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Abstract

This study proposes a Monte Carlo method to incorporate correlations between cost
elements in the process of cost estimation. The method being considered is the Gaussian
copulain the field of multivatiate random number generation. The uniqueness of the proposed
model lies in the capability to treat the situations when (1) distributions of cost elements have
various types and shapes; (2) correlations are described by either Pearson or Spearman
coefficients; (3) cost elements have complex correlations; and (4) a negative semidefinite
correlation matrix shall be adjusted to the closest feasible one. The proposed method first
checks the feasibility of the correlation matrix, adjusts it by an eigenvalue correction method,
then uses the correlations to generate correlated multivariate random vectors, which are
employed to model possible outcomes of the cost el ements. The method has been applied to a
practical dataset to indicate that the impact of correlations is significant and may cause
serious problems if neglected. The result is also used to validate that the proposed method can
capture the correlations with relatively small deviations.

Keywor ds: Cost estimation, Risk assessment, Monte Carlo method, Gaussian copula,
Statistic analysis



Cost estimation begins in the early stages of construction projects and may repeat
frequently during the entire life cycle. The reliability of cost estimation is important to ensure
the success of the project since it serves as the foundation for making critical financial
decisions.

In construction projects, the prices of all the resources (material, equipment, and labor) are
exposed to certain levels of uncertainty (Russell and Ranasinghe 1992). To manage such
inherent uncertainty, Monte Carlo simulation methods have been widely applied for various
types of projects, such as (Touran 1993; Elkjaer 2000). In Monte Carlo simulation, a
mathematical model is constructed based on pre-specified probability distributions, which
describes the possible outcomes of mgjor cost elements involved in a project, and run to see
what the overall project cost will be for each simulation replication. After a certain number of
replications, the collected samples are used to derive the output distribution of the overall
project cost.

An important enhancement of ordinary simulation methods has been directed to consider
statistical correlations (dependencies) between cost elements. The correlation represents the
co-movement of two cost elements; when one is more expensive, the other tends to cost more
aswell (or cost less for a negative correlation). Arguments and evidences for the existence of
correlations and their profound impact on simulation results have been presented in the
literature (Diekmann 1983; Wall 1997). To treat the correlations, various approaches have
been proposed, such as (Touran and Wiser 1992; Wang 2002).

The goal of this project is to develop a simulation-based method, which incorporates
correlations between cost elements with more modeling capabilities. The present method
fulfills the following requirements:

1. Toallow thedistributions (i.e., marginal distributions) of individual cost elements to be of



different types. Namely, some of them may only be expressed with discrete and finite
options whereas others can be expressed as continuous functions. In addition, those
continuous distributions may come from different families (e.g., some are lognormal
while some are beta).

2. To provide an automatic procedure to check the feasibility (a mathematical definition will

be given later) of a correlation matrix and adjust it if infeasible.

The proposed method takes two sets of input: marginal distributions of the cost elements
(measured in unit cost, for example £/m?) and a correlation matrix between these elements.
The method is composed of two stages, which will be explained below.

Setup stage

The proposed method starts with a check on the feasibility of the original correlation
matrix. If it is already positive semi-definite, one can immediately begin the ssimulation steps
described in the next section; otherwise, we adopt the eigenvalue correction method from
Ghosh and Henderson 2003) to approximate the infeasible correlation matrix into a feasible
one.

The setup stage consists of the following steps:

1. Decompose the correlation matrix M into a diagonal vector D of the eigenvalues and a
full matrix V whose columns are the corresponding eigenvectors so that
MV=VD 1)

2. Locate the negative eigenvalues and change them to atiny positive number € toyielda

new diagonal vector D.

3. Adjust the correlation matrix M by
M =VDV' @)

4. Take the diagonal elements of M and store their inverses as the diagonals in a full matrix



E:
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0 otherwise

5. Normalize the diagonal elements to ensure unit diagonals (fundamental requirement for a
correlation matrix):

M = EME (4)
where M isthe new (approximated) correlation matrix.

A preliminary test is performed to ensure the effectiveness of the setup stage. We use a
documented 19x 19 correlation matrix (Chau 1995) as an example. This correlation matrix
has been proved to be non-positive-semidefinite (Ranasinghe 2000). Our tasks here are to
apply the proposed steps and to check if the differences between the approximated values and
the original specifications are small enough. The differences are quantified in two metrics:

Lave (average) and Lyax (Maximum):

DIM -M| (5

>
Lave - n(n—l)
2

where M is the specified correlation matrix and M" is the approximated one; n is the number
of cost elements.
Lmax:rri1>a]_1x|M*—M| (6
)
After performing the correction steps, Lave is 4.8954x10*® and Lyxis 1.7208x107"°.
This shows empiricaly that the setup stage can adjust the infeasible correlation matrix to a
feasible one with ignorable changes.
The setup stage is to treat possible infeasibility, which may result from either erroneous
input or inconsistent estimation. In other words, the setup stage would not be of any good if

the correlation coefficients are incorrect or inconsistent. Thus a careful review is critical to



ensure the correlation coefficients can reflect the true behavior of the correlation
relationships.
Simulation stage
The fundamental concept of the simulation stage is to generate a vector of correlated
normal variates, transform them into uniform variates by the aid of the cumulative normal
probability function, and then map the variates into their individual marginal distributions by
the inverse transform method. The generated random variates are used to model the cost
elements with the desired correlation structure. The procedure described here incorporates
ideas from a new correlated multivariate generation technique (Normal To Anything, NORTA)
(Cario and Nelson 1997). In what follows, we enumerate all the steps and provide
computational guidelines.
1. Apply the Cholesky decomposition to the correlation matrix so that M=CC' where C
represents the Cholesky triangular.
2. Generate an I1D (independent and identically distributed) unit scaled uniform random
vector, Y=(Y1, Y2, ..., Yy) where n is the number of cost elements.
3. TrandateY into a standard-normal random vector P=(P4, P, ..., Py).
4. Transform Pinto acorrelated standard-normal random vector Z=(Zy, Z, ..., Zy).

5. Compute U, =®(Z,) fori=1,2,...n,where ®(.) denotesthe standard normal
cumulative distribution function (CDF).

6. Compute X, =F*(U,) fori=1,2,...n, where F*(U,) representstheinverse of the
ith marginal CDF-.

7. Return X, astheestimate for cost element i.

8. Compute the total project unit cost by summing up all the cost elements.
9. Repeat Steps 2 through 8 for each simulation replication, j =1, 2, ..., m.

10. Return summary statistics on all simulation replications.



For Step 1, there exist several efficient algorithms to perform the Cholesky decomposition.
The generation of a uniform random vector in Step 2 is a standard feature supported by
almost all the popular computer languages (such as C++, Java, Visual Basic, FORTRAN).
The transformation in Step 3 can be approximated by the following equation:
P=(Y;**-(1-Y;) *%/0.1975 (7)

The transformation in Step 4 is

i 8
Z, =Y cP for ;e C ®)
j=1
Step 5 involves the following integral
z 1 e 9)
U =| —e* ?dx
L s
, which can be approximated by
2 2 3 4 5 :
U = (@/V27 xexp(=Z;" 12)) x (bt + b,t* + b,t™ + b,t" + bt”) if Z <0
"1 (/27 xexp(=Z,° 12)) x (bt + b,t* + b t® + b,t* +bt?) if Z, >0
where t=1/(1+0.2316419x | Z, |)
b, = 0.319381530 (10
b, = —0.356563782 )

b, =1.781477937
b, = —1.821255978

b, =1.330274429

The marginal CDF in Step 6 can be of any type of distribution as long as their inverses can
be calculated either directly or via approximation. This is why the proposed method is able to
treat different kinds of distributions simultaneously. It is much easier when the marginal
distribution has a closed-form inverse (such as uniform or triangular). Otherwise, one has to

rely on numerical approximation algorithms to find the inverses of the commonly-used



distributions, such as beta, gamma, and normal distributions. Step 7 is self-explanatory.

By using X; asthe estimate of the ith cost element, Step 8 is simply
n (11
E; =2 X
i=1
)
where E; is the jth observation of the unit cost of the project. To make the addition meaningful,
the estimates of different cost elements should be converted into the same unit of measure,

such as £/m>.

The proposed method is applied to the British data set described in (Wall 1997) to
demonstrate its practical use. The data set is drawn from 216 office buildings built between
1980 and 1994 and consists of 8 major cost elements. The dataset has been standardized
based on the times and | ocations the buildings were built.

All the cost elements and their marginal distributions are shown in Table 1. The value of
each cost element is expressed as £/m?. Here a cost element represents a relatively large work
package, which may consist of several tasks. For example, “superstructure’ involves
formwork, steelwork, and concrete pouring. This level of granularity is suitable for higher
level estimation. Moreover, the measure of £/m?can be changed to reflect the usua unit for
progress measurement, if the proposed method is applied to other construction projects. For
instance, a reasonable measure of cost el ements for a highway project may be £/m while that
for aresidential community project may be £/house.

In the example, we consider three families of distributions, i.e., lognormal, beta, and
discrete. The lognormal distributions are used because they fit the data better as argued by
Wall. The use of the other two is based on a pragmatic situation when a cost estimator prefers
not using historical data but rather using a discrete distribution to describe possible outcomes

of “fitting and furnishings’, and beta distributions (three points) to estimate the distributions



of “services” and “external works’. These arrangements have been justified in previous
sections.

Table 2 shows the rank correlation coefficients between the cost elements of the full data
set. Before applying the proposed method, the rank correlation coefficients are reviewed and
adjusted to verify (1) if they can reflect the actual behavior of the correlations and (2) if they,
derived from past data, are suitable for the current project. This process is based on practical
judgments and can complement pure mathematic analysis. In this example, the rank
correlation coefficients between “external works’ and other cost elements are adjusted to be
zero.

A simulation experiment is designed to implement the proposed method and to evaluate
the impact of correlations between cost elements. In the experiment, every simulation
replication leads to a sample of the project cost by simply summing up cost elements drawn
from individua distribution. The output statistics can then be used to assess the behavior of
the true project cost.

After 1000 simulation replications, Table 3 lists the descriptive statistics for the unit cost
of the project. To assess the impact of correlations, we compare two scenarios. including and
excluding correlations. Fig. 1 is a box-and-whisker plot which is used to visually compare the
distributions of the two scenarios. The first observation is that both distributions are skewed
to the right because the mean (shown as the cross) is larger than the median.

The second observation is that the scenario of “including correlations’ has a much longer
tail to the right than that of “excluding correlation”. This indicates the former has a larger
variability (uncertainty) than the latter. This conclusion is unsurprising because the former
has a much greater standard deviation that the latter (149.55 versus 108.92, a 37% difference).
Consequently, the 95% confidence interval of the former is much wider than that of the latter.

Fig. 2 plots the CDFs of both scenarios. A practical use of the chart is to estimate the



unit cost of the project with a certain probability. Taking correlations into consideration, the
unit cost with a 0.90 probability is 958.50 £/m? which would be profoundly underestimated
as 903.52 £/m?if the correlations are neglected. The difference of 54.98 £/m?is greater than
the cost of “substructure’ (with a mean of 47.2 £/m? in Table 1). In other words, by
neglecting the correlations, the error can be as serious as doing the substructure for free.

The proposed method is an approximation because of the following reasons. First, it is
assumed that the correlation between X; and X; in Step 7 (denoted by Mx) is close to the
correlation between Z; and Z; in Step 4 (denoted by Mz). Theoretically, to find a proper Mz
that leads to the desired Mx requires solving n(n-1)/2 nonlinear equations but the computation
can be cumbersome (Chen 2001). Second, Steps 3, 5, and 6 require numerical approximation.

Since the proposed method is an approximation, it is necessary to check the aggregated
difference between the original specified correlation matrix and the generated one on the
aforementioned metrics. Lave and Lyax. FOr this particular application, Laye 1S 0.018 and Ly iS
0.051. Moreover, the standard deviation of the differences is 0.015. Thus the confidence
limits for the mean of the difference is estimated to be 0.018+ 0.0059 at a two-tailed
significance level of 0.05 with 27 degrees of freedom. The results provide us confidence that
the proposed method, despite being an approximation, can model the desired rank correlations
with relatively small deviations and thereby can help assess the true impact of correlations on

cost estimation.

The proposed method is more general than previous approaches because (1) it can treat
different types of marginal distributions (discrete or continuous, different families
distributions) for cost elements in one framework and (2) it can automatically adjust an
infeasible correlation matrix into a close and feasible one very efficiently. Details of the

proposed method have been published in (Y ang 2005).



The modeling capabilities of the proposed method are empirically validated by an
application to a modified British data set consisted of 216 office buildings. With the modeling
capabilities, the proposed method helps cost estimators assess the true impact of correlations
between cost elements on the project unit cost. The impact has been shown significant and

should be considered with caution.
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Table 1. Descriptive estimates for cost elements (distributions and parameters)

Cost Elements Descriptive Estimate (in £/m?)
Substructure Lognormal (47.2,30.9) ¢
Superstructure Lognormal (263.6,82.4) #

Internal finishes Lognormal (63.2,24.4) 2

Fittings and furnishings  |Discrete (7,0.2; 8,0.5; 9,0.2; 10,0.1)b
Services Beta (150,180,220)

External works Beta (70,85,120)

Preliminaries Lognormal (76.4,47.3)2
Contingencies Lognormal (21.2,13.2)%

2 Lognormal (mean, standard deviation); the lognormal distributions are estimated by the
historical approach based on 216 buildings.

® Discrete (outcome, probability); the discrete distribution is subjectively specified

¢ Beta (minimum, mode, maximum); the three parameters are subjectively specified
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Table 2. Rank correlation coefficients between cost elements?

wn
(@]
=
X2
#| £ 0
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2 8 = £ g & 3 E
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Substructure 1.00
Superstructure 0.33] 1.00
Internal finishes 0.26| 0.52| 1.00
Fittingsand furnishings | 0.10] 0.26| 0.28| 1.00
Services 0.28| 0.57| 0.64 0.33] 1.00
External works 0.00° 0.00° 0.00°| 0.00° 0.00°| 1.00
Preliminaries 0.35| 0.37| 0.44| 0.18/ 0.39| 0.00° 1.00
Contingencies 0.23| 0.28 0.34| 0.21| 0.29| 0.00° 0.36| 1.00

& Correlations above 0.10 significant at 95% confidence
P Subjective correlations
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Table 3. Statistics of two scenarios: including and excluding correlation (in £/m?)

Statistics Excluding correlations| Including correlations
Mean 759.21 756.88
Standard Deviation 108.92 149.55
Minimum 514.50 470.50
Q1 (25% percentile) 680.99 647.07
Q2 (Median) 759.21 756.88
Q3 (75% percentile) 823.71 843.35
Maximum 1147.20 1393.30
95% C.I. lower bound 590.30 522.00
95% C.I. upper bound 1024.00 1091.00
Estimate with 0.9 Probability 903.52 958.50
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Fig. 1. Box-and-whisker plot for comparison between two scenarios
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