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Design of Optimal Controller for Interval Plant From
Signal Energy Point of View Via Evolutionary Approaches

Chen-Chien Hsu and Chih-Yung Yu

Abstract—Design of an optimal controller minimizing the integral of
squared error (ISE) of the closed-loop system for an interval plant via
evolutionary approaches is proposed in this paper. Based on a worst-case
design philosophy, the design problem is formulated as a minimax opti-
mization problem from the signal energy point of view, and subsequently
solved by two interactive genetic algorithms. To ensure robust stability
of the closed-loop system, root locations of the Kharitonov polynomials
associated with the characteristic polynomial are used to establish a
constraint handling mechanism for incorporation into the fitness function
to effectively evaluate chromosomes in the current population. To accel-
erate the derivation process to obtain the optimal controller, alternative
approaches based on the two-phase evolutionary scheme are also proposed,
in which the worst-case ISE is suitably estimated via information provided
by the Kharitonov plants. Thus, the derived controller not only stabilizes
the interval plant, but also minimizes the ISE criterion of the closed-loop
system. Constraints on higher order plants and controller order commonly
encountered by conventional design methods are therefore removed by
using the proposed approach.

Index Terms—Genetic algorithms, integral of squared error (ISE),
interval plants, minimax optimization, robust controllers, signal energy.

I. INTRODUCTION

Although progress has been made in the realm of robust stability and
control of uncertain systems [1]–[3], this is still an open problem for
which very few solutions are available. Bhattacharyya [2] points out
that a significant deficiency of control theory at the present time is the
lack of nonconservative design methods to achieve robustness under
parameter uncertainty. Generally speaking, most of the existing results
in the area of parametric robust control are analysis results [4].

Existing results in the design of stabilizing controllers, though ap-
pealing in principle, generally band together with restrictive condi-
tions under which they are derived, which represents a severe limitation
from applicability of view [5]. In particular, there is virtually no sys-
tematic computationally efficient technique of designing a stabilizing
controller for high-order interval plants [6]. Robust stability alone is
not enough in control system design, however. If performance specifi-
cations other than robust stability are considered, the design problem
usually boils down to a mixed-norm optimization [7], such as mixed
H2=H1 orH1=`1 control [8]–[10], leading to a minimax control for-
mulation [11]–[15]. The minimax optimization problems are generally
nonconvex in the controller parameters and cannot be efficiently solved
by conventional local optimization algorithms, particularly when the
controller structure is fixed [7].

Recent developments of evolutionary algorithms [8]–[10], [16]–[18]
have provided a promising alternative to address the above-mentioned
problems and difficulties because of their capabilities of directed
random search for global optimization [19]–[21]. Thanks to a proba-
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bilistic search procedure based on the mechanics of natural selection
and natural genetics, the evolutionary algorithms are highly effective
and robust over a broad spectrum of problems [22], which are not
computationally tractable using other approaches. As far as design
of robust controllers are concerned, several approaches have been
proposed [16], [18], [23] using genetic algorithms (GA). Among them,
an optimal controller is designed based on two genetic algorithms. The
first one for minimizing the ITSE index, the second, for maximizing
the disturbance rejection constraint in the frequency domain [18]. To
minimize the worst-case integral of squared error (ISE) of the interval
plant family while maintaining stability, a GA-based approach [16] is
proposed by using two loops of GA searches. This approach, however,
is only applicable to PID controller structure, where feasible domain
of the controller parameters needs to be determined in advance, which
is not practical in light of the powerful constraint handling capabilities
of genetic algorithms. Therefore, the evolutionarily obtained controller
does not exhibit satisfactory performance because the search for an
optimal controller is confined in an inaccurate feasible domain of the
controller parameters. To improve the performance of the optimal
controller, this paper formulates the design problem as a minimax
optimization problem from the signal energy point of view, and
subsequently solved by a proposed two-phase evolutionary approach
incorporating two interactive genetic algorithms, where the first one
determines the maximum cost for a given set of controller parameters
while the other one minimizes the maximum cost passed from the first
genetic algorithm, to evolutionarily derive an optimal controller for
the interval plant. Because of the time-consuming process that genetic
algorithms generally exhibit, several variations of the two-phase
evolutionary approach are also proposed, in which the worst-case
ISE is suitably estimated via information provided by the Kharitonov
plants. Therefore, the evolution process required to compute the
worst-case ISE of the system for a given set of controller parameters
can be avoided to accelerate the derivation of the optimal controller.

The paper is organized as follows. Section II formulates the de-
sign problem into a minimax optimization problem from the signal en-
ergy point of view. Optimal controller design based on worst-case ISE
is given in Section III. The proposed two-phase GA-based approach
to solve the optimization problem is given in Section IV. Alternative
evolutionary schemes based on prior information from the Kharitonov
plants are also given in this section. Several examples are illustrated in
Section V. Conclusions are drawn in Section VI.

II. PROBLEM DESCRIPTIONS

An interval plant provides a simple and general way to model para-
metric uncertainty and is described by a ratio of interval polynomials

G(s; aaa; bbb)=
b0 + b1s+ b2s

2+ � � �+ bn�1s
n�1

a0 + a1s+ a2s2+ � � �+ an�1sn�1+sn
=
N̂(s)

D̂(s)
(1)

where coefficient vectors aaa = (a0; a1; a2; . . . ; an�1) and
bbb = (b0; b1; b2; . . . ; bn�1) lie in the n-dimensional boxes

AAA = faaa: ai 2 [a�i ; a
+

i ]; 8i = 0; 1; 2; . . . ; n� 1g (2)

and

BBB = fbbb: bi 2 [b�i ; b
+

i ]; 8i = 0; 1; 2; . . . ; n� 1g (3)

respectively.
We consider a fixed-structure controller described by a rational

transfer function

C(s;ppp; qqq) =
q0 + q1s+ q2s

2 + � � �+ qms
m

p0 + p1s+ p2s2 + � � �+ pmsm
(4)
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Fig. 1. Robust controller C(s) for interval plant G(s).

where ppp = (p0; p1; p2; . . . ; pm) and qqq = (q0; q1; q2; . . . ; qm) desig-
nate the vectors of the controller parameters in the controller parameter
domains PPP 2 Rm and QQQ 2 Rm, respectively.

When controller C(s; ppp; qqq) is placed in series with plant G(s; aaa; bbb)
and closed under unity feedback as shown in Fig. 1, the transfer func-
tion of the closed-loop system becomes the following:

Gcl(s; ppp; qqq; aaa; bbb) =
C(s; ppp; qqq)G(s; aaa; bbb)

1 + C(s; ppp; qqq)G(s; aaa; bbb)

�
N(s; ppp; qqq; aaa; bbb)

D(s; ppp; qqq; aaa; bbb)

=
n0 + n1s+ n2s

2 + n3s
3 + n4s

4 + � � �

d0 + d1s+ d2s2 + d3s3 + d4s4 + � � �
: (5)

To obtain a good tracking behavior, optimal controllers C(s; ppp; qqq)
are thus designed by minimizing the performance index of ISE of the
closed-loop system under uncertain perturbation of the interval plant
G(s; aaa; bbb), given by

J(ppp; qqq; aaa; bbb) =
1

0

e
2(t; ppp; qqq; aaa; bbb) dt (6)

where e(t) = r(t)� y(t) is the error function between the desired and
actual outputs.

III. OPTIMAL CONTROLLER DESIGN BASED ON WORST-CASE ISE

To design an optimal controller in the sense that worst-case ISE of
the closed-loop system is minimum subject to an unit step reference
input, robust stability of the closed-loop system needs to be guaranteed
in the first place.

A. Condition for Robust Stability

Note that characteristic polynomial of the closed-loop system, i.e.,

D(s) = d0 + d1s+ d2s
2 + d3s

3

+ d4s
4 + � � �+ dvs

v
; v = m+ n (7)

is also an interval polynomial, where di are the characteristic coeffi-
cients, and

di 2 [d�i ; d
+
i ]; i = 0; 1; 2; 3; . . . :

According to the Kharitonov’s theorem [24], every interval polynomial
in the family D(s) is Hurwitz if and only if the associated Kharitonov
polynomials

D1(s) = d
�

0 + d
�

1 s+ d
+
2 s

2 + d
+
3 s

3 + d
�

4 s
4 + � � � (8)

D2(s) = d
�

0 + d
+
1 s+ d

+
2 s

2 + d
�

3 s
3 + d

�

4 s
4 + � � � (9)

D3(s) = d
+
0 + d

�

1 s+ d
�

2 s
2 + d

+
3 s

3 + d
+
4 s

4 + � � � (10)

D4(s) = d
+
0 + d

+
1 s+ d

�

2 s
2 + d

�

3 s
3 + d

+
4 s

4 + � � � (11)

are Hurwitz. To ensure robust stability of the interval family family
D(s), negative real part for all roots of the associated Kharitonov poly-
nomials needs to be guaranteed.

1) Kharitonov Plants: There is valuable information revealed from
the Kharitonov polynomials associated with the interval plant toward
the design of the optimal controllers. Let Gik(s) for i; k = 1; 2; 3; 4
denote the so called Kharitonov Plants [25] defined by

Gi;k(s)
N̂i(s)

D̂k(s)
(12)

where N̂i(s) and D̂k for i; k = 1; 2; 3; 4 are the Kharitonov poly-
nomials associated with N̂(s) and D̂(s) of the interval plant in (1),
respectively. Specifically

N̂1(s) = b
�

0 + b
�

1 s+ b
+
2 s

2 + b
+
3 s

3 + b
�

4 s
4 + � � � (13)

N̂2(s) = b
�

0 + b
+
1 s+ b

+
2 s

2 + b
�

3 s
3 + b

�

4 s
4 + � � � (14)

N̂3(s) = b
+
0 + b

�

1 s+ b
�

2 s
2 + b

+
3 s

3 + b
+
4 s

4 + � � � (15)

N̂4(s) = b
+
0 + b

+
1 s+ b

�

2 s
2 + b

�

3 s
3 + b

+
4 s

4 + � � � (16)

and

D̂1(s) = a
�

0 + a
�

1 s+ a
+
2 s

2 + a
+
3 s

3 + a
�

4 s
4 + � � � (17)

D̂2(s) = a
�

0 + a
+
1 s+ a

+
2 s

2 + a
�

3 s
3 + a

�

4 s
4 + � � � (18)

D̂3(s) = a
+
0 + a

�

1 s+ a
�

2 s
2 + a

+
3 s

3 + a
+
4 s

4 + � � � (19)

D̂4(s) = a
+
0 + a

+
1 s+ a

�

2 s
2 + a

�

3 s
3 + a

+
4 s

4 + � � � : (20)

B. Optimal Controller Design

The design problem requires that we minimize ISE as a function
of the controller parameters. It is therefore essential that the objective
function of ISE in (6) results in a finite value. Therefore, we need to
ensure that there is no steady-state error of the closed-loop system.

With reference to Fig. 1, it is well known that the closed-loop system
Gcl(s) has zero steady-state error due to a step input, if the loop transfer
function C(s)G(s) is of type 1 or more, and Gcl(s) is a stable transfer
function.

Let the loop transfer function has the form of

C(s)G(s) =
Nl(s)

skDl(s)
(21)

where k is the type number associated with the loop transfer function.
We have the error signal of

E(s) =
1

1 + C(s)G(s)
R(s) =

Ne(s)

De(s)
: (22)

Therefore, the steady-state error subject to an unit step input is zero if
k � 1.

Assume that the loop transfer function C(s)G(s) has a type number
of 1 or more, and the closed-loop system Gcl(s) is stable. We can min-
imize the performance index of ISE to obtain the optimal controller by
considering the following two computational issues.

1) For a given set of controller parameters (�ppp; �qqq), the worst-case
ISE under uncertain perturbation of the interval plant can be de-
termined as follows:

WorstISE(�ppp; �qqq) = max J(�ppp; �qqq; aaa; bbb): (23)

2) Search the controller parameter domain to find the optimal con-
troller C(s) by minimizing the worst-case ISE, subject to the
constraint of robust stability of the closed-loop system:

min(WorstISE(ppp; qqq))

Subject to robust stability of the closed-loop system: (24)
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Fig. 2. Representation of the two-phase GA-based approach of evolutionary
scheme I.

Therefore, the design problem of an optimal controller satisfying
the minimum worst-case ISE criterion can be formulated as a minimax
optimization problem as

minmaxJ(ppp; qqq; aaa; bbb)

Subject to Di(s; ppp; qqq; aaa; bbb); i = 1�4; is Hurwitz (25)

where Di(s; ppp; qqq; aaa; bbb); i = 1�4 are the Kharitonov polynomials
[24] associated with the characteristic polynomials D(s) in (5) of the
closed-loop system.

C. Symbolic Derivation of ISE From the Signal Energy Point of View

The evaluation of ISE in (6) requires that the square of the error
signal e(t) integrated over an infinite range, which is generally referred
to as the signal energy of e(t). Direct manipulation of the integration in
(6), however, is generally impractical if not possible. Fortunately, there
is an elegant closed-form formula developed in [26], [27] that we can
use to alternatively obtain the signal energy for the error signal e(t).

Assume that the error signal E(s) is a stable and strictly proper
transfer function [i.e., deg(De(s)) > deg(Ne(s))]. It can be proved
that signal energy of e(t) can be recursively obtained [26] as

J(ppp; qqq; aaa; bbb) = ke(t)k2 =
1

0

e
2(t)dt =

n

l=1

(�l(ppp; qqq; aaa; bbb))
2

2�l(ppp; qqq; aaa; bbb)

(26)

where n is the order of the error signal E(s), and �l; �l are the co-
efficients of the Alpha and Beta tables of the error signal E(s) [26],
[27]. Note that �l and �l can be symbolically derived by using any
symbolic manipulation packages, such as Maple [28], as a function of
the controller parameters ppp and qqq to be identified as well as uncertain
parameters aaa and bbb of the interval plant.

IV. GA-BASED DESIGN METHODS

To this end, the design of an optimal controller has been formulated
as a constrained minimax optimization problem, generating controllers
that minimize the cost function of ISE maximum for any plant con-
tained in the uncertainty polytope. However, optimization of the quan-
titative performance index of ISE in (26) is difficult, because it is non-
linear in parameters and might have more than one extrema. Generally
speaking, the cost function is nondifferentiable with respect to con-
troller parameters. In light of the nonconvexity of the objective func-
tion of (26) in the searching space of the controller parameter domain,
gradient-based optimization methods, like hill-climbing, are likely to
be trapped in the local minima or fail to converge. Genetic algorithms,
with their power as an efficient and robust alternative for solving com-
plex and highly nonlinear optimization problem, will be used to iden-
tify parameters of the optimal controller. This motivates the develop-
ment of four GA-based evolutionary schemes to solve the optimiza-
tion problem to evolutionarily derive optimal controllers minimizing

Fig. 3. Functional representation of the fitness function of the two genetic
algorithms in evolutionary scheme I.

the performance criterion of ISE while maintaining robust stability of
the closed-loop system.

Evolutionary Scheme I: Among various evolutionary schemes to be
discussed later, evolutionary scheme I is the most fundamental one,
which uses two interactive genetic algorithms, GA1 and GA2, to derive
the optimal controller. Fig. 2 shows the block diagram of the two-
phase GA-based approach of evolutionary scheme I, where the objec-
tive function J refers to the performance criterion of ISE in (6).

As shown in Fig. 2, GA1 minimizes the worst-case objective func-
tion corresponding to the performance criterion of ISE, while GA2
maximizes the objective function for a given set of controller param-
eters for any plant contained in the uncertain polytope. Therefore, we
need to devise two fitness functions for these two genetic algorithms.
Also, GA1 requires a penalty function for incorporation into the fitness
function to handle the constraint violation on robust stability.

To provide a better illustration on the relationship of these two ge-
netic algorithms, a functional representation of the fitness function of
GA1 and GA2 is shown in Fig. 3. XXXiii is a chromosome that represents
a potential solution to the problem, i.e., coefficients of the optimal con-
troller to be identified, defined as

XXXi = (ppp; qqq) = [p0 p1 � � � pm q0 q1 � � � qm]: (27)

The initial chromosomes are randomly generated from within the pre-
defined range

pj 2 [p�j ; p
+

j ]; qj 2 [q�j ; q
+

j ]; j = 0; 1; 2; . . . ;m:

YYY iii is a chromosome that represents coefficients of the uncertain pa-
rameters of the interval plant, defined as

YYY iii = (aaa; bbb) = [a0 a1 � � � an�1 b0 b1 � � � bn�1]: (28)

The initial chromosomes are randomly generated from within the pre-
defined range

aj 2 [a�j ; a
+

j ]; bj 2 [b�j ; b
+

j ]; j = 0; 1; 2; . . . ; n� 1:

Real-coded (RC) representation for potential solutions is adopted in the
proposed GA approach to simplify genetic operator definitions and ob-
tain a better performance of the genetic algorithm itself [19]. Therefore,
no encoding procedure is required. After initialization, several genetic
operations are performed during procreation.

Authorized licensed use limited to: Tamkang Univ.. Downloaded on March 28,2023 at 02:51:41 UTC from IEEE Xplore.  Restrictions apply. 



1612 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 3, JUNE 2004

TABLE I
OPTIMAL CONTROLLERS AND THE WORST-CASE PLANT ASSOCIATED WITH THE OPTIMAL CONTROLLER FOR VARIOUS EVOLUTIONARY SCHEMES

A. Fitness Function of GA2

The fitness function F2 of GA2 can be devised as a direct calcula-
tion of the objective function of the ISE for a given set of controller
parameters. That is

F2(�ppp; �qqq; aaa; bbb) = J(�ppp; �qqq; aaa; bbb) =
1

0

e2(t; �ppp; �qqq; aaa; bbb)dt (29)

where (�ppp; �qqq) represents a given set of controller parameters passed from
GA1.

B. Fitness Function of GA1

Note that GA1 is used to search for an optimal chromosome Xi con-
taining the optimal parameters of the robust controller C(s) by mini-
mizing the worst-case objective function (i.e., maximum ISE), subject
to the constraint that resulting closed-loop system is Hurwitz. In order
to handle multiple constraints as demonstrated in (24), we devise a con-
straint handling mechanism based on penalty function and tournament
selection, where two solutions are compared at a time and the following
criteria are always enforced [29].

1) Any feasible solution is preferred to any infeasible solution.
2) Among two feasible solutions, the one having better objective

function value is preferred.
3) Among two infeasible solutions, the one have smaller constraint

violation is preferred.

Thus, the fitness function F1 for GA1 can be derived as

F1(ppp; qqq) =
1=WorstISE(ppp; qqq); if Xi = (ppp; qqq) is feasible
��(ppp; qqq); if Xi = (ppp; qqq) is infeasible

(30)

where

WorstISE(ppp; qqq) = maxfJ(aaa; bbb; ppp; qqq) (31)

is the maximum cost function (worst-case ISE) for any plant contained
in the interval plant family for a given set of controller parameters.
Xi = (ppp; qqq) is a chromosome containing a set of controller parameters
(ppp; qqq). �(ppp; qqq) is the penalty function designed to penalize infeasible
chromosomes described below.

1) Penalty Function Based on Roots Location: The rationale in de-
signing the penalty function is that we penalize chromosomes with pos-
itive real part in the roots of the four Kharitonov polynomials associated
with the characteristic polynomial during the evolution process. Let rij

be the real part of the jth root of the ith Kharitonov polynomialsDi(s).
We define the penalty function

�(ppp; qqq) =

4

i=1

v

j=1

Cij ; v is the order of

the characteristic polynomial D(s) (32)

where

Cij =

0; if rij < 0

m1; if rij = 0

rij ; if rij > 0

(33)

and m1 is a sufficiently small positive number, for example, 10�9.
The penalty function is constructed to ensure that infeasible chromo-
somes always have inferior fitness than any other feasible ones. Heavier
penalty is imposed on chromosomes corresponding to larger accumu-
lated sum of positive real part in the roots of the associated Kharitonov
polynomials.

C. Evolutionary Operations and Operators of the Proposed
Genetic Algorithm

Evolutionary process of the proposed genetic algorithms includes
the steps of population initialization and reproduction operation. The
tournament selection is employed to keep the balance between the pop-
ulation diversity and selective pressure during the evolution process.
Several genetic operators, arithmetic crossover, heuristic crossover, and
nonuniform mutation are performed on the selected chromosomes after
the reproduction operation with suitable selection of control parameters
[19], [30]. To prevent the loss of the optimal solution ever searched and
increase the convergence rate, the elitist replacement is adopted to pre-
serve the optimal solution in the current generation. From the experi-
ments ever conducted, we observed that the worst-case ISE generally
lies on or near the Kharitonov plants for a given set of controller pa-
rameters. Boundary mutation is extremely suitable for use in this case,
and will be adopted in GA2 to locate the worst-case ISE with success.

D. Alternative Evolutionary Schemes

In addition to evolutionary scheme I, which uses two interactive
genetic algorithms to obtain the optimal controller minimizing the
worst-case ISE, there are several variations based on prior information
obtained from the Kharitonov plants to approximately obtain the
worst-case ISE for a given set of controller parameters. Therefore, the
evolution process of executing GA2 can be avoided to accelerate the
derivation of the optimal controller by performing GA1 only.
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Fig. 4. Fitness evolution of GA1 using evolutionary scheme I in Example 1.

1) Evolutionary Scheme II: As mentioned earlier, the worst-case
ISE of the closed-loop system generally lies on or near the Kharitonov
plantsGi;k(s); i; k = 1; 2; 3; 4, for a given set of controller parameters
(�ppp; �qqq). Define the error signal associated with the Kharitonov plants for
a given controller C(s;�ppp; �qqq) as

Ei;k(s;�ppp; �qqq) =
1

1 + C(s;�ppp; �qqq)Gi;k)(s)
R(s)

for i; k = 1; 2; 3; 4 (34)

where

Ei;k(s;�ppp; �qqq) = L[ei;k(t; �ppp; �qqq)]: (35)

Thus, the worst-case ISE that GA2 pursuits for a given set of controller
parameters (�ppp; �qqq) can be approximated as

WorstISE(�ppp; �qqq) = max
1

0

e
2(t; �ppp; �qqq; aaa; bbb) dt

� max
i;k=1;2;3;4

1

0

e
2
i;k(t;�ppp; �qqq) dt : (36)

Unlike the evaluation of the H1 norm of an interval plant where
the maximal H1 norm is achieved at the 16 Kharitonov plants [25],
the worst-case ISE subject to uncertain variations of the interval plant
for a given controller does not always occur at the Kharitonov plants.
Simulation results, however, have demonstrated that the approximation
of (36) provides functional accuracy as a fitness for each chromosome
Xi = (�ppp; �qqq), although counter examples can be found that worst-case
ISE does go beyond the Kharitonov plants. Because of the suitable ap-
proximation of the worst-case ISE achieved by using the Kharitonov
plants, evolution time is significantly reduced from a scale of n2 to n,
thus, accelerating the derivation process to obtain an optimal controller.

2) Evolutionary Scheme III: Evolutionary scheme III is basically
the same as evolutionary scheme I, except that GA2 specifically
includes a chromosome representing the Kharitonov plant having
the worst-case ISE for a given set of controller parameters in the
population.

Fig. 5. Evolution of worst-case ISE of GA1 using evolutionary scheme I in
Example 1.

3) Evolutionary Scheme IV: Basically, this scheme combines evo-
lutionary schemes II and III during the evolution process. A larger por-
tion of the evolution adopts evolutionary scheme II to save computation
time, while a smaller portion of the evolution process adopts evolu-
tionary scheme III for fine tuning toward a better result.

E. Computational Algorithms

The proposed approach to derive the optimal controller for uncertain
interval systems via genetic algorithms is supplemented by a compu-
tational algorithm in the Appendix, which can be easily implemented
using Matlab.

V. ILLUSTRATED EXAMPLES

Example 1: Consider the feedback control system shown in Fig. 1,
where the plant is described by the interval transfer function [16]

G(s; a; b) =
b1s+ b0

s4 + a3s3 + a2s2 + a1s+ a0

with the parameters uncertainties specified by

90 � b0 � 166; 54 � b1 � 74; �0:1 � a0 � 0:1;

30:1 � a1 � 33:9; 50:4 � a2 � 80:8; 2:8 � a3 � 4:6:

A PID controller, which has the form of

C(s) =
KDs

2 +KP s+KI

s

will be designed to achieve the minimum worst-case ISE under the
plant parameter perturbations.

Solution: The error signal of the closed-loop system is shown in the
equation at the bottom of the page. By using the proposed evolutionary
schemes I, II, and III, we obtain the respective optimal controllersC(s),
worst-case plants G�(s), and the worst-case ISE, as shown in Table I.

Note that evolutionary scheme III performs best. It comes no sur-
prise because GA2 incorporates chromosomes with potential op-
tima obtained from the Kharitonov plants for a given set of con-

E(s) =
s4 + a3s

3 + a2s
2 + a1s+ a0

s5 + a3s4 + (b1KD + a2)s3 + (b0KD + b1KP + a1)s2 + (b0KP + b1KI + a0)s+ b0KI
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Fig. 6. Worst-case ISE for a given set of controller parameters via GA2 for
10 runs.

troller parameters during the evolutionary process. It is also inter-
esting to observe that evolutionary schemes I and II derive con-
trollers with similar performance in comparison to that via evolu-
tionary scheme III. That is, Kharitonov plants can be used to suit-
ably approximate the worst-case ISE that GA2 dedicates to explore
for a given set of controller, as far as fitness function of the genetic
algorithm is concerned.

For brevity, we only use evolutionary scheme I to demonstrate the
derivation of the optimal controller. Figs. 4 and 5 show the evolu-
tion processes of fitness and worst-case ISE, respectively, via evolu-
tionary scheme I, where genetic operators and parameters used are:
population size = 100; pc = 0:3;pm = 0:05; tournament size = 4,
and a search space of [�50 50] for each controller parameter.

Note that consistency of the worst-case ISE obtained via GA2 for
a given set of controller parameters is essential. Fig. 6 shows the sim-
ulation results of the worst-case ISE for a given set of controller pa-
rameters (K�

D = 1:079081;K�

P = 1:006 024;K�

I = 1:709960) via
GA2. It is clear that GA2 is quite robust to locate the optimum fitness
of 0.641 436 for all 10 runs.

To accelerate the derivation process, evolutionary scheme II instead
is used to obtain the optimal controller for example 1, where a compu-
tation time elapsed using a Pentium 4 personal computer (2.4 G, 512
MB RAM) is about 490 s. For comparison purpose, step responses of
the closed-loop system with 4 of the 16 Kharitonov plants and the op-
timal controllers obtained by using evolutionary scheme II and results
revealed in [16] are plotted in Figs. 7 and 8, respectively. It is obviously
that the time responses using the proposed approaches are much better
improved than the result revealed in [16].

Example 2: Consider a higher order interval plant [6] given by the
equation at the bottom of the page. A third-order controller is given by

C(s; q) =
q1s

2 + q2s+ q3

s(q4s2 + q5s+ q6)

qqq = (q1; q2; q3; q4; q5; q6)

Fig. 7. Step responses of the closed-loop system with four Kharitonov plants
and the optimal controller obtained via evolutionary scheme II.

Fig. 8. Step responses of the closed-loop system with four Kharitonov plants
and the optimal controller in [16].

with the bounds on qqq relaxed as

q1 2 [�1200 1200]; q2 2 [�200 200]

q3 2 [�500 500]; q4 2 [�200 200]

q5 2 [�200 200]; q6 2 [�200 200]

Note that the interval plant has a high order of five and the controller
C(s) is of third order consisting of six parameters to be identified,
which creates a virtually impractical, if not impossible, calculating
burden for existing techniques to compute a such optimal controller
while maintaining robust stability of the system.

Solution: To obtain better computational efficiency, evolutionary
scheme II is adopted in this example. Figs. 9 and 10 show the evo-
lution processes of fitness and worst-case ISE via GA1 for four runs,
in which fitness is improving while evolving toward an optimum of

G(s) =
[0:9 1:1]s2 + [2:4 2:6]s+ [1:4 1:6]

s5 + [16 17]s4 + [75 77]s3 + [103 105]s2 + [33 35]s+ [119 121]
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Fig. 9. Evolution of GA1 for four runs using evolutionary scheme II in
Example 2.

Fig. 10. Worst-case ISE by GA1 for 4 runs using evolutionary scheme II in
Example 2.

the controller parameters. Genetic operators and parameters used in
evolutionary scheme II are: population size = 100; pc = 0:3;pm =
0:05; tournament size = 4. For example, the first run via evolutionary
scheme II generates an optimal controller of

C(s; q) =
647:2025s2 + 96:0509s+ 456:1535

s(0:0030519s2 + 0:680 56s+ 3:3052)

with a worst-case ISE of 0.366 025, corresponding to the worst-case
plant of

G(s) =
1:1s2 + 2:6s+ 1:4

s5 + 16s4 + 75s3 + 103s2 + 33s+ 121
:

Step responses of the closed-loop system with Kharitonov plants and
the optimal controller derived by the evolutionary scheme II and are
plotted in Fig. 11.

VI. CONCLUSION

In this paper, design of optimal controllers minimizing the
worst-case ISE for interval plants is formulated as a constrained
minimax optimization problem, and subsequently solved by a
two-phase evolutionary approach incorporating two interactive genetic
algorithms. To circumvent the cumbersome integration to obtain the
ISE, the objective function for optimization is symbolically derived as

Fig. 11. Step responses of the closed-loop system with Kharitonov plants and
the optimal controller derived by evolutionary scheme II in Example 2.

a function of the controller parameters from the signal energy point of
view. As a compromise between the computational cost and accuracy
to obtain the optimal controller, several variations of the two-phase
evolutionary approach are also proposed, in which the worst-case ISE
is effectively estimated via information provided by the Kharitonov
plants. Therefore, the evolution process to obtain the worst-case
ISE for a given set of controller parameters is no longer required.
Simulation results have demonstrated that the Kharitonov plants are
very helpful in approximating the worst-case ISE as far as fitness of
the genetic algorithm is concerned.

To effectively handle the constraint violations during the evolution
process, a penalty function which imposes penalty on chromosomes
with positive real part in the roots of the four Kharitonov polynomials
is designed and incorporated into the fitness evaluation function, so that
genetic algorithms evolve toward the direction of minimizing the ISE
while maintaining robust stability of the closed-loop system. There is
no restrictive condition under which the proposed approaches are de-
veloped. Conventional design constraints on the higher-order interval
plants and controller order are therefore removed. In general, the op-
timal controller can be obtained within a moderate number of itera-
tions by using the proposed GA-based approaches without suffering
from the inherent shortcomings. Several illustrated examples, including
that with higher-order interval plant and arbitrarily assigned controller
order, have demonstrated the effectiveness of the proposed approach.

APPENDIX

COMPUTATIONAL ALGORITHMS OF THE PROPOSED

EVOLUTIONARY APPROACHES

GA1:
Step 1: (Preparation)

Specify coefficient parameters of the interval plant G(s),
search space of controller C(s), and genetic algorithms pa-
rameters: population size (pop size), maximum generation
(max gen), crossover rate (pc), mutation rate (pm), and
tournament size (k).

Step 2: (Initialization)

1) Set the best solution X� = 0, best fitness value fmax =
0, and generation number t = 1.

2) Generate an initial population P (t) of pop size chro-
mosomes within Xi = [lower bound; upper bound],
for i = 1 to pop size.

Authorized licensed use limited to: Tamkang Univ.. Downloaded on March 28,2023 at 02:51:41 UTC from IEEE Xplore.  Restrictions apply. 



1616 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 3, JUNE 2004

Step 3: (Evaluation)

1) Obtain worst-case ISEWorstISE(ppp; qqq) for every fea-
sible chromosome Xi via GA2 or (36) according to
evolutionary schemes adopted.

2) Calculate the fitness for each chromosome according
to fitness function F1(ppp; qqq) in (30).

3) If Fitness(Xi) > fmax, then X� = Xi and fmax =
Fitness(Xi) for i = 1 to pop size.

Step 4: (Reproduction)

1) Randomly select some number k of chromosomes and
select the best one from this set of k elements into the
next generation.

2) Repeat pop size times

Step 5: (Crossover)

1) Randomly select n (even) chromosomes Xi, for i = 1
ton, in populationP (t) according the crossover rate pc,
and then perform the arithmetic crossover and heuristic
crossover operation to produce offspring X 0

i , for i = 1
to n.

2) Set Xi = X 0

i , for i = 1 to n.

Step 6: (Nonuniform Mutation)

1) Randomly select n chromosomes Xi, for i = 1 to n,
in population P (t) according the mutation rate pm, and
then perform the nonuniform mutation to produce the
mutated genes X 0

i .
2) Set Xi = X 0

i .

Step 7: (Elitist replacement)
If Fitness(Xi) < fmax, for all i = 1 to pop size, then
the solution �X with the smallest fitness value in the current
generation is replaced by the best solution X�.

Step 8:

If t = max gen then output best solution X� with a best fitness
value of fmax; else t = t + 1 and goto Step 3.

GA2:
Step 1: (Preparation)

Specify search space of the uncertain parameters of interval plant
G(s), coefficient parameters of a given controller C(s) passed
from GA1, and genetic algorithms parameters: population size
(pop size), maximum generation (max gen), crossover rate
(pc), mutation rate (pm), and tournament size (k).

Step 2: (Initialization)

1) Set the best solutionY � = 0, best fitness value fmax = 0,
and generation number t = 1.
2) Generate an initial population P (t) of pop size chro-
mosomes within Yi = [lower bound;upper bound], for
i = 1 to pop size.

Step 3: (Evaluation)

1) Calculate the fitness of ISE for each chromosome ac-
cording to fitness F2(ppp; qqq) function in (29).

2) If Fitness(Yi) > fmax, then Y � = Yi and fmax =
Fitness(Yi) for i = 1 to pop size.

Step 4: (Reproduction)

1) Randomly select some number k of chromosomes and
select the best one from this set of k elements into the next
generation.
2) Repeat pop size times

Step 5: (Crossover)

1) Randomly select n (even) chromosomes Yi, for i = 1
to n, in population P (t) according the crossover rate pc, and

then perform the arithmetic crossover and heuristic crossover
operation to produce offspring Y 0

i , for i = 1 to n.
2) Set Yi = Y 0

i , for i = 1 to n.

Step 6: (Boundary Mutation)

1) Randomly select n chromosomes Xi, for i = 1 to n,
in population P (t) according the mutation rate pm, and then
perform the boundary mutation to produce the mutated genes
Y 0

i .
2) Set Y 0

i = Y 0

i .

Step 7: (Elitist replacement)
If Fitness(Yi) < fmax, for all i = 1 to pop size, then
the solution �Y with the smallest fitness value in the current
generation is replaced by the best solution Y �.

Step 8
If t = max gen then output best solution Y � with a best
fitness value of fmax; else t = t+ 1 and goto Step 3.
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