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Abstract

For estimating a normal variance under
squared error loss function it is well known
that the best affine (location and scale)
equivariant estimator, which is better than the
maximum likelihood estimator as well as the
unbiased estimator is also inadmissible. The
improved estimators, e.g., Stein type, Brown
type and Brewster-Zidek type, are all scale
equivariant but not location invariant. Lately
a good amount of research has been done to
compare the improved estimators in terms of
risk, some of the estimators are examined in
terms of Pitman Nearness Criterion and have
made some interesting observations in the
process. However, very little attention had
been paid to compare these estimators in
terms of Stochastic Domination criterion. In
this research we take a comprehensive study
in terms of Stochastic Domination criterion

to compare various variance estimators.

Keywords: Affine equivariance, loss function,
risk function, non-central chi-square distribu-
tion.

= AR

Assume that we have independent
random observations X and § such
that X =(X,,X,,,X,) follows a



N, (u, olr )
distribution and (S/0?) follows a x?2_,
(Chi-square with (m-1) d.f.) distribu-
tion. Consider the problem of estimation
of o’ efficiently.

{p-dmensional normal)

The above-described model is encoun-
tered if one has independent and identic-
ally distributed (iid) observations X,
X, X, from a N, (u,0%1,) distri-
bution. The data can be reduced by su-
fficiency principle, and one needs to focus

only on X =JnX , f=(2Xi/n)

wd $= 3 F| . Note i x

follows N,(u,0%I,) and S/o® ~ 2,
with u=+/n and (m-1)=p(n-1).

Similarly, in a linear model setup
=X, BmtE, where S, follows

nx]

Y

nx]

N,(0,0%1,) distribution, let § be the
least squares estimate of § and M

be such that MM = (XX), then (MB)

plays the role of X and S plays the role
of error sum of squares (SSE) for suitable
choicesof 8 and m.

In classical statistics, usual estimators
of ¢® are (i) the unique minimum var-
iance unbiased estimator (UMVUE) of o

given by

62 = S/(m-1); 1.1
and (i) the maximum likelihood estimator
(MLE) of o® given by

error loss (SEL) and the entropy loss (EL).

If we consider the group G, of affine
transformation. (i.e., (X,5)— (aX +5,
a’s), a>0, bER? = p - dimen-
sional real space), then the affine equi-
variant estimators have the form & =cS,

where ¢ >0 is a constant. Since the group
G, (and the corresponding induced group

G, acting on Q= fo =(0,0%)|0€ R*,
o’ > 0} such that (8,0°) — (a8 +b,
a*0?), a>0, bER?’) is transitive, the
affine equivariant estimator & has con-

stant risk on €. Therefore, one can find
the best affine equivariant estimator (BAEE)

of o® by minimizing the risk of &

with respect to (wrt) ¢. The BAEEs of
o’ under Ly and L, are respectively

6t =5/(m+1)

and 6 =6 =S/(m-1) (1.5).

Interestingly, & (&) is inadmissible

under L, (L), and improved and there-

fore is inadmissible under L; (L;), and

improved estimators are only scale equi-
variant but not location invariant. Stein

(1964) showed that under L., an improved
estimator of o® can be found which is
uniformly better than &;. Brown (1968)
proposed a similar but somewhat different
estimator of o” under L. However, both

O and G, are nonanalytic and hence

inadmissible. Brown’s technique was further
extended by Brewster and Zidek (1974) who
obtained an admissible improved estimator

62 =S/m+p-1.  (12) of o’

In a decision-theoretic setup the two
most commonly used loss functions are

Ly(6% w) = (6 *[o® -1)*(13)

L.(6%, w) = (6*/c?) - n(6*/c?) - 1.

(1.4)

where &% is an estimator of o® and
@ = (6, 0%). The loss functions L, and

For a comprehensive review on normal
variance estimation and related topics see Pal,
Ling and Lin (1998). Estimator analogous to
(1.6), (1.7) and (1.8) under the loss L, can

be derived.

While emphasis had been given to co-

L are called respectively the squared  mpare various variance estimators in terms



of risk, the attention had also been paid to
do the same in terms of another important
criterion namely, the Pitman nearness
criterion (PNC).

Comparison of these three affine equ-
ivariant estimators, e.g., G, G} =0}

i

and érsz , in terms of PNC has been studied

by Lin, Pal and Chang (2002). It appears
that &} the UMVUE (as well as BAEE

u

under L) is the best among these three

popular estimators.

It appears, quite interestingly, that the
unbiased estimator emerges as the most pr-
eferable among the three affine equivariant

estimators. Besides, the comparison of &
=3} against G, and g4, , Stein
type and Brewster-Zidek type improved

estimators under L; respectively, have

been also undertaken by Lin, J. J., Pal, N.
and Chang, C. H. (2002). On the other
hand, several properties of the Pitman’s
measurement of closeness has been critic-
ized by Robert, Hwang and Strawderman
(1993) and defended by Ghosh, Keating,
Sen (1993), including the lack of
transitivity, its incompatibility with the
Stochastic Domination Criteria and the
difficulties of the use of its joint probability
distribution of the estimators.

In this research, SDC is defined as
given in Definition 2.1, for our variance

estimation problem.

Definition 2.1: Given two estimators, say
6and 6,°,0of o, 67 issaid to be better
than &,° in terms of SDC (Stochastic
Domination Criterion) if
P [612—02|sd] =P ”(Trzz—ozlsd]
Vd>0
There are nothing known about the above
mentioned variance estimators &2, + &7 -

u

&! under “Stochastic Domination Criteria”

(SDC) . Therefore we study and do the
comparisons among theses normal variance
estimators to see if any estimators is better

than others most of the time in terms of
“Stochastic Domination Criteria” (SDC).

MY &SRR

COMPARISON OF AFFINE EQUIVARLANT
ESTIMATORS

2.1.Case I— For d.=1 (d=0?)

A6|6,7) = Q6!

d.,m,p,1)
~Q(6,%|d.,m, p,1)

1+d.

t+d. \
=f0 a (x;-1pdf )dx _fo e (xri-lpdf Ydx.

Result 2.1: For any two variance
estimators 6’ =¢,S and &=¢S , if
¢ SC; then

P [612—02|sd] =P [|6'22-02|sd] for

d 207, In other words, &;”dominates &*
inSDCif ¢ =c,

Remark 2.1;

In case . for d=0°

(i) &2, is better than &7 in SDC

in SDC

in SDC

(i) &2is better than

(i) &2, is better than

Figure 2.1 Comparison of
G2, 6 and G,

°

Delta Function for Case |

Figure 2.2 \3D graph of
A2s? , orcase L




Delta2 Function for d=2

Figure 2.3 3D graph of A (67
forp=3 and d. =2
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Delta2 Function for d=2
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Figure 2.4 3D graph of A (6’

for p=3 and d. =2
2.2.Case I for d. <1 (d <0?)
QG2|d,m, p.o®)  =0@7d,mpl) =

o (o spif s, for 0<d. <1.....(25)

1-d. Y

+da )l
Jf “ (2, pdf)dx, for d. 2 1........... (2.6)
To simplify the notation, let G(t) denote the
cdf of x>,  distribution, ie.,

G(@t) =ﬁ(x3,_1pdf)dx, then for d. <1,
622)=G(12d')—6(1_d*]-

1 €
1 dux 1_dnt
G( . )m( ]
<, C,
.the problem is studied in cases(A)-(C).The
values of the difference A(612|c322)of the

A

comparision of the above three mentioned
estimators are provided in tables and graphs .

(A) Comparison of 62andd;.
(B) Comparison of 67 and 62, .
(C) Comparison of &2 and &2 .

For saving the space, the graph tables are
omitted.
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