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Inference on Step-Stress Accelerated Tests under Two-Parameter
Exponential Distribution and Type II Censoring
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Abstract With today’s high technology,
many products last so long that life testing at
usual conditions is impractical. Many prod-
ucts can be life tested at high stress condi-
tions to yield failures quickly. This study

presents the inferences of parameters on the
step-stress model in accelerated life testing

with type II censoring. A two-parameter ex- -

ponential failure time distribution with a haz-

ard function that is a log-linear function of

stress and a cumulative exposure mode] are
considered. We obtain the maximum likeli-
hood estimators of the model parameters and
construct their confidence region. A numeri-
cal example will be investigated to illustrate
the proposed inferential procedure.

Keywords: Accelerated life test; confidence
region; maximum likelihood method; simple
step-stress; Type II censoring.

2 Introduction

Accelerated life test is often used for relia-
bility analysis. Test units are run at higher-
than-usual stress conditions in order to yield
failures quickly. A model relating life length
to stress is fitted to the accelerated failure
times and then extrapolated to estimate the
lifetime distribution under usual conditions.



The accelerated life test is usually operated
using constant stress, step-stress, or varying-
stress. The step-stress scheme applies to test
units such that the stress on a unit can be
changed at a pre-specified time. Generally, a
test unit starts at a specified low stress. If the
unit does not fail at a specified time, stress on
it is raised and held a specified time. Stress is
repeatedly increased and held, until the test
unit fails. (see Xiong (1998))

In the literature, Nelson (1980} derived the
maximum lkelihood estimators for the pa-
rameters of Weibull distribution under the in-
verse power law using the breakdown time ob-
servations of an electrical insulation. Shaked
and Singpurwalla (1983) proposed a model
based on shock models and wear processes,
and obtained nonparametric estimator for
the lifetime distribution at usual condition.
Miller and Nelson (1983) investigated the op-
timum stmple step-stress accelerated life test
plans for the case where the lifetimes of test
units have an exponential distribution and
are observed continuously until all test units
fail. Bai et al. (1989) also studied the opti-
mum simple step-stress accelerated life tests
where a prespecified censoring time is in-
volved. Nelson (1990) provided an extensive
and comprehensive source for theory and ex-
amples for accelerated life tests. Tang et al.
(1996) obtained a general expression for com-
puting the maximum likelihood estimator of
stress-dependent distribution parameters un-
der multiple censoring and linear cumulative
exposure mode]. Xiong (1998) presented the
inferences of parameters on the simple step-
stress model in accelerated life testing with
type 11 censored exponential data.

In this study, we consider parameter es-
timations for the simple step-stress acceler-

ated life test with (1) Type II censoring, (2)
a two-parameter exponential lifetime distri-
bution at a constant stress, and (3) the cu-
mulative exposure model. In Section 3, we
describe the model and some necessary as-
sumptions. We use the maximum likelihood
method to obtain the point estimators of the
model parameters in Section 4. The confi-
dence regions for the parameters are derived
in Section 5. A simulated data set is stud-
ied to illustrate the inferential procedure in
Section 6.

3 Model
tions

and Assump-

Let us consider the following simple step-

stress accelerated life-testing scheme: Sup-
pose n randomly selected units are simultane-
ously placed on a life test at stress setting x4;
the failure times of those that fail in a time
interval [0, 7] are observed; starting from time
T, the surviving units are put to a different
stress setting o (z; < z3); at the time of the
r-th failure, the life test is stopped. For any
stress, the failure time distribution of the test
unit is a two-parameter exponential distribu-
tion. At stress level z;, the hazard function
of a test unit is a log-linear function of stress.
That is,

log (91) = fotfrzi, i=12. (1)
1
The G and £ (> 0) are unknown param-
eters. Therefore the hazard rate of a test
unit at low stress is smaller than that at high
stress. Furthermore, failures occur according
to a cumulative exposure model. That is, the
remaining life of a unit depends only on the




exposure it has seen, and the unit does not re-
member how the exposure was accumulated.
(see Miller and Nelson (1983))

From previous assumptions, the cumula-
tive distribution function of a test unit under
simple step-stress test is:

Fil(t f <t
G(t) = 1(t) or p < T
Fpls+t—7) form <t <oo,

where Fi(t) =1 — exp(—igff), i = 1,2, and
s = §(r — 1) + p is the solution of Fy(s) =
Fi(7). Hence, the probability density func-
tion of a test unit is

foru<t<r

i -5
= e 1
fO =" 1 i
%e o T T for 1 <t < oo,

(2)

4 Maximum  Likelihood
Estimators

Suppose Ty < Tjp < +++ < Ty, < Ty <
Ty < -+ < Ty, are the lifetimes of the
completely observed units to fail. That is, n;
failure times Tj;, 7 = 1,2,...,n;, of the test
units are observed while testing at stress z;,
1=1,2, and r = ny; + ny is the total number
of failures. Thus, the likelihood function for
T i=42,...,n;,1=1,2, is

_nl 1 1
T {n—1)! 67 6

exp {-29}1_ [Zl by + (n—ma)7 — ”“}
.,_91; [Ztﬁ — naT + (n— 1) (tan, — *r)} } ;

=1

where t;; > y, n; > 0 and np > 0.

Since p < 7 < -+ < lig, <typ < -+- <
ton,, it is easy to see that the maximum like-
lihood estimator (MLE) of p is 1 = Ty;. Sub-
stitute i for p and (1) for 6; and 62; the log
likelihood function is a function of unknown
parameters 8y and 5;:

log (5o, B1) x 11 (Bo + Frx1) + na(Bo + Hrxa)
-1y eﬁo+31$1 - U, eﬁo+ﬂ1mz}

where
ny
U = Ztlj +(n —ny)7 - nj, (3)
j=1
and
Ti2
Uy = Ztgj ~ 77 + (n— T)(tam, — 7)- (4)
Jj=1
Let 35 log L(fo, B) = 0 and

%IogL(ﬁo,ﬁl) = 0. We then find that -

the MLEs for 3, and /5; are

~ ]_ U2 U1
= 1 2 _ hat }

Bo T3 — I1 [’h og (nz) 2z log (nl)} '
and

- 1 n2U1

= 1

ﬁl g — Iy Og (n1U2) »

respectively.

5 Confidence Regions

In this section, the joint confidence regions for
#, Bo, and B, are given. Let random variable
Y be defined as

v — Iﬁ& fu<T<r
TR+ I i r < T < oo,

(5)

where T has the probability density function
in (2). It is easy to prove that ¥ has an ex-
ponential distribution with mean 1.

To derive the confidence regions for p, S,
and f3;, the following lemma is necessary.




Lemma 1. Let Yy,..., Y| be the first r or-
dered observations of a random sample of size
n from the exponential distribution with mean
1. Let D =3, Yy + (n — 1Y) — n¥).
Then, Y,y and D are independent, and 2nYy
and 2D are distributed as X7y and X3, _,), Te-
spectively.

This lemma is a simpler version of the The-
orem 3.5.1 in Lawless (1982). Hence, the
proof can be easily obtained.

The next two theorems provide a joint con-
fidence region for the parameters x4 and S,
and a joint confidence region for the param-
eters p and B;. The proofs can be found in
Wu (2001). In the following discussion, let
Fa(u, ) be the upper o percentage point of
the F distribution with »; and v, degrees of
freedom and let X?x(u) be the upper a percent-
age point of the chi-square distribution with
v degrees of freedom.

Theorem 1. Suppose that T, j
1,2,...,n4 1,2, are the ordered
failure times of a sample with size n from
a distribution which has density function in
(2). Then for any 0 < a <1, n; > 0, and
ng > 0, the following inequalities determine
a 1 — o joint confidence region for u and 5.

?: —
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n Th@l
—————— Fl_a _
'n(nl _ 1) 1 4(2,2!1.1 2)
< _ . -
1 1 _ -
log [ = n{r — 1)(i — p) _u,
Ty — I Us Fa(aor-2) ]
< B <
L o[ L[ne-0G-w
[ T2~ 21 Ua | Fi-geor-2)
where 1 = ny + ny, pp = Ty, 631 =

4

‘nll [ T+ (n = )T, — nTu], and Uy

and Uy are defined in (8) and ({{), respec-
tively.

Theorem 2. Suppose
1, 2, ey Ty,

that T%j, j’
7 1,2, are the ordered
fatlure times of a sample with size n from
a distribution which has density function in
(2). Then for any 0 < « <1, ny > 0, and
ne > 0, the following inequalities determine
a 1 — a joint confidence region for u and Fy.
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where 1 = ny + ng, ft = Ty, b =

% [22;1 le + (n - nl)Tlm — TLTH], and U]
and U, are defined in (8) and (4), respec-
tively.

6 An Illustrative Exam-

ple

To illustrate the use of the method given in
this paper, the following are the simulated

'data from model (2).

These data are simulated by generating a
sample from the exponential distribution



Table 1: Simulated failure time data

stress failure times
) 51.65, 58.91, 59.28, 77.16, 82.53
85.39, 85.85

zo  90.99, 92.08, 92.09, 96.47, 96.52
97.95, 100.38, 101.27, 113.78
122.73, 124.42, 130.43, 143.15

with mean 1, and then the transformation
(5) is used to get the sample from model (2).
We choose n = 25, r = 20, By = —5.8,
beta;, = 1.4, z; = 0.5, z, = 1.5, p = 50.0,
and 7 = 90.0.

The MLEs of p, 85, and 8, are fi = 51.6475,
Bo = —5.3397, and B = 1.1293, respectively.
To construct a 90% joint confidence region
for 1 and By, note that Fpg75212) = 0.0254,
F0_025(2,12) = 50959, F[)_g75(2,33) = 00253, and
Fo.008(2,38y = 4.0713. Then, by Theorem 1, a
90% joint confidence region for the parame-
ters p and B; is determined by the following
inequalities:

26.0012 < p < 51.5198
log(10.4353 — 0.2343p) < B,
< 10g(1942.6199 — 37.64534).

Furthermore, Fyogr12y =  5.8716,
Fogsaaazy = 0.0168, X%ma'z@) = 8.1887,
Xb a3y = 0-0336, X3 416738y = 58.8282, and
X3 9833(3) = 21.8561. Thus, a 90% confidence

region for 4 and By can be determined by
the following inequalities:

(22.0970 < p < 51.5628

0.0007
1.51 —_— ) — (. ) -
5log (51.6475 —N) 0.51og (0.0591
0.1638

__wL < ﬁ < 1.510
516475 — ) 70 S M8\ Biears — 4

0.2728
—0.5log (0.0219 — ——=12%
o8 ( 0219 = 516475 = ,u)

P

\

by Theorem 2.
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