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Abstract

When a data set contains outliers and the
explanatory variables in a linear regression
model are highly correlated, a fuzzy-
weighted ridge regression (FWRR)
estimation method ts provided to combat
multicollinearity and reduce the influence
of outliers. Moreover, 1 prove that the
FWRR estimator has smaller mean sguared
error than the weighted least squares
estimator. Some Monte Carlo simulations
and an example are provided to
demonstrate the application of FWRR
estimator.

Keywords: Ridge Regression; Jackknife
Method; Multicollinearity;
Optimal  Fuzzy  Clustering
Analysis Method; Degree of
Membership; Outlier.

1. Introduction

Consider the linear regression model:

Y=13,+ XP+¢, (1)

where er(Yl,Yz,---,Yn) is an nxl
vector of response variables; X is an
nx p centered matrix of explanatory
variables; 1 is an n-dimensional column
vector of ones; f, is an  unknown

parameter, B is a pxl vector of

unknown parameters; £ is a column vector
of random error terms with E{s)=0 and

Cov(e)=c’l. We can use the sample

mean Y to estimate the unknown
parameter ;. When the explanatory

variables in model (1) are highly
correlated, the ordinary least squares (OLS)
estimator B=(X"X)'XTY  becomes
unstable and is inadequate to interpret the
relationship between response variable and
explanatory variables. Hoerl and Kennard
(1970) proposed a ridge regression (RR)
estimation method that can geperate a
smaller total variance than the OLS
estimator. Usually, the RR estimators are
biased. Liu (1993) provided a new RR
estimator to estimate the regression
coefficients. The RR estimator proposed
by Liu (1993) is a linear function of an
unknown biasing constant. Thus, the
computation of RR estimator proposed by
Liu (1993) is easier than the RR estimator
proposed by Hoerl and Kennard (1970).
Shia and Chow (1998) used jackknife
method to reduce the bias of RR estimator.
According to their simulations, the



proposed method exhibited a better
forecasting feature than the RR estimation
proposed by Hoerl and Kennard (1970)
both in stability and precision. These
methods proposed by Hoerl and Kennard
(1970), Liu (1993) and Shia and Chow
{1998} are discussed when a data set does
not contain outliers. If the data set contains
outliers and the explanatory variables in
model (1) are highly correlated, then the
precision of RR estimator will be affected.
Walker and Birch (1988) discussed some
influence measures in RR estimation. Van
Cutsem and Gath (1993) and Wu et al.
(1996) proposed an optimal fuzzy
clustering analysis (OFCA) method which
can identify outliers efficiently in
multivariate data sets. In order to reduce
the influence of outliers, they suggested
that the normalized degrees of
membership of optimal fuzzy clustering
analysis method could be added into the
estimation procedure. Moreover, Wu ef al.
(1996) provided a fuzzy-weighted
regression coefficient estimator in semi-
parametric model, which can reduce the
influence of outliers in parameter
estimation efficiently. Hence, a FWRR
estimation procedure combining the
optimal fuzzy clustering analysis method
and the RR estimation method proposed
by Hoerl and Kennard (1970) is provided.
The new estimation procedure can
improve the precision and stability of RR
estimator when a data set contains outliers.

2. FWRR Estimation

Assume that X, is the ith row of X in
model (1) and the observation
Z;=(X,.Y,) 1s the ith (p+1)-dimensional
data vector. If one observation, say Z,, is

an outlier, 1</<n, then the RR
estimator will produce large fluctuation

after Z, is dropped from the data set.
Hence, a hold-out procedure can be used
to help with identifying outliers. In each
time, we delete one observation from the
data set, and then to compute the RR
estimator based on the remaining n-1

observations. Let 3 be the RR estimator
when /th observation Z, is dropped,

I=12,--,n. Assume that there are some
outliers in the original data set and

DB, BY can be grouped into g

clusters, 1<g<n. Without loss of

generality, suppose that the number of
observations of first cluster is the largest
one among all clusters and is denoted by
m, . Suppose the condition »n, <<n, holds,

where n . is the number of observations in

the jth cluster, j=2,---,q. Thatis, I treat

the cluster 1 as the main group and the
other groups are the outlier groups.

When the optimal fuzzy clustering

method is performed, the degrees of

membership in the main classified cluster
u” = (uy, 4, -+, u,) can be normalized to

be the fuzzy weights w,, i=12,---,n such

that > w, =1. Then, we will use these
fuzzy weights to do the FWRR estimation

Assume that model (1) holds and the
data set contains some outliers. The
variance-covariance matrix of g is
revised as Cov(e) = do?, where @ is a
diagonal matrix. When RR estimation is
used in model (1), we often use correlation
transformation to help with controlling
roundoff errors such that the regression
coefficients have the same unit. Let

} " (Y, -T)
s, = ——-—-—Z‘=1(‘1 ) and
n-_



s = JZH(X& _XJ')Z

/ n-1 ’
The correlation transformations of ¥ and X
are given as follows,

7= (Y"?] ®

n-1 s,

leaza'“:P-

and

" 1 [X,.—FJ
X, = 2 3)

5,

j=12,--,p, i=12,---n. Using the
correlation transformation, we can rewrite
model (1) as

¥ =Xp+e, (4)

where Y isan »x1 vector with entries Y,

i=12,-,n; X isan nxp matrix with
entries X, i=12-,n, k=12,,p;
fis a px1 vector of unknown

parameters and &' is an nx1 vector of
error terms. The OLS estimators in model

(10) is denoted by p=(X"X)"'X7¥
= (E,:f’;z,---,ﬁp)r and the OLS estimators in
model (1) also can be computed by using

S A

BJ'=—X"BJ': j=1=2='“:p and B():Y
5

-B.X, —---—ﬁpz?p. Suppose that the data

set contains outliers and the fuzzy weights
w;,, i=12,--,n are computed by using
optimal fuzzy clustering analysis method.
Let Wbe a nxn diagonal weighted-matrix
with fuzzy weights w,, i=12,---,n in the
main diagonal. Wu ef al. (1996) showed that
the fuzzy-weighted least squares (FWLS)
estimator B, = (X"WX)"' X'WY is more
stable than the OLS estimator B when the
data set contains outliers. In addition, if the
design matrix X7X is close to singular,

Hoerl and Kennard (1970) suggested that
we could add a positive number & to the

main diagonal of matrix X’X when the

OLS estimators are computed. This
estimator B, =(X7X + k)" X7¥ is called
the RR estimator. Mathematically speaking,
the RR estimator is biased. In fact, when we
use the RR estimation, we get a stable but
biased  estimator., Many computing
procedures are available for choosing the
value of biasing constant £ (see, e.g. Horel
and Kennard 1976; Myers 1986, pp. 247-
262; Neter et al. 1996, pp. 412-416).

When the data set contains outliers and
the design matrix X7 X is close to singular,

I revise the RR estimator ER and provide a

—~

FWRR estimator B,z =
(XWX +kD)'X™WY, where W is a
diagonal matrix with fuzzy weights on the
main diagonal. Moreover, we can use the
prediction-oriented criterion proposed by
Mayers (1986) to find the biasing constant k.

This consists of selecting the value of & such
that

C, = R:gf" —-n+2r(H)) (5)
GW
is mintmal, where RSS, =

(V- XB,.) ' W({T - XP,,) is the weighted
sum of squares of residuals by using
FWRR  estimation  and 6 =

(- -5B,) is e
n-p

weighted estimator of & by using FWLS
estimation, H, = X(X'WX +k)' X'W

and tr(H,) is the trace of matrix H,.

The matrix H, plays the same roles as
the hat matrix in OLS estimation, however,
the matrix H, is not a projection matrix.
When the fuzzy weights w,, i=12,---,n

in matrix W are fixed, we can get the
following theorem.



Theorem 1: Let E(g)=0 and Cov(c)
=®c’ in the linear regression model
Y =1B, + XP+¢, where @ is a diagonal
matrix. If the weights w,, i=12,---,n
are given, there always exists a positive
k such that MSE(,,) < MSEQ.).

The proof of Theorem 1 is given in Tsai
(1999). Monte Carlo simulations are

provided to assess the performance of
FWRR estimator.

3. Monte Carlo Simulations and
Example

3.1 Monte Carlo Simulations

In order to evaluate the performance of
FWRR estimator, 100 regression data sets
are simulated at different level of
multicollinearity with outliers. The sample
size in each simulated data set is 20 and
each data set contains 4 outliers. Assume
that the regression model in the main group
is

Y =6X,+ X, +BXy+BX, + BX, +&,

i=12--16, (6)

We use the simulation procedure
suggested by McDonald and Galarneau
(1975) to generate the explanatory
variables. Let z,,z,,---,z, are normally
distributed with mean 0 and standard
deviation 1, and let

X, =(1—r2)”zz,j +rz, i=12,--16,

J=12,5 ()

It is easy to show that the correlations of

any two explanatory variables equal to

r*. For i=12,---16, the data set is

simulated according to model (6) and

equation (7). Moreover, the error terms
g, i=12,--16 are generated from

standard normal distribution. For the
remaining four observations (outlier
group), the data set is simulated from
model (8) as follows:

Y, +3=P X, 4B, +B Xy +B, X +Bs X+
i=17,18,19,20. (8)

In mode] (8), the equation (7) is used to
simulate the explanatory variables.
However, the common distribution of

ZysZisstt5 2, 15 normal with mean 3 and
standard deviation 1 and the error terms
g's are generated from normal

distribution with mean 0 and standard
deviation 0.5. That 1is, the last 4
observations are outliers. In this paper, the

values of »? are considered as 0.9 and
0.95. Moreover, let B, =p, =---=p, and
the standardizable
B 1 .
Be=—F==—f4, i=12, ---,5 are used.
B’ 5

Set BI = (Bl"B?’ BisBaesBse) Two

criteria are used to evaluate the
performances of the FWRR estimator ﬁwR
and the RR ecstimator (.. The first
criterion is the mean squared error (MSE).
The MSE of FWRR estimator f, is
MSE@...)

1100,.

705 2 Bur (D =B Bur (1) -B.)

J=1
where ﬁm (j) 1is the FWRR estimator in j
simulated sample, ;j=12,---,100. The

MSE of RR estimator 3, is the same as
MSE(ﬁwR) except the estimator ﬁwR is

parameters

replaced by fSR. The second criterion is
the sum of squares of biases (SSB).

SSB(ﬁwR) = (BfaS(BwR))T 'BiaS(BwR) ;



. 0
where Bz‘as(ﬁw,z){-ié—OZBwR(j)}ﬁ..
=

The SSB of RR estimator is the same as
SSB(B,;) except the estimator B, is

replaced by ,. When the correlation
transformation and RR estimation are used,
we always take values between 0 and 1 as
the possible values of biasing constant £.
Hence, I also consider the possible values
of k¥ between 0 and 1 in the simulation
procedure. All simulated results are
displayed in Figure 1 - Figure 4. (see
Tsai, 1999)

From Figure 1 and Figure 2, we can
see that the values of MSE(pB,,) are

smaller than MSE(B,) for different
values of 4. Moreover, in Figure 3 and
Figure 4, the values of SSB(f,, ) are also

smaller than SSB(fﬁ q ) for different values

of 4. That is, the estimator ﬁwR is more
stable and less biased than the RR

estimator f’)  Wwhen the explanatory

variables are highly correlated and data
set contains outliers,

3.2 Example

In this section, a real data set is used to
demonstrate the application of FWRR
estimator. The data set is related to the
performance of a computerized system for
processing military personnel action forms.
The data are listed in Table 1 (see Tsat,
1999). Hill (1977) and Walker and Birch
(1988) discussed this data set. In this
example, the condition number is 57.14.
Walker and Birch (1988) showed that
some influential cases exist when the RR
estimation is used. When the correlation
transformation is used, we can compute

the RR estimator ER by using criterion

(11). The optimal vatue of basing constant
k =0.02 . Then, we can perform the hold-
out procedure and optimal fuzzy clustering
analysis method to identify outliers. The
RR estimators B, B%,--,% and the
fuzzy weights are given in Table 2 (see
Tsai, 1999). The fuzzy weights of
observation 1 and 8 are very small. These
two observations are identified as outliers.
Walker and Birch (1988) also identified
them as the most two influential cases.
Using the fuzzy weights in Table 2, the

FWRR estimator EWR can be computed
and the value of biasing constant £&=0.0006.

N 5 o~
Moreover, we can get B, =-2f, and
Si

~ S o~ .
B x =—;’iBwRi, i=1.2,---,5. The estimates

of OLS, FWLS, RR and FWRR estimation
are displayed in Table 3 (see Tsai, 1999).

4. Conclusion

If the data set contains outliers and
explanatory variables are highly correlated,
the FWRR estimator is more adequate than
RR estimator both in stability and precision.
According to the simulation results, the
FWRR estimator has smaller MSE and SSB
than the RR estimator. Hence, the optimal
fuzzy clustering analysis procedure can be
used to identify outliers and the FWRR
estimation is suggested if outliers appear.
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