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Abstract

It is often the case that some information is available on the parameter of failure
time distribution from previous experiments or analyses of failure time data. The
Bayesian approach provides the methodology for incorporation of previous information
with the current data. In this study, given a progressively type II censored sample from
a Rayleigh distribution, Bayesian estimators and credible intervals will be obtained
for the parameter and reliability function. We will also derive the Bayes predictive
estimator and highest posterior density prediction interval for future observations. A
numerical example will be presented for illustration, and some simulation study and
comparisons will be performed.

Keywords: Bayes estimator; Highest posterior density interval; Prediction interval; Pro-
gressive censoring; Reliability function.



1 Introduction

The Rayleigh distribution is a special case of the Weibull distribution and has wide applica-
tions, such as, in communication engineering, (Dyer and Whisenand (1973a, 1973b)), in life
testing of electrovacum devices, (Polovko 1968), etc. The probability density function of the
Rayleigh distribution is given by

2
f(x\ﬂ):% exp{—%}, x>0, (1)

where 6 > 0 is the parameter. An important characteristic of the Rayleigh distribution is
that its failure rate is an increasing linear function of time. This property makes it a suitable
model for components which possibly have no manufacturing defects but age rapidly (see
Polovko (1968)) with time. Inferences for the Rayleigh distribution were discussed by several
authors such as Kong and Fei (1996), Howlader and Hossain (1995), and Fernandez (2000).

Progressive type Il censoring is a generalization of type II censoring. In a type II censor-
ing, a total of n units is put on a life test, but instead of continuing until all n units have
failed, the life test is stopped at the time of the m-th (1 < m < n) unit failure. If an experi-
menter desires to remove live units at points other than the final termination point of a life
test, the type II censoring scheme will not be of use to the experimenter. Type II censoring
does not allow for units to be removed from the life test before the final termination point.
However, this allowance will be desirable, as in the case of accidental breakage of test units,
in which the loss of units at points other than the termination point may be unavoidable.

Consider an experiment in which n independent units are placed on a test at time zero,
and the failure times of these units are recorded. Suppose that m failures are going to be
observed. When the first failure is observed, r; of the surviving units are randomly selected
and removed. At the second observed failure, r5 of the surviving units are randomly selected
and removed. This experiment stops at the time when the m-th failure is observed and the
remaining r,, =n—r; —r9 —- -+ — 7,1 —m surviving units are all removed. The m ordered
observed failure times are called progressively type II censored order statistics of size m from
a sample of size n with censoring scheme (r1,...,7ry).

Suppose that the failure times of the n independent units originally on a test are identi-
cally distributed with probability density function f(z) and cumulative distribution function
F(z). Let X1.mm, - -+ Xmumm be a progressively type II censored sample from f(x) with cen-
soring scheme (rq, ..., ry,). The joint probability density function of all m progressively type
IT censored order statistics is given by Balakrishnan and Aggarwala (2000),

m
le:m:n,...,Xm:m:n (l'lzm:na e alim:m:n) - CH f(xzmn)[l - F(xi:m:n)]ria (2)
i=1
where ¢ = n(n—ry—1) - (n—ry—-+-—rp_1—m+1). When data are obtained by progressive

censoring, inference problems for various distributions have been studied by several authors
including Wong (1993), Balasooriya and Saw (1998), and Wu (2003).
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2 Prior and Posterior Distributions

Let X1, - -+ Xmm:n be a progressively type II censored sample from a Rayleigh distribu-
tion with parameter f. According to (1) and (2), the likelihood function is given by

L(0) o gy exp {—% S+ 1)1-3%} . 3)

=1

It is easy to obtain the maximum likelihood estimator of 6 to be

m

;o 1 9

i=1

By the invariance property of the maximum likelihood estimator, we can obtain the maximum
likelihood estimator of reliability function R(t/6) to be

R 2
Ry =e - 7. )
= {1 )

In the Bayesian approach, 6 is considered a random variable having some specified dis-

tribution. In this paper, we consider conjugate prior distribution of the form

ab

0) = Fyps 2 Lexp {——} .00, (6)

where a > 0 and b > 0. This density is known as the square-root inverted-gamma distribu-
tion. It follows, from (3) and (6), that the posterior distribution of  is given by

a+ zm:(rZ + 1)xf:m:n] } ,
7)

for § > 0, zero elsewhere. Substituting #* = —t?/(21og s) into (7), we obtain the posterior

"+ Va0 1
H(G‘ﬂ}) — [a + Zz:l(rz + )xzmn] 0—2(b+m)—1 exp { 292

20+m—1T( 4 m) 262

probability density function of R(t|0) as

L'(b+m) t?

a+2;ﬂ=1(ri+l)xzz:m:n -1
2

b+m
} (—log s) =t 5 ®

[(slz) =

for 0 < s < 1, zero elsewhere.

3 Bayesian Estimation

3.1 Bayes Estimators

In order to derive Bayes estimators we must first specify a loss function which represents
the cost involved in using the estimate 6§ when the true value is . The squared error loss
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is appropriate when decisions become gradually more damaging for larger errors. Under
squared error loss, the Bayes estimator of # is the posterior mean

~ 1
0=E01X)=,|5

a+ ;(ri + 1)X§mm] % 9)

Another problem of interest is that of estimating reliability function R(¢|f) with fixed
t > 0. For squared error loss, the Bayes estimator of R(¢]f) is given by

o+ 30 (i + DX rm

10
a—+ Zgl(ri + 1)Xz2mn + 12 ( )

F = BR(110) X] = [

The highest posterior density (HPD) estimation is another method in popular use from
the Bayesian perspective. This parameter estimation is based on the maximum likelihood
principle and, hence the mode of posterior density will be the HPD estimator. Since the
posterior density (7) is unimodal, we can obtain the HPD estimator of 0 as

9* _ \/a + Zzﬁll(ri + 1)X22mn

2(b+m) +1

From (8), the HPD estimator of R(t|0) is

(b+m — 1)t _tQ}.

R = -
! e"p{ A+ > (r+ DX,

3.2 HPD Credible Intervals

A 100(1 — a)% Bayesian credible interval for the parameter 6 is any interval (¢, u) satisfying
Pl<f<ulx)=1-a. (11)

This two-sided interval (¢, u) can be chosen in different ways. The most frequent use is the
HPD credible interval. A 100(1 — )% HPD credible interval chooses (¢, u) to consist of all
values of § with I1(0|x) > C,, where C,, is chosen such that (11) holds.

Due to the unimodality of (7), the 100(1 — a)% HPD credible interval (¢, u) for § must
satisfy the following two equations.

/UH(Ga:)dH =1—a. (12)
and
[(l|x) = (u|x). (13)

From (12) and (13) and after some algebraic computation, the 100(1 —«)% HPD credible in-
terval (¢, u) for 6 is given by the simultaneous solution of the equations I't(vy, b+m)—T1(ve, b+
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m) = 1 — a and (u/0)?0+mF = expl{y; — 1}, Where v = gpla+ > (ri+ )220,
vo =gz la+ Y (ri+ 1)z i:m:n], and T'y(v;,b+m) = (b+m fo’ btm=le=%dz, the incomplete
gamma function. Similarly, the 100(1 — a)% HPD credible interval (¢, ug) for R(t|) must
satisfy T1(—wloglr,b + m) — T1(~wlogugr,b +m) = 1 — a and (logugr/loglp)* ™1 =
(Cr/ug)? !, where w = [a+ Y 1o, (r; + 1)aZ,,..] /t*

4 Predicting Future Observations

It is often of interest to predict the k-th failure time in a future sample of size N from the
same distribution. Let Y(;y < --- < Y{u) be the order statistics in a sample of size N with
lifetimes distributed as (1). The probablhty density function of the k-th (1 < k < N) order

statistic is

k—1
N! 0 Yik) Uik
f(y(k)|0): (k—l)'(N—k)' ? <1_exp{_w exp —(N—k+1)2—02 ,

(14)

for yx) > 0, zero elsewhere. By forming the product of (7) and (14), and integrating out ¢
over the set {0;0 < # < oo}, the predictive distribution of Y{), given X, is

m
Z T + 1 z m:n
Z:
—(b+m+1)

Zrl+1 Li:mm (N_k+]+1)y(2k)] )

2NV (b + m) e

(k- 1)I(N —

<’“>

J

fywle) =

for yy > 0, zero elsewhere. Under squared error loss, the Bayes predictive estimator of Yy,
is the expectation of the predictive distribution, that is,

N/Z k-1 N

N 'JZ p( ks

Yiey = B(Y(| X) =

where 6 is the Bayes estimator of 6 given in (9).
The 100(1 — «)% HPD prediction interval (¢, uy) for Y4y should simultaneously satisfy

f;:" (Ywyl®)dywy = 1 — a and f({|x) = f(ur|z). After some algebraic simplification, the



Table 1: Progressively type II censored sample from Rayleigh distribution

i 1 2 3 4 3 6 7 8 9 10
z; 0.1970 03029 0.5786 0.9758 1.0066 1.3734 1.4159 1.5209 2.0482 2.2496
T 2 0 0 2 0 0 0 2 0 4

100(1 — )% HPD prediction interval (¢, uy) satisfies

m b+m g
NI k-1 1
l—a= i+ D)2 —-1)
“T - DIN — k) “;(T * )xm] JZO( ) < j >N—k+j+1
m —(b+m)
@+ (ri+ 1)af,., + (N —k+j+1)6
i=1
m —(b+m)
—la+ Y (ri+ D2, + (N = k+j+ 1) :
=1
and
k—1 k 1 m —(b+m+1)
(—1)j< ; >uk @+ (ri+1)a} ., + (N —k+j+1)u;
7=0 =1
k—1 k 1 m —(b+m+1)
=S (P ) o4 D+ (V= k108
=0 i=1

5 Numerical Example and Simulation Study

5.1 Illustrative Example

Consider a progressively type II censored sample of size m = 10 from a sample of size
n = 20 with censoring scheme r = (2,0,0,2,0,0,0,2,0,4) from Rayleigh distribution with
parameter 6. It is assumed that the prior distribution of # is a square-root inverted-gamma
distribution given in (6) with a = 7.0 and b = 2.0. Table 1 is a progressively type II censored

sample. This sample was simulated by using the following algorithm.

Step 1. For the given values of prior parameters (a,b), generate 6 from the square-root

inverted-gamma distribution.

Step 2. Using # obtained in Step 1, generate a progressively type II censored sample of size
m from a sample of size n with censoring scheme r = (rq,...,r,) from Rayleigh dis-
tribution according to the algorithm presented in Balakrishnan and Aggarwala (2000,

pp. 32-33).



Table 2: Bayes predictive estimates and HPD prediction intervals

kl Y (Ig, ug)

1| 0.6010 (0.0719,1.0068)
2 1 0.9260 (0.3081,1.3886)
3| 1.1924 (0.5086,1.6865)
4| 1.4379 (0.6897,1.9625)
51 1.6794 (0.8628,2.2379)

From (4) and (5), we obtained the maximum likelihood estimates of # and R(t = 2|6)
to be § = 1.4957 and R,_o = 0.4090, respectively. From (9) and (10), we determined the
Bayes estimates of # and R(t = 2|0) to be § = 1.5163 and R,_, = 0.4092. Similarly, we can
calculate the HPD estimates of § and R(t = 2|0) to be §* = 1.4386 and R;_, = 0.3979. To
obtain the 90% HPD credible intervals for # and R(¢|f) we need to use the Newton-Raphson
method to solve the equations in Section 3.2. The 90% HPD credible intervals for # and
R(t = 2|0) are (1.0699,1.7393) and (0.1860, 0.5261), respectively.

Furthermore, consider a future sample of size N = 5 from the same distribution. Using
the formula in Section 4, Bayes predictive estimates and the corresponding 90% HPD pre-
diction intervals for the k-th, 1 < k£ < 5, failure times are shown in Table 2. It is easy to see
that the length of the HPD prediction interval increases as k increases. This implies that
the prediction is less precise as a larger order statistic is considered.

5.2 Simulation Results

In the following, the maximum likelihood estimates and Bayes estimates of the parameter
and the R(t|f) are compared via Monte Carlo simulation. Using the method given in Section
5.1, the progressively type II censored samples from Rayleigh distribution with parameter 6
having square-root inverted-gamma prior density were generated for (a,b) = (2,5), t = 0.5,
and different combinations of n, m, and censoring schemes r. Table 3 provides the estimated
risks of the maximum likelihood estimators and Bayes estimators. The estimated risks
were calculated as the average of squared deviations. All the results were computed over
10000 simulations. From Table 3, we can see that the Bayes estimates are better than
their corresponding maximum likelihood estimates for the considered cases. However, more
investigations are needed to see the robustness of the choice of the prior.
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