
456 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 14, NO. 3, MAY 2006

Adaptive Control of Holonomic Constrained
Systems: A Feedforward Fuzzy
Approximation-Based Approach

Chian-Song Chiu, Member, IEEE, Kuang-Yow Lian, Member, IEEE, and Peter Liu

Abstract—This paper proposes a novel adaptive fuzzy control
scheme for the motion/force tracking control of holonomic con-
strained systems with poorly understood models and disturbances.
Some disadvantages of traditional adaptive fuzzy controllers are
removed here. In comparison to typical state-feedback fuzzy ap-
proximation, the uncertainties are compensated based on a feedfor-
ward fuzzy approximation (FFA), which takes desired commands
as the premise variables of fuzzy rules. In detail, a unified control
model is introduced for representing well-known holonomic sys-
tems with an environmental constraint or a set of closed kinematic
chains. Then, the FFA-based fuzzy system, adaptation mechanism,
and auxiliary-compensating control are derived to ensure robust
motion and force tracking in a global manner. Furthermore, a fea-
sible solution for the derived linear matrix inequality guarantees
the attenuation of both disturbances and fuzzy parameter errors in
an 2-gain sense. Finally, two applications are carried out on: 1) a
two-link constrained robot and 2) two planar robots transporting
a common object. Numerical simulation results show the expected
performance.

Index Terms—Adaptive fuzzy control, performance,
holonomic systems, linear matrix inequality (LMI), motion/force
control.

I. INTRODUCTION

HOLONOMIC mechanical systems represent numerous in-
dustrial plants—two, for example, are constrained robots

and cooperative multirobot systems. Due to various tasks, such
as scribing and/or cooperatively manipulating a common object
by multiple robots, an environmental constraint [1] and a set of
closed kinematic chains [2], [3] (well-known holonomic con-
straints) are usually imposed on dynamic systems. Arising from
the different types of holonomic constraints, the two cases are
often considered separately in controller design. From the pio-
neering work in [1], a reduced-state-based approach is utilized
in most researches [2]–[4]. When considering parametric uncer-
tainties, adaptive control schemes were introduced in [5]–[8].
Unfortunately, the reduced-state-based approach usually has a
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Fig. 1. Configuration of SFA-based adaptive controller.

force-tracking residual error proportional to estimated param-
eter errors. Thus, a high gain-force feedback or acceleration
feedback is needed (e.g., [5] and [7]). An alternative hybrid
motion/force control stated in [9] has assured both motion and
force tracking errors to be zero. To deal with unstructured un-
certainties, several robust control strategies [10]–[12] provide
asymptotic motion tracking and an ultimate bounded force error.
In contrast to discontinuous control laws, the works in [13]
and [14] apply adaptive fuzzy control to compensate unmod-
eled uncertainties and achieve tracking performance. How-
ever, their applications are limited due to high computation load
arising from the numerous fuzzy rules and tuning parameters.

Plenty of adaptive fuzzy control methods [12]–[21] have
been proposed to deal with the control problem of poorly
modeled plants. All of this research is based on the universal
approximation theorem (first proposed by Wang and Mendel
[15]) and the feedback-error-linearing (FEL) method (first
proposed by Miyamoto et al. [22]). For these methods, the un-
certain dynamics are approximated by a fuzzy system in terms
of a linear-in-parameter structure, while the controlling error
is used to tune the parameters for stability. The configuration
of these controllers is shown in Fig. 1. Since the feedback
state is taken as the input of fuzzy approximator, we call these
controllers thestate-feedback fuzzy approximation (SFA) based
controllers. The SFA-based control contains the following
disadvantages: 1) numerous fuzzy rules and tuning parameters
are required, especially for multivariable systems; 2) the fuzzy
approximation error is assumed a priori to be upper bounded,
although the bound depends on state variables. To remove the
above limitations, the author [23] proposes the feedforward
fuzzy approximation (FFA) based controller, which takes the
forward command as the input of fuzzy approximator as shown
in Fig. 2. At first glance, the FFA-based control method also
belongs to a class of the FEL-based control methods, since the
feedback error is used for tuning parameters of the compen-
sator, but a closer investigation reveals the difference in: 1) the
type of training signals and 2) the process of taming dynamic
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Fig. 2. Configuration of FFA-based adaptive controller.

uncertainties. Although the merits of the FFA over the FEL
cannot be quantitatively shown, the FFA-based controller has a
simpler architecture of implementation compared to traditional
FEL-based controllers (SFA-based controllers). Unfortunately,
the FFA-based control still lacks a rigorous stability analysis
in current literature. It is also noted that a common situation
of all studies cited above is in defect of considering the effect
due to the estimated fuzzy parameter errors. All of these points
motivate further research on improving the FFA-based control.

To solve the aforementioned problems, this paper pro-
poses an FFA-based adaptive control scheme for motion/force
tracking of poorly modeled holonomic systems. To handle the
motion/force tracking problem for holonomic systems, we first
formulate the typical two cases into a fully actuated system
with constraints. Then, the reduced-state-based approach [1] is
extended to achieve separate design of motion and force con-
trol. Furthermore, the FFA-based adaptive controller is derived
to eliminate the effect due to uncertainties and disturbances.
Indeed, the main concept of the FFA-based control is taking
desired commands as the premise variables of fuzzy rules and
approximately compensating an unknown feedforward term re-
quired during steady state. Hence, the proposed controller is no
longer with the disadvantages of the traditional FEL-based (or
SFA-based) adaptive controllers mentioned above. Meanwhile,
the stability is guaranteed in a rigorous analysis via Lyapunov’s
method. In addition, the attenuation of both disturbances and
estimated fuzzy parameter errors is achieved in an -gain
sense, while the LMI techniques [24], [25] are used to simplify
the gain design. Notice that the proposed approach assures
the global stability of both motion and force tracking in a
straightforward manner. Compared to the relative works [13]
and [14], we deal with more general holonomic systems subject
to environmental constraint or closed kinematic chains ([13]
and [14] only consider a special case in holonomic systems).
Moreover, our proposed scheme achieves both robust motion
and force-tracking control (but [13] does not). Meanwhile, the
scheme has a novel architecture which can be easily imple-
mented.

The remainder of this paper is organized as follows. The
general model of holonomic constrained systems is formulated
in Section II, while some useful properties are introduced. In
Section III, the FFA-based adaptive controller is developed for
holonomic systems. Section IV shows the simulation results of
controlling two typical holonomic systems, which are a con-
strained robot and a cooperative multirobot system transporting
a common object. Finally, some concluding remarks are made
in Section V.

Fig. 3. Two-link planar constrained robot manipulator.

II. MODELING AND PROPERTIES

A. Model Descriptions

Consider a nonredundant holonomic system with a general-
ized coordinate and the holonomic constraint
and , where and .
Without loss of generality, we assume that the system is oper-
ated away from any singularity with the exactly known function

. From investigation on well-known holonomic sys-
tems, different model descriptions exist due to the two kinds
of constraints—an environmental constraint and a set of closed
kinematic chains. Nevertheless, the model’s general form is able
to be formulated into a fully actuated system with a constraint.

First, consider an environmental constraint. The motion equa-
tion is expressed as (cf. [1])

(1)

where , , and are the inertia matrix, Cori-
olis/centripetal force, and gravitational force, respectively
(which are continuous and assumed to be poorly known);
is a bounded external disturbance; is an applied force;

is an invertible input matrix; and is a Lagrange
multiplier which physically presents a reaction force from rigid
contact. A typical example is the constrained robot manipulator,
as illustrated in Fig. 3.

Second, consider the constraint arising from a set of closed
kinematic chains. The motion equation can be written as (cf. [2]
and [3])

(2)
where a proper coordinate manipulation has been utilized;

is an applied force; is an invertible input
matrix; and is partitioned into with a
full column rank ( ). A good
example is the cooperative multirobot system, i.e., multiple
robots transporting an object as shown in Fig. 4. Since is
a nonsquare and full row-rank matrix, there exists a nontrivial
null space . This means that the
Lagrange multiplier can be decomposed as ,
where and . When

lies in the null space , the resulting force has no
contribution to the motion of the corresponding coordinate ,
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Fig. 4. Two planar cooperative robots transporting a common object.

i.e., only has contribution to the motion. In physical
terms, denotes an internal force while denotes a mo-
tion-inducing force. Therefore, let a virtual control input such
as and re-express
the right-hand side of (2) in the form with

. Referring to (1), the general
model of a holonomic system is obtained as

(3)

where the pair is separately denoted accordingly as
and for an environmental constraint and

a set of closed kinematic chains. After determining the general
input , the actual control input is calculated by

for an environmental constraint
for a set of closed kinematic chains

(4)
where , are partitioned components of

(i.e., ), and
denotes the pseudo-inverse of . Therefore, the controller de-
sign can be performed from a unified viewpoint.

B. Reduced Dynamics and Useful Properties

Since the motion is subject to an -dimensional constraint,
the configuration space of the holonomic system is left with

degrees of freedom. From the implicit function theorem
[1] and an appropriate manipulation of the constraint ,
we find a partition of as for ,

, such that the generalized coordinate is expressed
in terms of the independent coordinate as with
a nonlinear mapping function . Due to the nonsingularity as-
sumption, the terms and are bounded in the
work space. The generalized displacement and velocity can be
expressed in terms of the independent coordinates , as

(5)

(6)

Equations (5) and (6) and the constraint of velocity
lead to . Notice that, here, we use to
denote for brevity. In other words,

since is full column rank and is an independent
coordinate (see [1]). Thus, there exists a reduced dynamics for

the holonomic system (3). Due to the velocity transformation
(6), the generalized acceleration satisfies . The
motion (3) is further represented by the independent coordinates

, , and as

(7)

where . According to the fact , a
reduced dynamics [1] is obtained after multiplying on both
sides of (7)

(8)

with ; ; ; and .
From the dynamics (8), some useful properties are addressed
below.

Property 1: For the partition with
and

, the velocity transformation
matrix satisfies .

Property 2: From the existence of and the implicit func-
tion theorem, is invertible.

Property 3: The matrix is symmetric and positive-definite
while .

Property 4: Matrix is skew-symmetric (cf. [1]),
i.e., , .

III. FFA-BASED ADAPTIVE CONTROLLER

This section presents an FFA-based adaptive fuzzy controller
for controlling holonomic systems. For holonomic systems, the
control objective is to track a desired motion trajectory

while maintaining force at a desired . Due to the
constraint motion, the desired motion trajectory should satisfy
the kinematic relations (5) and (6). Inspired by pure-motion
tracking, some notations are defined as

(9)

where , , and are the motion error, auxiliary signal vector,
and error signal, respectively, and is
a symmetric positive-definite matrix. If the system satisfies

, then position and velocity tracking errors
and exponentially converge to zero. In other words,

the error signal is an error measure deviating from the stable
subspace . The motion tracking
problem is, therefore, transformed to the problem of stabilizing

. On the other hand, a force-tracking error and force-error
filter are accordingly defined as

(10)

with (11)

Then, the reduced-state-based scheme is to drive the motion tra-
jectory into the stable subspace while the contact force is sepa-
rately controlled, maintaining a zero .
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In order to derive the adaptive fuzzy controller for uncertain
holonomic systems, the error dynamics of along the motion
(7) is written as

(12)

where .
Since the term is assumed to be poorly understood, a
direct feedback cancellation is invalid such that a fuzzy ap-
proximation-based controller will be utilized to compensate
the uncertainties. However, a traditional fuzzy approxima-
tion-based controller needs , , , , and as the
premise variables for acceptable approximation, since
is a functional of the state variables and reference signals.
This will lead to a large computational load on the controller
processor. To avoid this situation, an FFA-based control scheme
is introduced below.

When the motion tracking goal is achieved, the term con-
verges to the function

. Notice that is a feedforward com-
pensation term and is independent to state variables. If the ef-
fect of omitting the error can be eliminated by feedback
of tracking error, the concept of using the forward compensa-
tion is feasible. Here, is a much simpler function than

, since only depends on the reference signals. According
to the above idea, we closely approximate and compensate the
forward term by a fuzzy system with the singleton fuzzi-
fier and product inference. Then, the fuzzy inferred output is

(13)

where is a premise variable vector composed of the
reference signals , , and ;
is a fuzzy tuning parametric vector in the consequent part
of rules, with denoting the total number of rules; and

denotes a re-
gression matrix consisting of the fuzzy basis function
vector with

,
for and appropriate fuzzy set . Since the
fuzzy-inferred output depends only on the reference signals
and tuning parameters, we call the fuzzy system a FFA-based
fuzzy system.

Usually, we apply a proper projection scheme to keep the
tuning parameters within a bounded region to avoid the para-
metric drift phenomenon. In light of this, an appropriate con-
straint region of is defined by

Inside the specified set there exists the so-called optimal
approximation parameter which leads to the minimum approx-
imation error for the continuous function (cf. the universal
approximation theorem [15]). That is

which provides the most accurate approximation with the min-
imum error

(14)

Note that if the parametric constraint is removed, the optimal
approximation parameter is still upper bounded (cf. [15]).
Since both and are upper bounded, the optimal inferred

output is always bounded. Meanwhile, the for-
ward term is upper bounded by the magnitude of reference
motion trajectories. Therefore, we are able to conclude that the
fuzzy approximation error is upper bounded for .

Next, the overall controller is synthesized as follows. Based
on the FFA-based fuzzy system (13), the overall control law is
set in the form

(15)

where is a force feedback gain;
is a symmetric positive definite matrix; is an auxiliary input
designed later; and the definition of and is given in (9)
and (11), respectively. Meanwhile, the fuzzy parameter is
adaptively adjusted by (16), shown at the bottom of the page,
with , where
is a projection criterion function with a tunable parameter
satisfying , and is an adaptation gain.
Note that the above update law is an application of the smooth
projection algorithm developed in [26]. The update law assures
the following properties: a) for all and

b) for .
Furthermore, the above controller yields the closed-loop error

dynamics described by

(17)
where the control law (15) has been substituted into the dynamic
(12); the definition of approximation error in (14) and
in (10) have been applied; ; and

. To analyze the convergence of motion and force tracking
separately, we further multiply on both sides of (17) and
lead to the motion-tracking error dynamics

(18)

if and

otherwise
(16)
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where Property 1 ( ) and the fact
have been applied, and . Then,

replacing of (17) by (18) and multiplying on both
sides of (17), the force-tracking error is obtained as follows:

(19)

where Property 2 ( ) and the fact have
been applied above. It is a worthwhile note that the perturbed
term in (18) arises from the use of the feedforward fuzzy
compensation. Nevertheless, the term is upper bounded by
motion-tracking errors in the following fashion:

(20)

where there exist an intermediate parameter and sym-
metric positive semidefinite matrices , , , and de-
pendent on the desired motion trajectory, control parameter ,
and system parameters. This boundedness is assured for all well-
known holonomic mechanical systems (the proof is addressed
in the Appendix ).

Now, the main results of the FFA-based control approach are
stated as follows.

Theorem: Consider the holonomic system (3) using the FFA-
based adaptive controller (15) tuned by the update law (16). If
the auxiliary input is set as

(21)

and there exist , , and satisfying the following LMI
problem:

Given and

subject to

(22)

with ,
, and represents a symmetric term,

then: 1) error signals , , , , and fuzzy parameter are
bounded; 2) error vectors , , and have globally uniform
ultimate bounds being proportional to the inversion of control
gains; 3) the closed-loop system is guaranteed with the robust
motion-tracking performance

(23)
for and a nonnegative constant .

Proof: First, we prove the claim a). Consider the Lya-
punov function candidate

with a proper symmetric positive-definite matrix . Along the
error dynamics (18) and the fact , the time
derivative of is written as follows:

where the definition of , Property 4, and the update law (16)
have been applied, and the above inequality is ensured by the

property of the update law (i.e.,
). Due to the boundedness of as the fashion (20), we further

obtain

(24)

where ;
; and . Then, applying the ex-

pressions and ,
the inequality (24) is rewritten as

Thus, if the LMI (22) has a feasible solution, then, for , the
following holds:

(25)

with . This means that is negative semidef-
inite once the system trajectory lies within the region

. Since
is positive-definite and satisfies the inequality (25), we

can conclude that and . As a
result, is assured based on the boundedness of all
terms on right-hand side of (18). On the other hand, taking the
force filter (11) into (19) yields that the force-tracking error is
expressed in the form

(26)

where is a differential operator. Since
is a stable filter and all sig-

nals , , , and are bounded, the bounded implies
the boundedness of and . Note that, since the boundedness

Authorized licensed use limited to: Tamkang Univ.. Downloaded on April 11,2023 at 08:19:19 UTC from IEEE Xplore.  Restrictions apply. 



CHIU et al.: ADAPTIVE CONTROL OF HOLONOMIC CONSTRAINED SYSTEMS 461

assumption on the fuzzy approximation error is not
utilized here, this proof is achieved in a global sense.

Second, consider the claim b). Since is negative semidef-
inite outside the compact set
from the inequality (25), the tracking error is globally
uniformly ultimately bounded with convergence to a compact
residual set. From the fact with

and

we rewrite (25) as

where . Then, the solution
of the above inequality leads to that the error trajectory of
is shaped by

with . In other words, the uniform
ultimate bound of is

which can be adjusted by tuning and . Meanwhile, the
residual force-tracking error is

(27)

with a nonnegative constant dependent on ,
, and .

Third, we prove the claim c). Consider an energy function
with a proper symmetric posi-

tive-definite matrix . Analogous to the proof of the proposi-
tion a), a feasible solution of the LMI (22) leads to

Due to the fact that

, the time derivative of satisfies

Therefore, integrating both sides of the above inequality, the ro-
bust performance (23) for the motion-tracking objective is as-

TABLE I
COMPARISONS BETWEEN SFA AND FFA BASED SCHEMES

: each premise variable has three fuzzy sets. : using the
rule-structure in Fig. 5.

sured. In addition, by integrating both sides of the inequality
(25), the robust performance is held as

For zero-state response, we have

which means that the effect from disturbance to tracking
error has been attenuated to the prescribed level .

Remark 1: Compared to SFA-based control schemes [13],
[14], [18], [19], the proposed approach has better advantages as
follows: 1) the FFA-based controller omits some information of
feedback such that fewer premise variables and rules are used
(i.e., the FFA-based controller has a simpler implementation ar-
chitecture); 2) since the regression matrix only depends on
the desired motion trajectory, some fuzzy inferred steps can be
performed off-line; 3) the control gain design is transformed
into solving an LMI problem; and 4) the attenuation of both
disturbances and fuzzy parameter errors is achieved such that
high robustness to external disturbances and approximation er-
rors is guaranteed regardless of the limitation on initial guesses
on tuned parameters.

Remark 2: The comparison between SFA- and FFA-based
controllers applied to typical holonomic systems is made in
Table I. Note here that the SFA-based controller is mainly con-
structed according to the work [13] such that , , , ,
and have to be taken as the premise variables. In contrast,
the FFA-based controller only needs commands , , and

as the premise variables. For simplification, the fuzzy rules
for controlling cooperative robots are properly reduced by using
rule structure in Fig. 5. When each premise variable is associated
with three fuzzy sets, the benefits of using the FFA-based con-
troller (fewer rules and tuned parameters) are apparent. More-
over, the fuzzy approximation error of SFA-based controllers
needs to be assumedly bounded a priori.
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Fig. 5. Rule structure of FFA-based controller for multivariable systems.

IV. SIMULATION RESULTS

To verify the theoretical derivations, we take a constrained
robot and a cooperative multirobot system transporting an object
as application examples below.

Example 1—Holonomic Constraint as an Environmental
Constraint: Consider a two-link planar robot in constrained
motion, as shown in Fig. 3, where the end-effector moves along
a straight line on a vertical plane. By setting the length of
each link as 1 M, the constraint represented in joint space is

for
and . Then, according to the constraint, the
coordinate is expressed in terms of the independent
coordinate as . Further-
more, the matrices and are accordingly obtained
as
and for

. In addition, the dynamics in the gen-
eral form (3) consists of ; ;

where ; ; ; and
, are, accordingly, the mass of the first and second links.

In this example, the reference commands for motion and force
tracking are and

, respectively.
On the other hand, the FFA-based fuzzy system (13) is con-

structed with , , and as premise variables, which are
associated with three sets: negative, small, and big. Since the
mean and varying region of the premise variables are exactly
known (for example, mean of is and variance of is

), the membership functions are straightforwardly chosen as

Fig. 6. For the constrained robot: (a) position-tracking result;
(b) velocity-tracking result. (— robot, – – reference).

and

More partitioned fuzzy sets are available and usually yield a
smoother fuzzy inferred output at the price of heavy compu-
tation load. Also, although Gaussian membership functions can
be shaped by tuning their coefficients, the geometry of mem-
bership functions does not obviously affect the control perfor-
mances. The reason is that the effect of approximation errors
can be attenuated in the control. From the fuzzy classification,
the total rules of the fuzzy system is 27. The update law (16) is
set with , , , and . Here,
large values of and are used to obtain better approxima-
tion. The reason is that a large leads to a large training rate
whereas a large yields a large space of training data. This
intuitive observation plays a guideline in choosing the parame-
ters and is confirmed by many simulation results.

Given , , , , ,
, and conservatively choosing ,

due to high uncertainties, the control gains are obtained
as , , and from solving the LMI
(22). Note that the guidelines of setting parameters are: 1) the
residual force error is reduced by a small and large ,
from (27); and 2) larger , , , , , , and lead to
smaller motion errors. When the initial states are ,

, and , the pro-
posed controller (15) yields the motion-tracking results shown
in Fig. 6. Meanwhile, the force-tracking result and the control
inputs are given in Fig. 7. We can find that the tunable fuzzy
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Fig. 7. (a) Response of constraint force (—) and desired force (– –). (b) Control
inputs for Link-1 (—) and Link 2 (– –).

Fig. 8. For an uncertain constraint: (a) position-tracking result;
(b) force-tracking result. (— actual, – – reference).

parameters have an upper bound in the steady
state, i.e., the simulation confirms the theoretical result. Fur-
thermore, to show the high robustness of our proposed method,
we consider a worse environment with an uncertain constraint

, where is a nominal constraint
same as the above normal case; and

is an unknown part of the constraint. When ap-
plying the controller based on the above setting for the nominal
constraint, the position and force-tracking results are illustrated
in Fig. 8. Thus, the satisfactory tracking performance are sus-
tained.

Example 2—Holonomic Constraint as a Set of Closed Kine-
matic Chains: Consider two three-link planar robots coopera-
tively transporting a common object to be illustrated in Fig. 4.
Two robots are identical in mass and length of links. The center
of mass for each link is assumed at the end of each link. All the
lengths of the first and second links , , and the held object
are 1 M. The length of the third link is sufficiently short and is

taken as a part of the object. Let denote the position
and orientation of the held object. Let , ( , 2, 3) de-
note joint angles of two robots, respectively. The configuration
coordinate of the system is, thus, denoted as
and . Due to the fact
that all the end effectors are rigidly attached to the common ob-
ject, the holonomic constraint
consists of

for

Therefore, the Jacobian matrix is consists of
and with

where . The transformation ma-
trix is written as . In ad-
dition, the general dynamic model (3) is composed of

, , ,
, ,

, ,

for 1, 2, where represents a symmetric term;
; ;

; ; and , , , , , are
system parameters. We assume that external disturbance is in-
jected to the first joint of two robots as , which is a square wave
with amplitude 0.25 and frequency 0.5 Hz. The actual value of
( , , , , , , , , , ) is set as (1, 0.25,
5, 3, 3.05, 0.05, 5, 3, 3.05, 0.05). For this cooperative multirobot

Authorized licensed use limited to: Tamkang Univ.. Downloaded on April 11,2023 at 08:19:19 UTC from IEEE Xplore.  Restrictions apply. 



464 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 14, NO. 3, MAY 2006

system, the control objective is to track desired trajectories for
the object and internal force as

where and represent the compressed force vector.
On the other hand, the FFA-based fuzzy system (13) is con-

structed with , , as premise variables. Since , ,
have exactly known mean and varying region, each premise

variable is associated with three fuzzy sets as follows. In detail,
the membership functions of is chosen as

for

for

where is the th element of . The membership functions
of linguistic variables and denoted as are (for 1,
2, 3)

(28)

To further simplify the rule base and include human knowledge
into fuzzy rules, we take the corresponding components of ,

, and as a group due to that they have higher relation-
ship. Thus, the rule-base structure of the fuzzy system has three
layers as shown in Fig. 5. Based on the structure of the fuzzy
system, the total rule number is 81. Meanwhile, the adaptation
mechanism is set with , , , and

. Furthermore, the control parameters are chosen as:
, , , , ,

and . Then, after choosing ,
, for (20), the control gains are

obtained as , , and
, by solving the LMI (22). In this simu-

lation, the system begins at the position

and all have zero initial velocities, i.e., . According
to the main Theorem, the simulation results of position and ve-
locity tracking for the object are illustrated in Figs. 9 and 10,

Fig. 9. Position-tracking results of the held object (— object, – – reference).

Fig. 10. Velocity-tracking results of the held object (— object, – – reference).

Fig. 11. (a)–(c) Internal force-tracking errors for Robot 1. (d)–(f) Internal
force-tracking errors for Robot 2.

respectively. The internal force errors between the desired and
actual internal force are shown in Fig. 11. The second joints of
two robots are driven by torques illustrated in Fig. 12. The tun-
able fuzzy parameter is upper bounded by in
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Fig. 12. (a) Control input for the second joint of Robot 1. (b) Control input for
the second joint of Robot 2.

Fig. 13. Comparisons of the position-tracking errors of the held object
(— FFA, – – SFA).

the steady state. For a comparison, a traditional SFA-based con-
troller is also constructed and applied to the cooperative robots
in which the SFA-based control is set with the same initial con-
ditions and feedback compensation part as the proposed con-
troller, but and , , . Then, the po-
sition-tracking results for using SFA and FFA-based control are
made a comparison given in Fig. 13. Obviously, the FFA-based
controller leads to a smaller tracking error.

V. CONCLUSION

In this paper, robust motion/force-tracking control of holo-
nomic systems has been solved by the FFA-based adaptive con-
trol scheme. Based on the introduced model formulation, typical
holonomic systems are represented as a fully actuated system
with constraints from a unified viewpoint. The benefit is that
the motion/force decomposition control design is performed in
a straightforward manner. Furthermore, the FFA-based adaptive
control has removed some disadvantages of traditional adaptive
fuzzy control including the boundedness assumption on fuzzy

approximation errors, a vast amount of rules and tuning pa-
rameters, and complicated implementation architecture. In other
words, the proposed scheme is more suitable for complicated or
high-dimension systems. By applying an LMI technique,
motion-tracking performance is guaranteed with the attenuation
of disturbances, approximation errors, and tuned fuzzy param-
eter errors. Meanwhile, the residual force-tracking error is con-
fined to a small value by adjusting control gains feasibly. The
simulation results and comparison have shown many benefits
which the traditional adaptive fuzzy controllers are lacking.

APPENDIX

PROOF OF INEQUALITY (20)

The term can be written in the form

According to [27], the first bracket term satisfies

for some symmetric positive semidefinite , , and . On
the other hand, the second bracket term is represented by

once the mean value theorem is applied. This implies that
,

where there exist and positive semidefinite such that
. Hence, the inequality (20) is obtained by

summarizing the above results.
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