Q1 (25% percentile) 680.99  647.07  
Q2 (Median) 759.21  756.88  

Q3 (75% percentile) 823.71  843.35  
Maximum 1147.20  1393.30  

95% C.I. lower bound 590.30  522.00  
95% C.I. upper bound 1024.00  1091.00  

Estimate with 0.9 Probability 903.52  958.50  
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Fig. 1. Box-and-whisker plot for comparison between two scenarios 
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Fig. 2. Comparison on cumulative distribution functions of two scenarios 

 


