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Abstract --- Hybrid under-actuated control for the 

autonomous dynamic balance of a running electrical bicycle 

including frictional torque and motor dynamics is developed, 

where includes two control inputs: steering and pendulum 

voltages, and three system outputs: steering, lean and 

pendulum angles. Due to the under-actuated feature, two 

novel reference signals using three system outputs are 

designed so that the number of control inputs and sliding 

surfaces is the same. The previous fuzzy decentralized sliding 

mode under-actuated control (FDSMUC) is first designed. 

Because the uncertainties of a running electrical bicycle 

system, caused by different ground conditions, gusts of wind, 

and interactions among subsystems, are often huge, an extra 

compensation of learning uncertainty is plunged into 

FDSMUC to enhance the system performance. We call it as 

“fuzzy decentralized sliding mode adaptive under-actuated 

control (FDSMAUC).” To avoid the unnecessary transience 

caused by uncertainties and control signal and to preserve the 

balance of the bicycle, the combination of FDSMUC and 

FDSMAUC with a transition (i.e., Hybrid FDSMUC) is 

designed. Finally, the compared simulations for the suggested 

control system among the FDSMUC, FDSMAUC and Hybrid 

FDSMUC validate the efficiency of the proposed method.  

 

1. INTRODUCTION 

Under-actuated control has been discussed in some papers. 

In the past, a nonlinear control scheme for an under- 

actuated acrobot has been constructed by Berkemeier and 

Fearing [1]. In fact for the trajectory of 1 Hz, no tracking 

error was committed by their controller, as opposed to the 

tracking error of 13� by the pseudolinearizing controller. 

Recently, a paper developed by Yamaguchi et al. using 

acceleration based backstepping control [2] confirmed that 

a nonlinear control for an electrical bicycle is better than 

that of conventional control. Summing up the conclusion 

reached by previous works, the control of a bicycle’s center 

of gravity (CG) and steering handle angle are two of the 

most important issues in realizing a stable running motion. 

In these situations, it is difficult for an electrical bicycle to 

obtain autonomous dynamic balance when it is in face with 

huge uncertainties, e.g., varying ground conditions and 

external disturbances in the air. It is also known that the 

experimental study of the dynamic balance of a bicycle is 

not an easy task. In order to consider bicycle system model 

completely, the inclusion of the frictional torque and motor 

 

 

 

 

 

dynamics is necessary. However, it forms a high 

dimensional model such that the controller design is more 

complex. Under these circumstances, the proposed Hybrid 

FDSMUC for a running electrical bicycle with frictional 

torque and motor dynamics (i.e., the proposed running 

electrical bicycle system) and huge uncertainty is applied 

to deal with exactly what linear control schemes couldn’t. 

 In this paper, a FDSMC scheme with the number of 

outputs larger than that of the control inputs [3], including 

FDSMUC, FDSMAUC and Hybrid FDSMUC. The use of 

FDSMUC or FDSMAUC or Hybrid FDSMUC is 

dependent on the quantity of the uncertainty including all 

kind of initial errors, different ground conditions, and gust 

of wind. Due to the under-actuated feature of an electrical 

bicycle, two novel reference signals are first designed so 

that the uncontrolled mode (i.e., the angle, velocity and 

acceleration of lean) is simultaneously included into these 

two control modes (i.e., the angle, velocity and 

acceleration of steering handle and pendulum). Hence, the 

uncontrolled mode is indirectly manipulated by these two 

controllable modes. Two sliding surfaces are obtained from 

the linear combination of these two reference inputs. Then, 

the theorems about bounded- input-bounded-output (BIBO) 

and asymptotical tracking for the sliding surface are 

discussed. According to the previous paper [3], the fuzzy 

decentralized sliding-mode under-actuated control 

(FDSMUC) is first designed. Owing to the existence of 

huge uncertainty for a running electrical bicycle, the fuzzy 

decentralized sliding-mode adaptive under-actuated control 

(FDSMAUC) is suggested to enhance the system 

performance. The difference between FDSMAUC and 

FDSMUC is that an extra compensation based on the 

learning uncertainty is plunged into FDSMUC. The 

purpose of this extra compensation is to reduce the 

uncertainties caused by different ground conditions, pulse 

disturbance due to wind effects, and interactions among 

subsystems. The learning law contains e-modification rate 

and projection to ensure the no-drift and boundedness of 

learning weight. Furthermore, the proposed control only 

learns the uncertainty function to promote better 

performance. That is different from the most previous 

papers (e.g., [4]) those learn the whole nonlinear functions. 

In this situation, the learning error becomes large; then it 

degrades the robust stability and robust performance. To 

avoid the unnecessary transient response that destroys the 

dynamic balance, Hybrid FDSMUC (i.e., the combination 

of FDSMUC and FDSMAUC with a transition, e.g., [5]) is 

designed. The stability of the closed-loop system is verified 
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by Lyapunov stability theory. Finally, the compared 

simulations considering time- varying uncertainty, in the 

presence of the pulse disturbance to represent a gust of 

wind, for the FDSMUC, FDSMAUC and Hybrid 

FDSMUC are given.  

 

II. SYSTEM MODELING AND PROBLEM 

FORMULATION 

A. Modeling of Running Electrical Bicycle System 

In the beginning, the control mechanism of an 

electrical bicycle in motion is depicted in Fig. 1 of previous 

paper [3], in which it can be composed of front wheel part 

and bicycle body with the pendulum part. The dynamic 

equation of the front wheel part can be derived from 

Newton-Euler equations and applied toques contain control 

torque of steering handle, gravity effect, precession effect, 

trail effect and internal coulomb friction force that are 

described as equation (A1). In addition, the dynamic 

equations (A2) and (A3) can be obtained for a bicycle body 

with forward speed as well as a pendulum for balancing. In 

order to consider system more practically and completely, 

the frictional torques of steering handle and pendulum (i.e., 

(A4) and (A5)) and the dynamics of armature-controlled dc 

motors (i.e., (A6) and (A7)) are also included, which is 

different from the previous paper [3]. Then the original 6
th
 

order system becomes an 8
th
 order system.  
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The states are 1( ) ( ),x t tθ= 2 1( ) ( ),x t tφ= 3 2( ) ( ),x t tφ=  

4 ( ) ( ),x t tθ= ɺ 5 1( ) ( ),x t tφ= ɺ 6 2( ) ( ),x t tφ= ɺ  7 1( ) ( ),x t i t=  and 

8 2( ) ( ).x t i t= The corresponding variables are explained as 

follows: 1 2( ), ( )  and ( )t t tθ φ φ denote the steering, lean, and 

pendulum angles, respectively; 1 2( ) and ( )i t i t  are the 

armature current of DC motors; ( ) and ( )han pent tτ τ  

respectively represent the steering handle and pendulum 

torques; 
1 24 6( ) and ( )f fF x F x  are respectively the steering 

handle and pendulum frictional torques; 1 2( ) and ( )u t u t  

respectively represent the control inputs of the steering and 

pendulum voltages; the other system parameters are 

expressed in the Table I. Or, the corresponding matrix form 

with uncertainty is written as follows: 

( ) ( ) ( ) ( , )x t a x Bu t c x t= + +ɺ              (2) 

where 1 2 3 4 5 6 7 8( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
T

x t x t x t x t x t x t x t x t x t=  
represents the system state which is available; 

1 2 3 4 5 6 7 8( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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a x a x a x a x a x a x a x a x a x=  

which denotes a mapping from 
8 8

;ℜ →ℜ  
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 

denotes the 

control gain; [ ]1 2( ) ( ) ( )
T

u t u t u t= 2∈ℜ  denotes the control 

input; ( , )c x t denotes the nonlinear time-varying 

uncertainty caused by the parameter variations, 

e.g., ( , ),  4,5,...,8,
i
a x t i∆ =

1
( )b t∆ and 

2
( )b t∆  in a 

multiplicity form, or other unmodeled dynamics. 

B. Problem Formulation 

Because the motion of an electrical bicycle system is 

often in different operating conditions (e.g., concrete 

ground, muddy ground, wet ground, different tire pressures, 

and in the face of a gust of wind), the dynamics of an 

electrical bicycle is nonlinear, time variant and unstable 

([2], [3]). In this paper, it is assumed that the controlled 

system, i.e., ( ),a x ,B and ( , ),c x t  is unknown. However, 

the upper bounds of these functions are known. 

The three steps for the proposed controller design are 

described as follows: Firstly, the FDSMUC, which is based 

on the upper bounds of ( ),a x ,B and ( , ),c x t is designed 

such that the outputs exponentially converge into a 

bounded set of zero, and that the dynamic balance of a 

running electrical bicycle system is assured [3]. Because 

the running electrical bicycle is in the presence of huge 

uncertainty, the FDSMUC is possibly not enough to deal 

with this situation. Secondly, the FDSMAUC, which is 

based on the low bounds of 1 4 1 1 1( ) ( ) 0,a alb x b x b bη′= > >  

2 6 2 2 2( ) ( ) 0a alb x b x b bη′= > >  for all ( ),x t and the learning 

laws for the uncertainties, is designed with an extra 

compensation of uncertainty. Under the subjection of huge 

uncertainty, the outputs exponentially converge into a 

bounded set of zero, and the dynamic balance of a running 

electrical bicycle system in the presence of huge 

uncertainty is guaranteed. To prevent the unnecessary 

transience and preserve the dynamic balance, the 

combination of FDSMUC and FDSMAUC with a 

transition (i.e., Hybrid FDSMUC) is finally designed such 

that the outputs exponentially and smoothly converge into a 

bounded set of zero, and that the corresponding 

autonomous dynamic balance is obtained (see Fig. 1). 

 

III. SLIDING SURFACE FOR UNDER-ACUATED 

CONTROL SYSTEM 

  Considering that proposed architecture is an 

under-actuated control system, the following two sliding 

surfaces are first defined.  
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where 1 1 1 2 2 2, , , , , 0a v p a v pd d d d d d > are set to obtain two 

stable sliding surfaces 1 2( ) and ( ),s t s t  and the reference 

inputs 1 3( ) and ( )r t r t are assigned as follows: 
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where 
1 1 2 2
, , , 0

v p v p
k k k k >  are set to obtain two stable 

reference inputs 
1 3
( ) and ( ).r t r t  The reason to design 

 

Table I PARAMETERS OF THE ELECTRICAL 

BICYCLE. 
Parameters Description Values 

bM  Mass of electrical bicycle 52.0 kg  

m  Mass of front wheel part 10.0 kg  

pM  Mass of inverted pendulum 2.0 kg  

L  Wheel base 1.13m  

1L  CG position from rear wheel 0.324m  

2L  CG position from front wheel 0.806m  

h  Height of CG 0.855m  

1l  Height of the axis of pendulum 1.0m  

2l  Length of pendulum 0.51m  

r  Radius of wheel 0.35m  

V  Speed of bicycle 3.0m s  

f  Offset 0.06m  

rt  Trail 0.05m  

hI  Inertial of front wheel about handle 

axis 
0.35

2kgm  

wI  Inertial of wheel 0.18
2kgm  

µ  Coefficient of conflict 0.1 

1J  Inertial of CG about x axis 10.0
2kgm  

2J  Inertial of inverted pendulum 0.0463
2kgm  

tC  Coefficient of camber thrust 66.0N rad  

1 2,L L  Inductances of the armature circuit 0.048H  

1 2,R R  Resistances of the armature circuit 1.6Ω  

1 2
,b bK K  Back EMF constants of the motor 0.19V (rad/s)  

1 2,N N  Gear ratio 63,108 

1 2
,t tK K  Motor torque constants 0.2613Nm A  
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Fig. 1. Control block diagram of the overall system. 
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these reference signals of (5) and (6) is that the 

uncontrolled mode 
2
( )x t and

5
( )x t should be 

simultaneously included into the two control modes 

(i.e.,
1 3
( ), ( )x t x t  or 

4 6
( ), ( )x t x t ) so that they are indirectly 

manipulated by these controllable modes. In this paper, 

2 2 2
( ) ( ) ( ) 0r t r t r t= = =ɺ ɺɺ is considered. For simplicity, the 

tracking error is defined as follows:  

 
3
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. Based on (2), (5) and (6), the following equations are 

obtained. 
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Remark 2: Because the system functions are unknown, the 

signals 1( )r tɺ and 3 ( )r tɺ in (8) and (9) are approximate 

by 1( )r n∆ and 3( ),r n∆ where [ ]1 1 1( ) ( ) ( 1) ,sr n r n r n T∆ = − −   

3 3 3( ) ( ) ( 1) ,
s

r n r n r n T∆ = − −   sT is the sampling time, and 

1 3( ), ( )r n r n denote the nth time interval of 1 3( ), ( ),r t r t  

which are obtained from the equations (5) and (6). Through 

the verification of the computer simulation, the similar 

responses are obtained. It also can be thought as an 

uncertainty. 

Then the derivatives of these two sliding surfaces are  
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where ( , ), 1,2,...,8,ic x t i = denote the ith component of 

( , ),c x t  1 4 1 1( ) ( ) ,ab x b x bη′= 2 6 2 2( ) ( )ab x b x bη′= are unknown  

functions to be learning, and 1 11 4 1 7 ( ) ( ) ( ) ( ),x x b x a xρ ρ η′= +  

2 21 6 2 8( ) ( ) ( ) ( ),x x b x a xρ ρ η′= + where 11 4 4 1 7( ) ( ) ( ) ( ),x a x b x x tρ η′ ′= + ɺɺ  

21 6 6 2 8( ) ( ) ( ) ( ).x a x b x x tρ η′= + ɺɺ These two terms 4 6( ) and ( )a x a x′ ′ɺ ɺ   

can be respectively obtained from time derivative of (1d) 

and (1f). For simplicity, those are omitted. 

 

IV. CONTROLLER DESIGN 

    The procedure of three-step controller design is 

respectively discussed in the following three subsections. 

A. FDSMUC 

   The FDSMUC is then designed as follows [3]: 
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supposed to satisfy the following inequalities: 

( ) ( )

( ) ( )
1

2

1 1 1 1 1

2 2 2 2 2

( , ) ( ) ( ) ,

( , ) ( ) ( ) , , ( )

u a a

u a a

g h x t d b x t

g h x t d b x t t x t

λ

λ

≥ + ∆

≥ + ∆ ∀
  (14) 

where 1 2, 0,λ λ >  and 

( ) [
( )

1 1 1 1 1 1 4

4 1 7 4 1 1 4 1

( , ) ( ) ( ) ( ) ( )

( ) ( ) ( , ) ( ) ( ) ( , )
a v

p

h x t d r t x d r t a x

b x x t c x t d r t x t c x t

ρ
η

′= − + − −
′ − + − −

ɺɺɺ ɺɺ

ɺ
(15) 

( )
( )

2 2 3 2 2 3 6

6 2 8 6 2 3 6 3

( , ) ( ) ( ) ( ) ( )

( ) ( ) ( , ) ( ) ( ) ( , ) .
a v

p

h x t d r t x d r t a x

b x x t c x t d r t x t c x t

ρ
η

′= − + − −
′ − + − −

ɺɺɺ ɺɺ

ɺ
(16) 

Then the properties of the FDSMUC also can refer to the 

previous paper [3]. 

B. FDSMAUC 

 If the system uncertainties (15) or (16), i.e., 

( , ), 1,2,ih x t i =  are huge, they must be learned to improve 

the system performance [5]. In this way,  

 ( , ) ( ) ( , ), 1,2T

i i ih x t W x x t iΨ ε= + =  

where 1L

iW
×∈ℜ  is an unknown constant matrix which is 

not necessarily unique, ( , )   ( ) ( )i x t x t D xε ε≤ ∀ ∈  and 

0.t ≥ In addition, the upper bound of iW  is known, i.e., 

.i imW W≤ The following learning laws are considered. 

 1 1ˆ ˆ( ) ( ) ( ) ( ), 1, 2i i i i i iW t s t x W t iΓ Ψ α Γ− −= − =
ɺ

      (18a) 

where 1ˆ ( ) L
iW t ×∈ℜ stands for the learning weight, 0,iΓ >  

0iα >  denotes an e-modification rate to ensure the 

boundedness of the learning weight, 1( ) LxΨ ×∈ℜ  denotes 

the basis function: 

 [ ]2( ) 1 ( ) ... ( )
T

Lx x xΨ ϕ ϕ=               (18b) 

where 
2

2
( ) exp ( ) ,j j jx x t dϕ σ = − −  

, ,j jL d σ  for j = 

2, 3,…, L are known, and the centers   for 2,3,...,jd j L=  

are chosen as normal distribution in the corresponding 

domain. The nonlinear control gains i.e., 
1 2
( ) and ( )

a a
b x b x  

are unknown. However, their low bounds are supposed to 

be known, i.e.,
1 1
( ) 0

a al
b x b> > and

2 2
( ) 0

a al
b x b> > for all 

( ).x t  Their upper bounds are also supposed to be existed, 

i.e., { }1 1
max ( )

a am
b x b≤ and { }2 2

max ( )
a am

b x b≤ for all ( ).x t  

Similarly, the learning laws for 
1
( )

a
b x and 

2
( )

a
b x are 

1 1

1 1 1 1 1 3 1 1
ˆ ˆ ˆ( ) ( ) ( ) Pr ( ), ( ) ,
a a a

b t s t t b t b tβ ψ α β− − = −  
ɺ

 

1 1

2 2 2 2 2 4 2 2
ˆ ˆ ˆ( ) ( ) ( ) Pr ( ), ( )
a a a

b t s t t b t b tβ ψ α β− − = −  
ɺ

  (19a) 

where
1 2 3 4
, , , 0,β β α α >

1 1 1
ˆˆ( ) ( ) ( ) ( ) ,T

a
t W t x b tψ ψ= −

2 2 2
ˆˆ( ) ( ) ( ) ( ) ,T

a
t W t x b tψ Ψ= − and  

( )
1

2

1 1

2 2

1

2

ˆ ˆPr ( ), ( )                                              (19b)

ˆ ˆ ˆ( ) ( ) ,  if  ( )

ˆ ( ),                                               o

ia i i ia

i i ia i i ial ia i ia ial

i i ia

b t b t

b t b b t b t b

b t

α β

α β α β δ

α β

−
+

− −
+ +

−
+

 
 

+ − <
=

therwise





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where
1 2
, 0.δ δ > Once

1 1
ˆ ( )
a al

b t b< or
2 2
ˆ ( )
a al

b t b< occurs, the 

projection term in (19b) is employed to ensure that the 

learning quickly returns to its true region. In this situation, 

the occurrence of
1
ˆ ( )
a

b t or 2
ˆ ( )ab t approaching zero is 

avoided. Then the FDSMAUC is designed as 

( )
,( ) ( ) ( ) ( )sgn( )

ˆˆ ( ) ( ) ( ) , 1,2
ii i FDSMAUC u i i i

T

i ia ia

u t u t g s t t s

W t x d b t i

∆

Ψ

= = +  
+ =

    (20) 

where
1 1 1 1 ( ) 0,u a ag d b xγ> >

2 2 2 2 ( ) 0,u a ag d b xγ> > and

( ) 0, 1,2  .i t i t∆ > = ∀ The small positive constants 1γ and 

2 0γ >  are employed to guarantee an exponential tracking 

to a convex set (22).  

Theorem 1: Consider the unknown electrical bicycle 

system (2) with the known lower bounds of 

1 1( ) 0a alb x b> > and 2 2( ) 0a alb x b> > for all ( ).x t The 

switching gains 1( )t∆ and 2 ( )t∆ in (20) are selected such 

that the following inequalities are satisfied. 

( )
11 1 1 1 1( ) ( , ) ( ) ,a a ut x t d b x gε γ∆ > −  

( )
22 2 2 2 2( ) ( , ) ( )a a ut x t d b x gε γ∆ > −              (21) 

If the control law (20) with the learning laws (18) and (19) 

is applied to the system (2), then{ 1 2 1 2
ˆ ˆˆ ˆ( ), ( ), ( ), ( ),
a a

W t W t b t b t  

}1 2 1 2
( ), ( ), ( ), ( )s t s t u t u t are UUB, and the performance is 

exponentially converged into the convex set: 

{ }2

1 1 2 2
( )   0 ( ) ,  0 ( )  aD s t s t s tθ θ= ∈ℜ ≤ ≤ ≤ ≤  (22a) 

where 

 
2

1 1 2
,  1, 2

i i i i
f f f iθ = − + + =                  (22b) 

( ){ }
{ } ( )

1

2
2

2 2

( ) ( , ) ( ) 2 0,

2 ( ) 2 0, 1,2

i

i

i i i ia ia u i

i i im i iam ia ia u i

f t x t d b x g

f W b d b x g i

ε γ

α α γ+

= ∆ − − >

= + − > =
(22c) 

Proof: See Appendix B. 

C. Hybrid FDSMUC 

 When the operating point is far away from the sliding 

surface, the learning law generally does not require so that 

the unnecessary instability and transient response are 

avoided, and then the dynamic balance can be guaranteed 

[5]. Although the controller in (20) is superior to that in 

(13), it is still a question when the learning law should be 

used. Important index for the sliding-mode control is the 

sliding surface. Due to the existence of system 

uncertainties, the operating point is always away from the 

sliding surface. Based on this knowledge, a scalar function 

( ) ,f s  where 
2 2

1 2 ,s s s= + is designed as follows. 

When the norm of the sliding surfaces is inside of a 

defined set, the learning laws (18) and (19) start; similarly, 

as it is outside of the other set, the learning laws shut off. 

For reducing the possibility of discontinuous control input, 

a transition between the control (13) and the control (20) is 

consigned. Hence, we design the following scalar function: 

( )
( ) ( )

1

2

1 1 2

0,                                    as ( )

1,                                    as ( )

( ) ,      otherwise

s

s

s s s

s t n

f s s t n

n s t n n

 >


= <


− −

 (23) 

where
1 2

2 2 2 2

1 2 1 2 0.s s s sn d d n c c> + > > + >  The values of 

1 2

2 2 2 2

1 2  and s sd d c c+ + are respectively the upper bounds 

of the convergent sets of )(ts for the FDSMUC and 

FDSMAUC. Finally, the Hybrid FDSMUC is designed as  

    ( ) ( )
,( ) ( ) ( ) ( ) sgn( )

ˆˆ ( ) ( ) ( ) , 1,2.
ii i HYB u i i i

T

i ia ia

u t u t g s t t s

f s W t x d b t i

∆

Ψ

= = +  
+ =

      (24) 

  
V. SIMULATIONS AND DISCUSSIONS 

In this paper, 2 2 2( ) ( ) ( ) 0,r t r t r t= = =ɺ ɺɺ
1 1( ) ( ) 0,r t r t= =ɺɺ ɺɺɺ  

3 ( ) 0,r t =ɺɺ and 3 ( ) 0.r t =ɺɺɺ The coefficients of the sliding 

surfaces are set as follows: 1 16.0,vd = 1 90,pd =  2 13.0,vd =   

2 95,pd = 1 1.6,vk = 1 17,pk = 2 0.5vk =   and 2 11.8.pk =  

The uncertainty of the multiplication form (i.e., 

( )(1 ( , )),i ia x a x t+ ∆  4,5, 8,i = … 1 1(1 ( , )),b b x t∆+ and 

2 2(1 ( , ))b b x t∆+ ) to represent the ( , )c x t is assumed to be: 

( )
( ) ( )

( )
( ) ( )

( )

4 1 2 5

3 6 6

5 2 3 6

1 4 5

6 3 1 4

2 5

( , ) 1.5 ( ) ( )sin 0.3  ( )

0.37 ( ) ( ) cos 0.2  ( ) 0.2sin 100 

( , ) 1.5 ( ) ( )sin 0.3  ( )

0.37 ( ) ( ) cos 0.1  ( ) 0.2cos 200 

( , ) 1.5 ( ) ( ) sin 0.3  ( )

0.37 ( ) ( )

a x t x t x t t x t

x t x t t x t t

a x t x t x t t x t

x t x t t x t t

a x t x t x t t x t

x t x t

∆ =
− −
∆ =
− −
∆ =
+ ( ) ( )

( )
( ) ( )

( )
( ) ( )

4

7 4 1 4

5 8 8

8 5 3 4

6 7 7

1

cos 0.3  ( ) 0.2sin 300 

( , ) 1.0 ( ) ( ) sin 0.3  ( )

0.37 ( ) ( ) cos 0.4  ( ) 0.2sin 400 

( , ) 1.0 ( ) ( ) sin 0.3  ( )

0.37 ( ) ( )cos 0.5  ( ) 0.2sin 500 

( , ) 0.3sin 0.1 9.6  

t x t t

a x t x t x t t x t

x t x t t x t t

a x t x t x t t x t

x t x t t x t t

b x t t

+
∆ =
+ −
∆ =
+ +
∆ = − +( ) ( )

( ) ( )
3

2 1

( ) 0.5sin 300 

( , ) 0.3sin 0.1 6.9  ( ) 0.5cos 100 .

x t t

b x t t x t t

+
∆ = + −

 (25) 

This uncertainty is nonlinear time-varying and large. To 

compare the performances among the FDSMUC, 

FDSMAUC and Hybrid FDSMUC, the following larger 

uncertainty as compared with the uncertainty (25) is 

considered. 

( )
( ) ( )

( )
( ) ( )

( )

4 1 2 5

3 6 6

5 2 3 6

1 4 5

6 3 1 4

2 5

( , ) 3.0 ( ) ( )sin 0.3  ( )

0.74 ( ) ( ) cos 0.2  ( ) 0.24sin 100 

( , ) 3.0 ( ) ( )sin 0.3  ( )

0.74 ( ) ( )cos 0.1  ( ) 0.24cos 200 

( , ) 3.0 ( ) ( )sin 0.3  ( )

0.74 ( ) (

a x t x t x t t x t

x t x t t x t t

a x t x t x t t x t

x t x t t x t t

a x t x t x t t x t

x t x

∆ =
− −
∆ =
− −
∆ =
+ ( ) ( )

( )
( ) ( )

( )
( ) ( )

4

7 4 1 4

5 8 8

8 5 3 4

6 7 7

1

)cos 0.3  ( ) 0.24sin 300 

( , ) 2.0 ( ) ( ) sin 0.3  ( )

0.74 ( ) ( )cos 0.4  ( ) 0.24sin 400 

( , ) 2.0 ( ) ( ) sin 0.3  ( )

0.74 ( ) ( ) cos 0.5  ( ) 0.24sin 500 

( , ) 0.36sin 0.1

t t x t t

a x t x t x t t x t

x t x t t x t t

a x t x t x t t x t

x t x t t x t t

b x t

+
∆ =
+ −
∆ =
+ +
∆ = −( ) ( )

( ) ( )
3

2 1

9.6  ( ) 0.6sin 300 

( , ) 0.36sin 0.1 6.9  ( ) 0.6cos 100 .

t x t t

b x t t x t t

+ +
∆ = + −

 (26) 

The simulations use the numerical algorithm of the fourth- 
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order Runge-Kutta with time step 0.01 second. The scaling 

factors of the FDSMUC are set as follows: 
1

0.03,sg =  

1
0.02,sg =

ɺ 1
10,ug =

2 2
0.01, 0.02,s sg g= =ɺ and

2
10.ug =  

The parameters of Coulomb friction torque are set as 

1 1
( ) 0.5,s sF F

+ − = ±
2 2
( ) 0.5,s sF F

+ − = ±  1 1( ) 0.5( 0.4),F Fδ δ+ − = −  

2 2( ) 0.5( 0.4),F Fδ δ+ − = − 1 1( ) 0.1,C C+ − = 2 2( ) 0.1,C C+ − =

( ) 0.2(0.16),θ θ+ − =ɺ ɺ
1 2 0.5χ χ= = and 0.01.ε = The 

response for the running electrical bicycle in the presence 

of the uncertainty (25) by the FDSMUC is shown in Fig. 2. 

The response of Fig. 2 verifies the better robustness of the 

proposed FDSMUC for the uncertainty (25). However, the 

responses of the FDSMUC for huge uncertainty (e.g., the 

uncertainty (26)) become larger transience or more 

oscillatory (cf. Fig. 3). It indicates that the performance of 

the FDSMUC is limited by the quantity of uncertainty. 

Under this circumstance, the FDSMAUC is considered. 

The response using the same scaling factors of FDSMUC, 

and the learning parameters: { }1 0.03 ,diagΓ = { }2 0.04 ,diagΓ =    

1 20.1, 0.1,α α= = 1 3.0,β =  2 5.0,β = is shown in Fig. 4, 

which is much better than that of Fig. 3. The main reason is 

that the corresponding learning uncertainties in Fig. 4(c) 

and (d) are good enough for the compensation of the 

uncertainties (the solid lines in Fig. 4(c) and (d)). However, 

the transient response of the FDSMAUC caused by the 

initial error of the learning weight occurs. This feature 

probably destroys the dynamic balance of a running 

electrical bicycle. In this situation, the Hybrid FDSMUC is 

suggested to enhance system performance. Based on the 

norm of the sliding surface (i.e., Fig. 2(c)), the suitable 

control parameters are selected as follows: 1 50sn = and 

2 30.sn = The corresponding response is shown in Fig. 5, 

which is indeed better than that of the FDSMUC and 

FDSMAUC (cf. Figs 3(a), 4(a) and 5(a)). 

For the consideration of practical situations, the 

following simulation with the uncertainty (26) is 

investigated. It is assumed that a gust of wind during the 

period 4.0~4.1 second brings about the extra effect of the 

lean angle 6� from 4.0 to 4.1 second. The corresponding 

results by the FDSMUC, FDSMAUC and Hybrid 

FDSMUC are then shown in Figs 6 and 7. From these two 

figures, we know that the resistance of the pulse 

disturbance by the Hybrid FDSMUC is superior to that of 

the FDSMUC and FDSMAUC. Then the important 

observations are depicted as follows: (i)The FDSMAUC 

can improve the performances of the FDSMUC for a 

running electrical bicycle system in the presence of huge 

uncertainty. However, a possible transient response occurs. 

In this situation, the dynamic balance of a running 

electrical bicycle may be destroyed. (ii) The proposed 

Hybrid FDSMUC indeed can enhance the system 

performance including the transient response and 

steady-state response; it also possesses excess robustness 

as compared with the FDSMUC. (iii) The resistance of the 

pulse disturbance (e.g., a gust of wind) by the Hybrid 

FDSMUC is better than that of the FDSMUC and 

FDSMAUC.  
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Fig. 2. The responses of the running electrical bicycle with 

motor dynamics and the uncertainty (26) by the FDSMUC. 
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Fig. 3. The responses of the running electrical bicycle with 

motor dynamics and the huge uncertainty (27) by the 

FDSMUC. 
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Fig. 4. The responses of the Fig. 3 case by the FDSMAUC. 
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Fig. 5. The responses of the Fig. 3 case by the Hybrid 

FDSMUC with 1 250 and 30.s sn n= =  
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Fig. 6. The output responses of the Fig. 5 case in the face 

of the pulse disturbance of the lean angle 6.0� from 4.0 to 

4.1 second by the FDSMUC, FDSMAUC and Hybrid 

FDSMUC. 
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Fig. 7. The control input responses of the Fig. 5 case in the 

face of the pulse disturbance of the lean angle 6.0� from 4.0 

to 4.1 second by the FDSMUC, FDSMAUC and Hybrid 

FDSMUC. 

 

IV. CONCLUSIONS 

The important features of this paper are summarized 

as follows: (i) The inclusion of frictional torque and motor 

dynamics is to obtain more complete modeling of a 

running electrical bicycle. Based on two novel reference 

inputs, two sliding surfaces are individually obtained. (ii) 

As the system uncertainty is huge, the Hybrid FDSMUC is 

applied to improve system performance. Its corresponding 

control parameters are obtained according to that of the 

FDSMUC and FDSMAUC. To avoid the unnecessary 

instability and transient response, the Hybrid FDSMUC is 

suggested. (iii) The system performances, including the 

tracking performance for nonlinear time-varying 

uncertainty, generation of pulse disturbance to simulate 

wind effects, are acceptable for the FDSMUC, FDSMAUC, 

and Hybrid FDSMUC. In terms of the transient response 

and excess robustness, the performance of the Hybrid 

FDSMUC for huge uncertainty is better than that of the 

FDSMUC and FDSMAUC. 
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APPENDIXES 

Appendix A (The dynamics of the electrical bicycle 

including frictional torque and motor dynamics): 

The front wheel part: 

( )
1

1 1

1

sin

cos sin ( )

h han w

t r r f

I fmg I

C t t F

θ τ φ ωφ

φ θ µω θ θ

= + +

− + −

ɺɺ ɺ

ɺ
          (A1) 

The bicycle body with the pendulum part: 

( )
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2 2 2

1 2 1 2 2 1 2 1
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( ) ( )
2

2 2
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ɺ
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 (A3) 

where ( ), 1,2
if

F i⋅ =  including sticking and slipping torques:  

[ ]( ) ( ) ( ) ( ) 1 ( ) , 1, 2,
i i if slip stick iF F F u iρ ρ⋅ = ⋅ ⋅ + − ⋅ =  (A4) 

where ( ) 1ρ ⋅ = as ( )θ ε⋅ >ɺ , and ( ) 0,ρ ⋅ = otherwise. 

Authorized licensed use limited to: Tamkang Univ.. Downloaded on April 11,2023 at 03:38:36 UTC from IEEE Xplore.  Restrictions apply. 



{ }
{ }

0

( )  ,

0

( ) 1 exp , 0

( )

( ) 1 exp , 0 

i i

i i i

i i

i i

i

i i

s i i s

stick i i i s i i s

s i i s

k s i i

slip

k s i i

F u F

F u u F u F

F u F

F F F C

F

F F F C

χ

χ χ

χ

θ δ θ θ θ θ
θ

θ δ θ θ θ θ

+ +

− +

− −

+ + + + +

− − − − −
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ɺ
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(A5) 

The relation between dynamics of armature-controlled dc 

motors at the electrical bicycle system and applied torques 

of steering handle and pendulum is respectively is 

described as follows: 

1 21 1 1 1 1 2 2 2 2 2,  b m b mL i R i K u L i R i K uθ φ+ + = + + =ɺ ɺɺ ɺ   (A6) 

where 1 2 2,  .m mN Nθ θ φ φ= = The torques of steering 

handle and pendulum at the joint side are related to the 

armature currents by 

1 21 1 2 2,  .han t pen tN K i N K iτ τ= =                (A7) 

 

Appendix B (The proof of Theorem 3): 

 First, the following Lyapunov function is defined.  

{ }2 2 2 2

1 2 1 1 1 2 2 2 1 1 2 2
2T T

a a
V s s W W W W b bΓ Γ β β= + + + + +ɶ ɶɶ ɶ ɶ ɶ  (B1) 

where
1 1 1 2 2 2 1 1 1 2 2 2

ˆ ˆˆ ˆ, , , .a a a a a aW W W W W W b b b b b b= − = − = − = −ɶ ɶɶ ɶ  

It is obvious that 0V > as 1 2 1 20 or 0 or 0 or 0.a as s b b≠ ≠ ≠ ≠ɶ ɶ  

Based on the relation of (B1), we have  

{ }222
ˆ ˆ 2 ,  1, 2T

i i i i iW W W W W i= − − =ɶ ɶ        (B2) 
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We first consider the case: 
1 1 2 2
ˆ ˆ and .
a al a al

b b b b≥ ≥ Taking 

the time derivative of (B1) with suitable relations gives  
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where ( ) 2

1 1 1 11 1 122 ,F s s f s f= + − ( ) 2

2 2 2 21 2 222 .F s s f s f= + −                 

The coefficients of the polynomials ( )1 1F s and ( )2 2F s  

are expressed in (22c). Because 
2 2

0,i imW W− ≤  

2 2 0, 1,2,ia iamb b i− ≤ = if ( ) 0, 1,2,i iF s i> = then (B5) is obtained. 

 V Vµ≤ −ɺ                                 (B5) 

where [ ] [ ] ( ){ 1 2 1 1
min min ,0.5 ,min ,0.5 ,min ,0.5 ,µ γ γ α λ Γ =  

( ) [ ] [ ]}2 2 3 1 4 2
min ,0.5 ,min ,0.5 ,min ,0.5 .α λ Γ α β α β   In 

summary, when
1 1 2 2

 and s sθ θ> > are obtained (i.e., 

outside of the domain
a

D  in (22a)), the closed-loop system 

possesses the result  .V Vµ≤ −ɺ  Hence, the signal s  

exponentially converges into the domain 
a

D (22). 

Therefore, from (3), (4), (18), (19) and (20) 

{ }1 2 1 2 1 2
, , , , ,

a a
s s W W b bɶ ɶɶ ɶ  are UUB.  

 Similarly, the case: 
1 1 2 2
ˆ ˆ and 
a al a al

b b b b< < is 

considered as follows. The difference between these two 

cases is whether the learning laws (19a) include the 

projection. Then the time derivative of Lyapunov function 

becomes the equation (B4) with two extra terms: 

[ ] ( ) ( )3 1 1 1 1 4 2 2 2 2
ˆ ˆRHS of ( 4) .a al a a al aV B b b b b b bα δ α δ≤ − − − −ɶ ɶɺ (B6) 

Because ( ) ( )1 1 2 2 1 1 1 1 1
ˆ ˆ ˆ ˆ0 ,  0 ,

al a al a a a a al a
b b b b b b b b b< − < − − =− − <− −ɶ

and ( ) ( )2 2 2 2 2
ˆ ˆ ,

a a a al a
b b b b b− = − − < − −ɶ (B7) becomes more 

negative than (B4). 

[ ] ( ) ( )2 2

3 1 1 1 4 2 2 2
ˆ ˆRHS of ( 4) .al a al aV B b b b bα δ α δ≤ − − − −ɺ (B7) 

Finally, the same results of the above-mentioned situation: 

1 1 2 2
ˆ ˆ and ,
a al a al

b b b b≥ ≥ is obtained.  

                                        Q.E.D.                                            
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