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Summary

We propose a new class of selection rules for selecting superior models from finite Binomial models.
This new clags of rules extends the classes of classical rules and shows its superiority to the classical
selection rules by some Monte Carlo results. This new class of rules is easier and more flexible
to apply than these known classical rules.
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1. Introduction

In many occasions, an experimenter is often confronted with choosing some pro-
cesses or models which are considered superior than others in some sense when
there is significant evidence to support that these models are not homogeneous
(equivalent). For example, in k different processes of producing some product,
we are interested in selecting which process has a least probability of producing
defective items. Or, k (=2) different clinical treatments for a certain symptons
(diseases), we are interested in selecting a subset (or some best) of them in the
sense that has the highest probability of curing the symptons (diseases). For each
experiment, an observation (response) can be classified as success or non-success.
This kinds of Binomial processes or models frequently occur in clinics, Biosta-
tistics, Engineering and Social Sciences etc. The problem of selecting a Binomial
model associated with the largest probability of success has been formulated in
two different types, which are, respectively, called the indifference zone formu-
lation (SoBerL and HuyveTrr, 1957) and the subset type approach (Guepra and
SoBEL, 1960).

Let @), 73, ..., mx denote k Binomial models such that m¢ is associated with para-
meter pg (probability of success) and common 7 (number of experiments). In other
words, 7r; denotes the i-th clinical treatment with n experiments. Let pp) =pp; =
=..=pp; denote the ordered values of p;. Let X; denote a sample from =
(i.e. total number of successful responses in » experiments of i-th treatment).
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For the indifference zone formulation, the experimenter specifies 4 (0<A4<1)

and requires to do experiment at least ng times (no is needed to be determined and
1

which depends on 4, k and some prefixed value p* (Z<P*< 1)) go that under

the assumption that pp)—pPw-13=4, the probability that the model having the
largest observation is associated with p) is at least P*, a prefixed value. In most
cases, 4 is difficult to specify and in many situations, for economic reason or
sampling restrictions etc., it is difficult to take a sample at least ny. Especially,
when A is small and P* is large, nyp would be large. On the other hand, when the
assumption ppy—pr-13=4 is not made, Gupra and SOBEL (1960) considered to
select all model n; whenever X;= max X;—c, where the constant ¢ is so chosen so

1=5=k

that the probability that at least ojne best is included in the selected subset is at
least P* (usually call it P*-condition), a prefixed value. As can be expected, when
P* ig large and each p; is close to each other, the size of the selected subset may be
large and it may contain all models which is undesirable.

In order to adjust these two factors, the minimum sample size ng and the size
of selected subset, we are naturally first of all to ask whether all models are suffi-
ciently close to each other (all p; are close to each other). If it is, we just select &u
one of them since they are almost equally good. If not, we just select the smallest
cluster that are sufficiently close to each other containing one best. Based on this
idea of preliminary test, we propose a socalled mixed-type randomized rule which
includes these two classical rules as extreme cases. We can control and adjust
the factors among minimum sample size ng, size of selected subset and the ex-
perimenter’s choice of some value é to a compromise which is desirable or accept-
able to meet the experimenter’s demand. In this sense, the proposed new rule is
more flexible for application in Biostatistics and others.

2. A Mixed-Type Randomized Rule R

Let m;, mg, ..., mx denote k Binomial models such that 7 is associated with un-
known p¢ and common known n. Let X; denote a sample from n;. For a specified
value § (0<d<1, here § is up to the experimenter’s decision) we ¢all n; is good if
Prry—pe<4. If all models are good (there is only one cluster), we are satisfied to
select any one of them. If not, we desire to select the one associated with pg; (the
best model). It is of course possible that there are more than one model that are
associated with pp), hence, we may selected a subset as small as possible to in-
clude one best. A correct selection (CS) occurs if at least one best (any one asso-
ciated with py;)) is selected.

. Letaand b (0 =a, b =2) denote twonon-negativeintegersandlet X _, = max X,
C e . CO . B : E3 417
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X =xm;inn X;. We propose a mixed-type randomized rule R(a, b) as follows.

min

(2.1) R(a,b): (i) If X ..—X,.=a,

min =
select the one associated with X .. and break a tie by a random mechanism.
(ii) If X ..~ X,in>0a, select oy, if and only if, Xy= X .. —b(b<a=n).

We note that when a=n, R(n, b) becomes the Sobel-Huyett rule (1957), call it
Ry When a=0, R(0,b) becomes the Gupter-Sobel rule (1960), as 6 ~0+, call
it Ry, :

For a given values of 4 and P*, using some recursive method (in k), the exact
values of constants @ and b in the proposed rule can be obtained such that the
P*_condition (P(CS)z P* for any parameters) is satisfied. However, here we pro-
pose some other method for the approximations of a and b. We have the following
formula to obtain the constants @ and b in the proposed rule R(a, ). When n is
large enough, and if a and b satisfy the following

_ 1
2.2) 1+ (®(Y20) — B(— Y2 o) e+t — k-1 (2 (b +nd +;)I(n (1 —62))’5) =a

1 1
“then, P(CS)z 1 —a, where c=2 (a+§)/(n (1-62))~.

+3. Tables, Monte Carlo Studies and Examples

In table 1, we tabulate some values for a and b associated with R(a, b) correspond-
ing, respectively, to P*=0.90, P*=0.95, k=2(1)6 and 6=0.01, 0.05, 0.1. For in-
stance, when ¥=5, §=0.01, the first row in the entry of Table 1 is given by
0(5 — 18)2(5), which means when n=>5, 10(2)18, a=0 and when n=35, b is given by
b=2. Also, when k=6, §=0.1, the second row of entry is given by 1{16 —30)
3(16 —30), and which means when n=16(2)30, a and b are given by a=1, b=3
respectively.

According to R(a, b), when the constant a is taken to be =, the sample size,
R(n, b) becomes the Sobel-Hﬁyett rule. In Monte Carlo studies, we therefore con-
sider only compaiisons between R;g and R, i.e. comparisons between subset-type
rule and the mixed-type rule.

We consider sampling from four (k=4) Binomial models with respective success
probabilities, p1=0.2, p2=0.3, p3=0.4 and p4=0.5. By computer simulation of
sampling from these four Binomial models, we simultaneously apply, respectively,
Rgs and R to the observed data for our selection. We both observe the event of
correct selection (selection of 74 is a correct selection) and the size of the selected
subset. Repeating 1000 times of sampling, we take the frequency of the event of
correct selection and the average size of selected subset for our probability of
correct selection and the expected size of selected subset and denote them,
56+
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Table 1
P*=0.90 7n=5,10(2)30

k 3 0.01 0.05 0.1
2 on) 1(5) O(n) 1(5) 0(n) 1(5—30)
2(£0—14) 2(10-30)
3(16—26)
4(28-30)
3 O(n) 2 (5—10) 0(n) 1(5) 0(n) 1(5)
3(12-18) 2(10—14) 2(10-30)
4(20-28) 3(16—30)
5(30)
4 O(n) 2(5) 0(n) 2 (5—10) 0(n) 15)
3(10—14) 3(12—24) 2(10-30)
4(16—24) 4(26—30)
- 5(26—30)
5 0 (5—18) 2(5) 0 (5—20) 2(5) 0 (5-20) 1(5)
1(20—30) 3(10-12) 1(22-30) 3(10—30) 1(22-30) 2(10-20)
4(14—-20) 4(22-30) . 3(22—-30)
5(22-30)
6 0 (5—14) 2(5) 0 (5—14) 2(5) 0 (5-14) .« 2 (5-14)
1(16—30) 3(10-12) 1(16—30) 3(10-16) 1(16—30) 3(16—30)
4(14—20) 4(18—30)
5(22-28)

6(30)

Table 1 (continued)
P*=0.95 n=>5,10(2)30

kb 0.01 0.05 0.1

2 0m) 2(5—10) o(n) 1(5) o(n) 1(5)
3(12—-18) 2(10—14) 2(10--30)
4(20—28) 3(16-30)
5(30)

3 0@ 2(5) 0(n) 2(5) 0(n) 1(5)
3(10-12) 3(10-18) 2(10~20)
4(14-20) 4(20-30) 3(22—30)
5(22—30) '

4 On) 2(5) 0(n) 2(5) . Om) 2 (5-12)
3(10) 3(10-16) 3(14~30)
4(12—18) 4(18—-28)
5(20—26) 5(30)
6(28—30)

5  Om) 2(5) 0(n) 2(5) 0(5-28) 2 (5-10)

: 3(10) - 3(10—14) 1(30) 3(12—30)

4(12—16) 4(16—24)
5(18—24) 5(26—30)

, 6(26—30) :

6 0 (5-18)  2(5) 0 (5-18) 2(5) 0 (5-18)  2(5)

1(20-30)  3(10) 1(20-30) 3(10-12) 1(20-30)  3(10-22)
4(12-16) 4(14-22) 4(24-30)
5(18—22) 5(24—30)

6(24—-30)
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respectively, by PCS¢s and ESgs when Rgs is applied and by PCS and ES when R
is applied. We define a measure of efficiency of Rgs (R) by Efgs= PCSss/EScs
(Ef= PCS/ES). We consider efficiency of R to R¢s by the quantity Eff = Ef/Efqs.
For some special values of n, the sample size, a, b (constants for R) and ¢ (constant
for Rgs), the associated PCSgs, EScs, Efcs (PCS, ES, Ef) and Eff are computed
and given in Table 2. For fixed n =20 (first block of Table 2), we have considered 6
different rules of Rgs and R by taking 6 different constants for each rule. Taking
ratio of max Ef to max Efgs, we define this quantity to be Eff,=max Ef/
Max Efgs=0.743/0.536 = 1.386 which is tabulated in the first row of last column,
where the maximum is taken over 6 values of Ef and Efcs, respectively.

In Table 2, we have considered only small and large values of a for R, however,
the most advantageous range of ¢ for Rgs has been covered in Table 2. Accordingly,

Table 2
Monte Carlo Results

n a b ¢ PCSqs PCS ESgs ES  Efgs Ef Eff  Eff,
20 0 1 2 0824 0862 1740 1427 0531 0604 1.138  1.386
0 2 3 0953 0812 2053 1715 0464 0532 1146
1 1 4 0985 0862 2446 1423 0403 0606 1.504
1 2 5 098 0914 2732 1725 0361 0530 1.470
8 1 2 0916 0779 1728 1.049 0530 0743 1402
8 2 2 0806 0777 1691 1094 0536 0710 1326
30 0 1t 2 0919 0873 1525 1311 0.603 0666 1105 1.205
0 2 3 0953 0833 1672 1480 0570 0630 1.106
0 3 4 0975 0956 1940 1701 0503 0562 1.118
1 1 5 099 0878 2192 1267 0452 0.693 1534
1 2 6 0892 0904 2456 1495 0404 0.605 1497
1 3 7 0996 0054 2726 1732 0365 0551  1.508
11 2 2 0924 0823 1487 1078 0621 0763 1.229
11 3 -2 0921 0839 1454 1099 0633 0763 1205
40 0 1 2 0935 0893 1326 1181 0705 0756 1.072 120t
0 2 3 0846 0922 1511 1370 0626 0673 1.075
0 3 4 0963 0948 1.670 1.501 0.577 0632 1.095
1 1 5 0082 0881 1860 1.196 0528 0737 1395
1 2 6 0092 0920 2062 1356 0481 0.685 1424
1 3 7 0993 09845 2255 1542 0440 0613  1.392
14 2 2 0930 0871 1320 1.029 0705 0846 1.201
14 3 2 0920 0866 1.343 1.070 0602 0.809 1.170
50 0 2 2 0040 0040 1264 1.264 0744 0744 1.000 1.133
0 3 3 0947 0947 1382 1.382 0685 0.685 1.000
0 4 4 0967 0967 1544 1544 0626 0626 1.000
1 2 5 0978 0019 1659 1271 0590 0723  1.227
1 3 6 0090 0962 1808 1400 0548 0.683  1.247
1 4 7 0.996 0.963 1.937 1.519 0.514 0.634 1.233
2 2 8 1000 0941 2145 1279 0466 0738 1578
2 3 9 1000 0958 2246 1360 0445 0700 1.572
2 4 10 1000 0882 2483 1502 0403 0.654 1.623
17 2 2 0.940 0.873 1.258 1.031 0.747 0.847 1.33
17 3 2 0936 0891 1260 1.071 0743 0832 1133
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the superiority of R to Rgs in our sense of efficiency is strongly supported by this
Monte Carlo results given in Table 2.

Ezample. In a clinical experiment, data are obtained from five different treat-
ments (k= 5) such that each response is either success or non-success. In each treat-
ment 20 experiments (n=20) are observed and the total number of successes for
each treatment are respectively given by 11, 10, 17, 15, and 12. In order to select
those treatments associated with the largest success probability, let the probability
of correct selection be fixed by P*=0.90. Then, following Table 1 of GupTa and
SoBEL (1960), the constant of the subset selection rule Rgs is given by c=6. Now,
X ax=17, X ;,,=10. Hence, according to Rgs, all these treatments whose total
success is bigger than or equal to X,  —c=17—6=11 are selected. Thus, treat-
ment 1, 3, 4 and 5 are all selected. On the other hand, if we consider §=0.01 (i.e.
we consider these treatments ¢ are superior if mjax ps—pi =9), then, by Table 1, .

we have a=1 and b=4. Since X, —X ;,=17—10=6>a=1, we select those
treatments if their total success numbers are not less than X, —-b=17-4=13,
i.e. we select treatments 3, 4. Since §=0.01 is small and the selected subset size
using our mixed-type rule R is just half of that using Egs, we prefer R to Rgs for
this case. To use Rgg, there is some difficulty since we do not know exact value
of 4, the lower bound of the difference between the largest and the second largest

~ 1 15
pi’s. However, if we estimate this value by A=2——§(—)=0.10. Then, we can not

claim that treatment 4 (X4=X,_,,=17) is associated with max p, since according
to SoBEL and HUYETT (1957), it needs = to be bigger than 20 if P*=0.90.

If the observed data are given respectively by 10, 10, 11, 11 and 11, then,
according to Rgs, treatment 3, 4 and 5 are all selected, however, any one of treat-
ment 3, 4 or 5 is selected if the mixed-type rule R is applied with 6§=0.01 and
P*=0.90. The size of selected subset is 3 for Rgs and is one for R. If Rsq is applied

.~ 11 10 . . :
using A=%—2—6=0.05, we can not claim that either treatment 3, 4 or 5 is

associated with max p; with probability of correct selection P*=0.90, since it
needs n > 20.
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