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We report the fabrication of GaN lateral polarity inversion heterostructure with self assembled

crystalline inversion domain boundaries (IDBs). The sample was fabricated by two step molecular-

beam epitaxy (MBE) with microlithography patterning in between to define IDBs. Despite the use

of circular pattern, hexagonal crystalline IDBs were self assembled from the circular pattern during

the second MBE growth. Both cathodoluminescent (CL) and photoluminescent (PL) measurements

show a significant enhanced emission at IDBs and in particular at hexagonal corners. The ability to

fabricate self assembled crystalline IDBs and its enhanced emission property can be useful in

optoelectronic applications. VC 2011 American Institute of Physics. [doi:10.1063/1.3610449]

III-Nitride semiconductors, in particular GaN, have

attracted great research interests in past few years due to their

promising applications for UV to blue optoelectronic devi-

ces.1 One of the important properties of wurtzite GaN is its

strong spontaneous and piezoelectric polarization, which can

induce surface charges and create large internal electric field

in the film. This electric field can strongly affect the electri-

cal and optical properties of GaN based devices.2,3 It can

reduce the electron-hole wave function overlap in quantum

well devices and have adverse effect on its light emitting effi-

ciency. The direction of internal field depends on crystal c-

axis orientation, which is not symmetric. Conventionally, the

surface in the positive and negative c-axis direction is labeled

as Ga- (0001) and N-polar (000-1) surface, respectively.

Recently, there are interests in studying the physical

property of inversion domain boundary between Ga- and

N-polar regions. The inversion domain boundary (IDB) has

been found to exist at microscopic scale in Ga-polar GaN

thin film grown by molecular-beam epitaxy (MBE).4 The

IDB can also be created by intentionally growing lateral po-

larity heterostructures, where patterned Ga- and N-polar

regions are laterally grown on the same substrate to form

IDBs.5–7 The ability to fabricate controlled polarity pattern

can open up additional device design dimension and applica-

tions. The IDB has been studied theoretically,8,9 and experi-

mentally imaged by high-resolution transmission electron

microscope,4,5 and piezoelectric force microscope.10,11 It

was theoretically predicted that IDBs in wurtzite GaN would

not have electronic states in the band gap, implying that they

would not affect photoluminescent (PL) efficiency.8 The op-

tical property of IDB has been investigated by high-resolu-

tion spatially resolved PL measurement.12 The measurement

was done at 10 K low temperature and significantly brighter

emission was reported at IDBs. However, the observed emis-

sion from IDB was neither spectrally nor spatially uniform.

The nonuniformity could be due to the coexistence of differ-

ent crystalline planes in the intentionally patterned IDB,

which was suggested possibly having mixed crystalline

planes {10-10} and {11-20}. The fabricated IDB was a

straight line in tens of lm and not oriented along any specific

crystal plane. That could be the reason for leading to mixed

crystalline planes in IDBs. The observed PL peaks have

some variations and are about 30–40 meV lower than the

bulk Ga-polar emission. A theoretical calculation however

predicts a zero shift in emission peak at IDB.9 The discrep-

ancy may come from the mixed crystal planes in IDBs and

possible defects associated with them. The ability to fabri-

cate crystalline IDB pays the way for better physical prop-

erty study. It may also open up new applications due to its

enhanced emission property.

Here we report the fabrication of self assembled IDB

along {10-10} crystalline plane and the observation of

enhanced light emission at IDB by cathodoluminescent (CL)

and PL measurement. The crystalline IDBs were fabricated

by two step rf-plasma-enhanced MBE, where microlithogra-

phy patterning process was used in between two growth steps

to define lateral polarity heterostructure boundary. Circular

patterns were used in microlithography patterning process.

However, hexagonal crystalline IDBs along {10-10} crystal-

line planes were self assembled from the original circular

pattern after the second MBE re-growth. Both CL and PL

measurements show an enhanced light emission at IDBs and

a zero shift in emission peak.

It is known that GaN grown on c-plane sapphire by

MBE normally has an N-polar surface. It has also been dem-

onstrated that the polarity of GaN can be switched to Ga-po-

lar surface by pre-growing a high temperature AlN buffer

layer on c-plane sapphire surface. The fabrication steps, as

shown in Figs. 1(a)–1(d), use these two growth techniques

and microlithography patterning to grow patterned lateral

polarity heterostructure. First, a high temperature (930 �C)

thin AlN buffer layer (30 nm) was grown on top of a (0001)

sapphire substrate followed by a thin layer of GaN growth

(810 �C, 50 nm) [Fig. 1(a)]. Ga-polar GaN was grown on

AlN buffer layer, which was confirmed by in situ (2� 2)

a)Author to whom correspondence should be addressed. Electronic mail:

yjcheng@sinica.edu.tw.
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reflection high energy electron diffraction (RHEED)

pattern.13–15 Photoresist (PR) was then spun on the sample

and patterned using microlithography to create 3 lm circular

mesa masks [Fig. 1(b)]. The sample was etched in an induc-

tively coupled plasma (ICP) etcher using Ar/Cl2 gas until

the unmasked GaN regions were etched down to expose sap-

phire substrate surface. The PR mask was then removed,

leaving 3 lm circular Ga-polar GaN mesas on sapphire sub-

strate [Fig. 1(c)]. The sample was subsequently reintroduced

into the MBE system to grow 1 lm (810 �C) GaN layer.

Since AlN buffer layer was removed by the etching process,

the re-grown GaN on the exposed sapphire surface would be

N-polar.13 The same second step growth parameter was

applied to a separate blank sapphire substrate to verify that it

did grow N-polar GaN, which was confirmed by in situ (3 �
3) RHEED pattern. The GaN grown on the circular Ga-polar

GaN mesa, which worked as a seeding layer, will still follow

the same Ga polarity direction. As a result, we obtained a

patterned lateral polarity heterostructure with pre-defined

IDBs.

A scanning electron microscope (SEM) plane view of

the sample is shown in Fig. 2(a). It is interesting to observe

the self assembly of hexagonal shapes after the second MBE

growth even though circular pattern was originally used to

define polarity inversion boundary. From the growth process

design, the polarity inside hexagon is Ga-polar, while the

surrounding area is N-polar. The IDBs were self assembled

at {10-10} hexagonal crystal planes. There have been reports

showing the growth speeds of different crystalline planes in

selective area lateral overgrowth on patterned oxide mask

with circular openings.16 The observed growth rate of

(10-11) plane is much slower than that of (0001) plane. As a

result, the selective lateral overgrowth often leads to a hex-

agonal boundary in the in-plane direction despite of the orig-

inal circular pattern. In our experiment, it is a 2-D thin film

growth instead of a 3-D lateral overgrowth. As a result, IDBs

are self-assembled at {10-10} hexagonal planes. The SEM

was switched to cathodoluminescent detection under the

same magnification condition. The CL image is shown in

Fig. 2(b). The focused e-beam spot size is less than 10 nm,

which defines the CL imaging spatial resolution. The catho-

doluminescent intensity is significantly stronger at IDBs and

maximum at hexagonal corner. The luminescent intensity at

IDB gradually decreases with position moving away from

corner along the boundary. A SEM cross section and CL

images are shown in Figs. 2. It shows that the hexagonal Ga-

polar region is about 80 nm higher than the surrounding N-

polar surface, which is consistent with the thickness of Ga-

polar seeding layer. The cross section profile shows a slow

inclined side wall of about 160 nm at IDBs. The cross sec-

tion CL does not show visible enhancement as the plane

view CL does, neither at the IDBs nor the IDB mesa edge.

This might indicate that the enhancement is a shallow sur-

face effect on c-plane and requires further investigation. A

cross section TEM picture is shown in Fig. 2(e), which

shows the IDB propagating from the edge of patterned AlN

buffer layer to the top surface.

The plane view CL intensity spectra taken at the hexag-

onal corner (A), middle of hexagonal boundary (B), center

of hexagonal Ga-polar region (C), and N-polar region (D)

are shown in Fig. 3(a). The intensity magnitudes of these

four points in descending order follow the same sequence.

FIG. 1. (Color online) (a)–(d) Processing flow for fabricating patterned po-

larity IDB. (a) Grow Ga-polar GaN layer. (b) Photoresist patterning. (c) ICP

etching to remove unmasked region followed by PR removal (d). The sec-

ond growth to form polarity heterostructure.

FIG. 2. (a) SEM plane view image of the sample surface. (b) CL image at

the same magnification showing the enhanced luminecent intensity at IDBs.

(c) SEM cross section image. (d) CL image. (e) TEM cross section view.

FIG. 3. (Color online) (a) CL intensity spectra at various sample locations.

(b) PL intensity spectra at various sample locations.
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The full width at half maximum (FWHM) linewidth is about

14 nm for all spectra. The intensity at Ga-polar region is sig-

nificantly higher than that at N-polar region. Ga-polar GaN

is known to have better material quality than N-polar GaN,

which explains the observed higher luminescent intensity.

The intensity at IDB, in particular at the hexagonal corner, is

much higher than both Ga- and N-polar region. The peak

wavelength of the enhanced luminescence at IDB is the

same as those for Ga- and N-polar GaN, consistent with the

theoretical prediction.12 This is in contrast to the 30 meV

redshift reported from IDB with mixed crystal planes where

the redshift could be due to shallow defect traps created

among the mixed crystal planes. The PL spectra of the sam-

ple were also measured using 325 nm He-Cd laser pumping

source. The laser was focused on the sample by a 39�UV

objective with a focused spot size of 0.8 um. The PL spectra

at similar locations are shown in Fig. 3(b). It reconfirms the

enhanced light emission at IDBs. The relative intensity mag-

nitudes at different locations are similar to the CL case

except that the intensity at corner is not as strong. This is

likely due to the area average effect of the much larger exci-

tation source spot size in PL measurement and implies that

the great enhancement is localized to a very small region. A

theoretical model based on ab initio density functional calcu-

lation has shown that the electronic potential tends to trap

electrons and holes in the IDB vicinity.9 This could provide

better e-h recombination efficiency and explain the enhanced

emission. However, the inclined surfaces at IDBs, as shown

in Fig. 2(c), may provide better light extraction and contrib-

ute to the observed enhanced emission as well.

To estimate the light extraction effect, we analyze the

escape light cones using a simplified ray model as shown in

Fig. 4, where point source locations are shown in dotted line.

The surface inclined angle D is about 26.5� from SEM cross

section. The total internal reflection angle h is 24� from GaN

refractive index of 2.45. Each point source has two rays

defining the escape light cone (ELC). For all the points to the

left of point A, the ELC is the nominal 2h value. For points

between A and B, ELC has its maximum value 2hþD. For

points between B and C, it is back to 2h. Going further from

point C to D, ELC decreases from 2h to h. For points between

D and E, ELC is at minimum value of 2h�D. ELC then

increases from h at point E to 2h at point F. From the analy-

sis, we see that the upper bound of light extraction enhance-

ment is (2hþD)=2h¼ 55% occurring for points between A

and B. This is still smaller than the observed 75% CL emis-

sion enhancement at the middle of IDB, compared to Ga-po-

lar region. This indicates that even though light extraction

makes significant contribution to the observed enhanced

emission, the material property at IDBs also contribute to a

significant portion of enhancement. The much brighter emis-

sion at IDB corners could be due to the sharp turning angle,

which may increase light extraction by scattering the wave-

guide mode guided along the IDB into free space.

In summary, the fabrication of polarity inversion GaN

heterostructure with self assembled {10-10} crystal plane

IDBs is demonstrated. The fabrication process involves two

step rf-enhanced MBE growths and lithography patterning in

between two growths to define IDBs. Despite the use of cir-

cular patterns for defining IDBs, hexagonal crystalline IDBs

are self assembled from the original circular patterns in the

second epitaxial growth. CL and PL measurements show

that luminescent property is significantly enhanced at IDBs.

The ability to fabricate crystalline IDB and the demonstra-

tion of its enhanced luminescent property offers an addi-

tional device design dimension and could be of useful in

GaN based light emitting devices.
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6S. Pezzagna, P. Vennéguès, N. Grandjean, A. D. Wieck, and J. Massiesc,

Appl. Phys. Lett. 87, 062106 (2005).
7A. Chowdhury, H. M. Ng, M. Bhardwaj, and N. G. Weimann, Appl. Phys.

Lett. 83, 1077 (2003).
8J. E. Northrup, J. Neugebauer, and L. T. Romano, Phys. Rev. Lett. 77, 103

(1996).
9V. Fiorentini, Appl. Phys. Lett. 82, 1182 (2003).

10B. J. Rodriguez, A. Gruverman, A. I. Kingon, R. J. Nemanich, and O.

Ambacher, Appl. Phys. Lett. 80, 4166 (2002).
11R. Katayama, Y. Kuge, K. Onabe, T. Matsushita, and T. Kondo, Appl.

Phys. Lett. 89, 231910 (2006).
12P. J. Schuck, M. D. Mason, R. D. Grober, O. Ambacher, A. P. Lima, C.

Miskys, R. Dimitrov, and M. Stutzmann, Appl. Phys. Lett. 79, 952 (2001).
13X. Q. Shen, T. Ide, S. H. Cho, M. Shimizu, S. Hara, and H. Okumura,

Appl. Phys. Lett. 77, 4013 (2000).
14D. Huang, P. Visconti, K. M. Jones, M. A. Reshchikov, F. Yun, A. A.

Baski, T. King, and H. Morkoc, Appl. Phys. Lett. 78, 4145 (2001).
15A. R. Smith, R. M. Feenstra, D. W. Greve, M.-S. Shin, M. Skowronski, J.

Neugebauer, and J. E. Northrup, Appl. Phys. Lett. 72, 2114 (2001).
16B. Beaumont, S. Haffouz, and P. Gibart, Appl. Phys. Lett. 72, 1227

(1998).
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