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AbstratIt is often the ase that some information is available on the parameter of failuretime distribution from previous experiments or analyses of failure time data. TheBayesian approah provides the methodology for inorporation of previous informationwith the urrent data. In this study, given a progressively type II ensored sample froma Rayleigh distribution, Bayesian estimators and redible intervals will be obtainedfor the parameter and reliability funtion. We will also derive the Bayes preditiveestimator and highest posterior density predition interval for future observations. Anumerial example will be presented for illustration, and some simulation study andomparisons will be performed.Keywords: Bayes estimator; Highest posterior density interval; Predition interval; Pro-gressive ensoring; Reliability funtion.
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1 IntrodutionThe Rayleigh distribution is a speial ase of the Weibull distribution and has wide applia-tions, suh as, in ommuniation engineering, (Dyer and Whisenand (1973a, 1973b)), in lifetesting of eletrovaum devies, (Polovko 1968), et. The probability density funtion of theRayleigh distribution is given byf(xj�) = x�2 exp�� x22�2� ; x > 0; (1)where � > 0 is the parameter. An important harateristi of the Rayleigh distribution isthat its failure rate is an inreasing linear funtion of time. This property makes it a suitablemodel for omponents whih possibly have no manufaturing defets but age rapidly (seePolovko (1968)) with time. Inferenes for the Rayleigh distribution were disussed by severalauthors suh as Kong and Fei (1996), Howlader and Hossain (1995), and Fern�andez (2000).Progressive type II ensoring is a generalization of type II ensoring. In a type II ensor-ing, a total of n units is put on a life test, but instead of ontinuing until all n units havefailed, the life test is stopped at the time of the m-th (1 � m � n) unit failure. If an experi-menter desires to remove live units at points other than the �nal termination point of a lifetest, the type II ensoring sheme will not be of use to the experimenter. Type II ensoringdoes not allow for units to be removed from the life test before the �nal termination point.However, this allowane will be desirable, as in the ase of aidental breakage of test units,in whih the loss of units at points other than the termination point may be unavoidable.Consider an experiment in whih n independent units are plaed on a test at time zero,and the failure times of these units are reorded. Suppose that m failures are going to beobserved. When the �rst failure is observed, r1 of the surviving units are randomly seletedand removed. At the seond observed failure, r2 of the surviving units are randomly seletedand removed. This experiment stops at the time when the m-th failure is observed and theremaining rm = n� r1� r2�� � �� rm�1�m surviving units are all removed. The m orderedobserved failure times are alled progressively type II ensored order statistis of size m froma sample of size n with ensoring sheme (r1; : : : ; rm).Suppose that the failure times of the n independent units originally on a test are identi-ally distributed with probability density funtion f(x) and umulative distribution funtionF (x). Let X1:m:n; : : : ; Xm:m:n be a progressively type II ensored sample from f(x) with en-soring sheme (r1; : : : ; rm). The joint probability density funtion of all m progressively typeII ensored order statistis is given by Balakrishnan and Aggarwala (2000),fX1:m:n;:::;Xm:m:n(x1:m:n; : : : ; xm:m:n) =  mYi=1 f(xi:m:n)[1� F (xi:m:n)℄ri; (2)where  = n(n�r1�1) � � � (n�r1�� � ��rm�1�m+1). When data are obtained by progressiveensoring, inferene problems for various distributions have been studied by several authorsinluding Wong (1993), Balasooriya and Saw (1998), and Wu (2003).2



2 Prior and Posterior DistributionsLet X1:m:n; : : : ; Xm:m:n be a progressively type II ensored sample from a Rayleigh distribu-tion with parameter �. Aording to (1) and (2), the likelihood funtion is given byL(�) / 1�2m exp(� 12�2 mXi=1 (ri + 1)x2i:m:n) : (3)It is easy to obtain the maximum likelihood estimator of � to be�̂ =vuut 12m mXi=1 (ri + 1)X2i:m:n: (4)By the invariane property of the maximum likelihood estimator, we an obtain the maximumlikelihood estimator of reliability funtion R(tj�) to beR̂t = exp�� t22�̂2� : (5)In the Bayesian approah, � is onsidered a random variable having some spei�ed dis-tribution. In this paper, we onsider onjugate prior distribution of the form�(�) = ab�(b)2b�1 ��2b�1 expn� a2�2o ; � > 0; (6)where a > 0 and b > 0. This density is known as the square-root inverted-gamma distribu-tion. It follows, from (3) and (6), that the posterior distribution of � is given by�(�jx) = [a+Pmi=1(ri + 1)x2i:m:n℄b+m2b+m�1�(b+m) ��2(b+m)�1 exp(� 12�2 "a+ mXi=1 (ri + 1)x2i:m:n#) ;(7)for � > 0, zero elsewhere. Substituting �2 = �t2=(2 log s) into (7), we obtain the posteriorprobability density funtion of R(tj�) as�(sjx) = 1�(b+m) �a +Pmi=1(ri + 1)x2i:m:nt2 �b+m (� log s)b+m�1 sa+Pmi=1(ri+1)x2i:m:nt2 �1; (8)for 0 < s < 1, zero elsewhere.3 Bayesian Estimation3.1 Bayes EstimatorsIn order to derive Bayes estimators we must �rst speify a loss funtion whih representsthe ost involved in using the estimate ~� when the true value is �. The squared error loss3



is appropriate when deisions beome gradually more damaging for larger errors. Undersquared error loss, the Bayes estimator of � is the posterior mean~� = E(�jX) =vuut12 "a+ mXi=1 (ri + 1)X2i:m:n# �(b +m� 12)�(b+m) : (9)Another problem of interest is that of estimating reliability funtion R(tj�) with �xedt > 0. For squared error loss, the Bayes estimator of R(tj�) is given by~Rt = E[R(tj�)jX℄ = � a+Pmi=1(ri + 1)X2i:m:na+Pmi=1(ri + 1)X2i:m:n + t2�b+m : (10)The highest posterior density (HPD) estimation is another method in popular use fromthe Bayesian perspetive. This parameter estimation is based on the maximum likelihoodpriniple and, hene the mode of posterior density will be the HPD estimator. Sine theposterior density (7) is unimodal, we an obtain the HPD estimator of � as�� =sa +Pmi=1(ri + 1)X2i:m:n2(b+m) + 1 :From (8), the HPD estimator of R(tj�) isR�t = exp�� (b+m� 1)t2a+Pmi=1(ri + 1)X2i:m:n � t2� :3.2 HPD Credible IntervalsA 100(1��)% Bayesian redible interval for the parameter � is any interval (`; u) satisfyingP (` < � < ujx) = 1� �: (11)This two-sided interval (`; u) an be hosen in di�erent ways. The most frequent use is theHPD redible interval. A 100(1� �)% HPD redible interval hooses (`; u) to onsist of allvalues of � with �(�jx) > C�, where C� is hosen suh that (11) holds.Due to the unimodality of (7), the 100(1� �)% HPD redible interval (`; u) for � mustsatisfy the following two equations.Z u` �(�jx)d� = 1� �: (12)and �(`jx) = �(ujx): (13)From (12) and (13) and after some algebrai omputation, the 100(1��)% HPD redible in-terval (`; u) for � is given by the simultaneous solution of the equations �I(�1; b+m)��I(�2; b+4



m) = 1 � � and (u=`)2(b+m)+1 = expf�1 � �2g, where �1 = 12`2 [a +Pmi=1(ri + 1)x2i:m:n℄,�2 = 12u2 [a+Pmi=1(ri + 1)x2i:m:n℄, and �I(�i; b+m) = 1�(b+m) R �i0 zb+m�1e�zdz, the inompletegamma funtion. Similarly, the 100(1� �)% HPD redible interval (`R; uR) for R(tj�) mustsatisfy �I(�! log `R; b + m) � �I(�! log uR; b + m) = 1 � � and (loguR= log `R)b+m�1 =(`R=uR)!�1, where ! = [a +Pmi=1(ri + 1)x2i:m:n℄ =t2.4 Prediting Future ObservationsIt is often of interest to predit the k-th failure time in a future sample of size N from thesame distribution. Let Y(1) < � � � < Y(N) be the order statistis in a sample of size N withlifetimes distributed as (1). The probability density funtion of the k-th (1 � k � N) orderstatisti isf(y(k)j�) = N !(k � 1)!(N � k)! y(k)�2  1� exp(�y2(k)2�2)!k�1 exp(�(N � k + 1)y2(k)2�2) ;(14)for y(k) > 0, zero elsewhere. By forming the produt of (7) and (14), and integrating out �over the set f�; 0 < � <1g, the preditive distribution of Y(k), given X , isf(y(k)jx) = 2(N !)(b+m)(k � 1)!(N � k)! y(k) "a+ mXi=1 (ri + 1)x2i:m:n#b+mk�1Xj=0(�1)j�k � 1j �"a+ mXi=1 (ri + 1)x2i:m:n + (N � k + j + 1)y2(k)#�(b+m+1) ;for y(k) > 0, zero elsewhere. Under squared error loss, the Bayes preditive estimator of Y(k)is the expetation of the preditive distribution, that is,~Y(k) = E(Y(k)jX) = N !p�2(k � 1)!(N � k)! k�1Xj=0(�1)j�k � 1j ��N � k + j + 1�� 32 ~�;where ~� is the Bayes estimator of � given in (9).The 100(1� �)% HPD predition interval (`k; uk) for Y(k) should simultaneously satisfyR uk`k f(y(k)jx)dy(k) = 1 � � and f(`kjx) = f(ukjx). After some algebrai simpli�ation, the
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Table 1: Progressively type II ensored sample from Rayleigh distributioni 1 2 3 4 5 6 7 8 9 10xi 0.1970 0.3029 0.5786 0.9758 1.0066 1.3734 1.4159 1.5209 2.0482 2.2496ri 2 0 0 2 0 0 0 2 0 4100(1� �)% HPD predition interval (`k; uk) satis�es1� � = N !(k � 1)!(N � k)! "a + mXi=1 (ri + 1)x2i:m:n#b+m k�1Xj=0(�1)j�k � 1j � 1N � k + j + 18<:"a+ mXi=1 (ri + 1)x2i:m:n + (N � k + j + 1)`2k#�(b+m)
�"a+ mXi=1 (ri + 1)x2i:m:n + (N � k + j + 1)u2k#�(b+m)9=; ;and k�1Xj=0(�1)j�k � 1j �uk "a+ mXi=1 (ri + 1)x2i:m:n + (N � k + j + 1)u2k#�(b+m+1)

= k�1Xj=0(�1)j�k � 1j �`k "a + mXi=1 (ri + 1)x2i:m:n + (N � k + j + 1)`2k#�(b+m+1) :
5 Numerial Example and Simulation Study5.1 Illustrative ExampleConsider a progressively type II ensored sample of size m = 10 from a sample of sizen = 20 with ensoring sheme r = (2; 0; 0; 2; 0; 0; 0; 2; 0; 4) from Rayleigh distribution withparameter �. It is assumed that the prior distribution of � is a square-root inverted-gammadistribution given in (6) with a = 7:0 and b = 2:0. Table 1 is a progressively type II ensoredsample. This sample was simulated by using the following algorithm.Step 1. For the given values of prior parameters (a; b), generate � from the square-rootinverted-gamma distribution.Step 2. Using � obtained in Step 1, generate a progressively type II ensored sample of sizem from a sample of size n with ensoring sheme r = (r1; : : : ; rm) from Rayleigh dis-tribution aording to the algorithm presented in Balakrishnan and Aggarwala (2000,pp. 32-33). 6



Table 2: Bayes preditive estimates and HPD predition intervalsk ~Y(k) (lk; uk)1 0.6010 (0:0719; 1:0068)2 0.9260 (0:3081; 1:3886)3 1.1924 (0:5086; 1:6865)4 1.4379 (0:6897; 1:9625)5 1.6794 (0:8628; 2:2379)From (4) and (5), we obtained the maximum likelihood estimates of � and R(t = 2j�)to be �̂ = 1:4957 and R̂t=2 = 0:4090, respetively. From (9) and (10), we determined theBayes estimates of � and R(t = 2j�) to be ~� = 1:5163 and ~Rt=2 = 0:4092. Similarly, we analulate the HPD estimates of � and R(t = 2j�) to be �� = 1:4386 and R�t=2 = 0:3979. Toobtain the 90% HPD redible intervals for � and R(tj�) we need to use the Newton-Raphsonmethod to solve the equations in Setion 3.2. The 90% HPD redible intervals for � andR(t = 2j�) are (1:0699; 1:7393) and (0:1860; 0:5261), respetively.Furthermore, onsider a future sample of size N = 5 from the same distribution. Usingthe formula in Setion 4, Bayes preditive estimates and the orresponding 90% HPD pre-dition intervals for the k-th, 1 � k � 5, failure times are shown in Table 2. It is easy to seethat the length of the HPD predition interval inreases as k inreases. This implies thatthe predition is less preise as a larger order statisti is onsidered.5.2 Simulation ResultsIn the following, the maximum likelihood estimates and Bayes estimates of the parameter �and the R(tj�) are ompared via Monte Carlo simulation. Using the method given in Setion5.1, the progressively type II ensored samples from Rayleigh distribution with parameter �having square-root inverted-gamma prior density were generated for (a; b) = (2; 5), t = 0:5,and di�erent ombinations of n, m, and ensoring shemes r. Table 3 provides the estimatedrisks of the maximum likelihood estimators and Bayes estimators. The estimated riskswere alulated as the average of squared deviations. All the results were omputed over10000 simulations. From Table 3, we an see that the Bayes estimates are better thantheir orresponding maximum likelihood estimates for the onsidered ases. However, moreinvestigations are needed to see the robustness of the hoie of the prior.ReferenesBalakrishnan, N. and Aggarwala, R. (2000). Progressive Censoring { Theory, Methods, andAppliations. Birkh�auser, Boston.
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Table 3: Estimated risks of the MLE and Bayes estimates with prior parameters (a; b) = (2; 5)ensoring parameter � reliability funtionR(t = 0:5j�)n m sheme MLE Bayes MLE Bayes20 5 (4*0,15) 0.0611 0.0268 0.0490 0.0301(15,4*0) 0.0627 0.0275 0.0500 0.030615 (14*0,5) 0.0503 0.0352 0.0505 0.0404(5,14*0) 0.0492 0.0345 0.0498 0.039925 10 (9*0,15) 0.0524 0.0319 0.0493 0.0363(15,9*0) 0.0527 0.0321 0.0500 0.036920 (19*0,5) 0.0485 0.0367 0.0505 0.0423(5,19*0) 0.0488 0.0370 0.0513 0.043050 20 (19*0,30) 0.0489 0.0370 0.0514 0.0431(30,19*0) 0.0484 0.0365 0.0498 0.041730 (29*0,20) 0.0474 0.0391 0.0511 0.0451(20,29*0) 0.0472 0.0388 0.0507 0.0447Balasooriya, U. and Saw, S. L. C. (1998). Reliability sampling plans for the two-parameterexponential distribution under progressive ensoring. Journal of Applied Statistis, 25,707-714.Dyer, D. D. and Whisenand, C. W. (1973a). Best linear unbiased estimator of the parameterof the Rayleigh distribution { Part I: Small sample theory for ensored order statistis.IEEE Transations on Reliability, 22, 27-34.Dyer, D. D. and Whisenand, C. W. (1973b). Best linear unbiased estimator of the parameterof the Rayleigh distribution { Part II: Optimum theory for seleted order statistis.IEEE Transations on Reliability, 22, 229-231.Fern�andez, A. J. (2000). Bayesian inferene from type II doubly ensored Rayleigh data.Statistis & Probability Letters, 48, 393-399.Howlader, H. A. and Hossain, A. (1995). On Bayesian estimation and predition fromRayleigh based on type II ensored data. Communiations in Statistis { Theory &Methods, 24, 2249-2259.Kong, F. and Fei, H. (1996). Limits theorems for the maximum likelihood estimate undergeneral multiply type II ensoring. Annals of the Institute of Statistial Mathematis,48, 731-755.Polovko, A. M. (1968). Fundamentals of Reliability Theory. Aademi Press, New York.Wong, J. Y. (1993). Simultaneously estimating the three Weibull parameters from progres-sively ensored samples. Miroeletronis and Reliability, 33, 2217-2224.Wu, S.-J. (2003). Estimation for the two-parameter Pareto distribution under progressiveensoring with uniform removals. Journal of Statistial Computation and Simulation,73, 125-134. 8


