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Abstract 

This paper presents some effective 
method for improving the performance of 
a speaker identification system. Based on 
the multiresolution property of the wave-
let transform, the input speech signal is 
decomposed into various frequency bands 
in order not to spread noise distortions 
over the entire feature space. The linear 
predictive cepstral coefficients (LPCC) of 
each band are calculated. Furthermore, 
the cepstral mean normalization technique 
is applied to all computed features. In or-
der to effectively utilize these multiband 
speech features, we use feature recombi-
nation and likelihood recombination 
methods to evaluate the task of the text-
independent speaker identification. The 
feature recombination scheme combines 
the cepstral coefficients of each band to 
form a single feature vector used to train 
the Gaussian mixture model (GMM). The 
likelihood recombination scheme com-
bines the likelihood scores of independent 
GMM for each band. Experimental results 
show that the proposed both methods out-
perform the GMM model using full-band 
LPCC and MFCC features in both clean 
and noisy environments. 

Keywords: speaker identification, wave-
let transform, linear predictive cepstral 
coefficients (LPCC), mel-frequency cep-
stral coefficients (MFCC), Gaussian mix-
ture model (GMM). 

1 Introduction 

In general, speaker recognition can be divided into 
two parts: speaker verification and speaker identi-
fication. Speaker verification refers to whether or 
not the speech samples belong to some specific 
speaker. However, in speaker identification, the 
goal is to determine which one of a group of 
known voices best matches the input voice sample. 
Furthermore, in both of the tasks the speech can be 
either text-dependent or text-independent. Text-
dependent means that the text used in the training 
system must be the same as that used in the test 
system, while text-independent means that there is 
no limitation on the text used in the test system. 
Certainly, how to extract and model the speaker-
dependent characteristics of the speech signal is 
the key point which seriously affects the perform-
ance of the speaker recognition system. 

Much research has been done on the task of 
speech feature extraction. The linear predictive 
cepstral coefficients (LPCC) (Atal, 1974; White 
and Neely, 1976) were used because of their sim-
plicity and effectiveness in speaker/speech recog-
nition. Other widely used feature parameters, mel-
frequency cepstral coefficients (MFCC) (Vergin et 
al., 1999), were calculated by using a filter-bank 
approach in which the set of filters had equal band-
widths with respect to the mel-scale frequencies. 
This was based on the fact that the human percep-
tion of frequency contents of sounds did not follow 
a linear scale. The above two most commonly used 
feature extraction techniques do not provide an 
invariant parameterization for speech—the repre-
sentation of the speech signal tends to change due 
to various noise conditions. The performance of 



the speaker identification systems may severely 
degrade in the case of a mismatch between training 
and test environments. Various types of speech 
enhancement and noise elimination techniques 
have been applied to feature extraction. Typically, 
the nonlinear spectral subtraction (Lockwood and 
Boudy, 1992) had provided only minor perform-
ance gains after extensive parameter optimization. 
Furui (1981) used the cepstral mean normalization  
technique to eliminate the channel bias by subtract-
ing off the global average cepstral vector from 
each cepstral vector. Other way to minimize the 
channel filter effects is to use the cepstrum differ-
ence coefficients (Soong and Rosenberg, 1988). 
Cepstral coefficients and their time difference 
functions were used as the features in order to cap-
ture the dynamic information and eliminate the 
time-invariant spectral information generally at-
tributed to the interposed communication channel. 

Conventionally, feature extraction is carried out 
by computing acoustic feature vectors over the full 
band of the spectral representation of speech. The 
major drawback of this approach is that even a par-
tial band-limited noise corruption affects all feature 
vector components. The multiband approach 
(Hermansky et al., 1996) coped with this problem 
by performing the acoustic feature analysis inde-
pendently for a set of frequency subbands. Since 
the resulting coefficients were computed inde-
pendently, a band-limited noise signal did not 
spread over the entire feature space. The major 
drawback of a pure subband-based approach may 
be that information on the correlation between 
various subbands is lost. Therefore, an approach of 
combining the information from full-band and 
subbands at the recognition stage produced recog-
nition improvements (Mirghafori and Morgan, 
1998). It is not trivial to decide at which temporal 
level the combination of subband features should 
be carried out. In the multiband approach (Bour-
lard and Dupont, 1996; Hermansky and Malayath, 
1998), different classifiers for each band were used 
and the likelihood recombination was done at hid-
den Markov model (HMM) state, phone, or word 
level. In other approach, Okawa et al. (1998) pro-
posed the combination of the individual features of 
each subband into a single feature vector prior to 
decoding. In our previous study (Hsieh and Wang, 
2001), we proposed a multiband linear predictive 
cepstral coefficients (MBLPCC) method in which 
the LPCC features from various subbands and full-

band were combined to form a single feature vec-
tor. This feature extraction method was evaluated 
for speaker identification system using vector 
quantization (VQ) as the identifier. The experi-
mental results showed that this method was more 
effective and robust than the full-band LPCC and 
MFCC features, particularly in noisy environments. 

In past studies for recognition models, dynamic 
time warping (DTW) (Furui, 1981), HMM (Poritz, 
1982; Tishby, 1991), and Gaussian mixture model 
(GMM) (Miyajima et al., 2001; Alamo et al., 1996; 
Pellom and Hansen, 1998) were used in speaker 
recognition. The DTW technique is effective in the 
text-dependent speaker recognition, but it is not 
suitable for the text-independent speaker recogni-
tion. The HMM is widely used in speech recogni-
tion and it is also commonly used in the text-
dependent speaker verification. The GMM (Rey-
nold and Rose, 1995) provides a probabilistic 
model of the underlying sounds of a person’s voice. 
It is computationally more efficient than HMM and 
has been widely used in text-independent speaker 
recognition.  

In this study, the MBLPCC features proposed 
previously are used as the front end of the speaker 
identification system. Then the cepstral mean nor-
malization is applied to these multiband speech 
features to provide similar parameter statistics in 
all acoustic environments. In order to effectively 
utilize all multiband speech features, we use the 
features recombination and the likelihood recom-
bination methods in GMM speaker models to 
evaluate the task of the text-independent speaker 
identification. The experimental results show that 
the proposed methods outperform the GMM using 
full-band LPCC and MFCC features.  

This paper is organized as follows. The pro-
posed extraction algorithm of speech features is 
described in Section 2. Section 3 gives the pro-
posed speaker recognition models. Experimental 
results and comparisons with conventional full-
band GMM are presented in Section 4. Concluding 
remarks are given in Section 5. 

2 Multiresolution Features Based on 
Wavelet Transform 

On the basis of the time-frequency multiresolution 
analysis, the effective and robust MBLPCC is used 
as the front end of the speaker identification sys-
tem. First, the LPCC is extracted from the full-



band input signal. Then the wavelet transform is 
applied to decompose the input signal into two fre-
quency subbands: a lower frequency approximated 
subband and a higher frequency detailed subband. 
For capturing the characteristics of an individual 
speaker, the LPCC of the lower frequency subband 
is calculated. The main reason for using the LPCC 
parameters is their good representation on the en-
velope of speech spectrum of vowels and their 
simplicity. Based on this mechanism, one can eas-
ily extract the multiresolution features from all 
lower frequency subband signals simply iteratively 
applying the wavelet transform to decompose the 
lower frequency subband signals, as depicted in 
Figure 1. In Figure 1, the wavelet transform can be 
realized by using a pair of the finite impulse re-
sponse (FIR) filters H and G, which are low-pass 
and high-pass filters, respectively, and the down-
sampling operation (↓2). The down-sampling op-
eration is used to discard the odd-numbered sam-
ples in a sample sequence after filtering. 

 
 G 2↓

H 2↓ G 2↓

H 2↓ G 2↓

H 2↓

0V 1W

2W

3W

4W  
Figure 1. Two-band analysis tree for a discrete 
wavelet transform. 

 
The schematic flow of the proposed feature ex-

traction method is shown in Figure 2. In Figure 2, 
after the full-band LPCC is extracted from the in-
put speech signal, the discrete wavelet transform 
(DWT) is applied to decompose the input signal 
into a lower frequency subband and the subband 
LPCC is extracted from this subband. The recur-
sive decomposition process lets us easily acquire 
the multiband features of the speech signal. Ac-
cording to the concept of the proposed method, the 
number of MBLPCC coefficients depends on the 
level of decomposition process. 

Finally, the cepstral mean normalization is ap-
plied to normalize the feature vectors, so that their 
short-term means are normalized to zero as follows: 

kkk txtx µ−= )()(ˆ ,                      (1) 
where xk(t) is the kth component of feature vector 
at time (frame) t, and µk is the mean of the kth 

component of feature vectors of a specific 
speaker’s utterance.  

In this paper, the orthonormal basis of the DWT 
is based on the quadrature mirror filters (QMF) 
introduced by Daubechies (1988). 
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Figure 2. Features extraction algorithm of 
MBLPCC 

3 Multiband Speaker Recognition Models 

As described in Section 1, the GMM is widely 
used in the text-independent speaker recognition 
and shows good performances. Here, we use GMM 
as the classifier. Our initial strategy of multiband 
speaker recognition is based on straightforward 
recombination of the cepstral coefficients from 
each subband (including full-band) to form a single 
feature vector, which is used to train GMM. We 
name this identifier model as the feature combina-
tion Gaussian mixture models (FCGMM). The 
structure of the FCGMM is shown in Figure 3. The 
advantages of this approach are that: (1) it is possi-
ble to model the correlation between feature vec-
tors of each band; (2) acoustic modeling becomes 
simpler. Other approach combines the likelihood 
scores of independent GMM for each band, as il-
lustrated in Figure 4. We name this identifier 
model as the multi-layer Gaussian mixture models 
(MLGMM). 

For speaker identification, a group of S speak-
ers is represented by MLGMM’s λ1, λ2,…, λS. A 
given speech utterance X is decomposed into L 
subbands. Let Xi and λki be the feature vector and 
the associated GMM for band i, respectively. After 
the logarithmic likelihood logP(Xi|λki) of band i for 
a specific speaker k is evaluated, the combined 
logarithmic likelihood logP(X|λk) for the MLGMM 
of a specific speaker k is determined as the sum of 



logarithmic likelihood logP(Xi|λki) for all bands as 
follows: 

∑=
=

L

i kiik XPXP
0

)|(log)|(log λλ ,  (2) 

where L is the number of subbands. When i = 0, 
the functions of the MLGMM and the conventional 
full-band GMM are identical. For a given speech 
utterance X, X is classified to the speaker Ŝ  who 
has the maximum logarithmic probability 

)|(log ŜXP λ : 
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    Figure 4. Structure of MLGMM 

4 Experimental Results 

This section presents the evaluations of the 
FCGMM and MLGMM for the text-independent 
speaker identification. The first experiment studies 
the effect of decomposition level. The next ex-
periment compares the performance of the 
FCGMM and MLGMM with that of the conven-
tional GMM model using the full-band LPCC and 
MFCC features. 

4.1 Database Description and Parameters 
Setting 

The proposed method is evaluated using the KING 
speech database (Godfrey et al., 1994) for the text-
independent speaker identification. The KING da-
tabase is a collection of conversational speech 
from 51 male speakers. For each speaker there are 
10 sections of conversational speech recorded at 
different time. The waveform file of each section 
consists of about 30 seconds of actual speech. The 
speech from a section is recorded from a micro-
phone locally and was transmitted over a long dis-
tance telephone link, providing a high-quality 
(clean) version and a telephone quality version of 
the speech. The speech signals are recorded at 8 
kHz and 16 bits per sample. In our experiments, 
the noisy speech is generated by adding Gaussian 
noise to the clean version speech at the desired 
SNR. In order to eliminate the silence segments 
from an utterance, a simple segmentation based on 
signal energy of each speech frame is used. The 
experiments are evaluated using five sections of 20 
speakers. For each speaker, 90 seconds of speech 
cut from three clean version sections are used as 
the training utterances. The other two sections are 
divided into nonoverlapping segments of 2 seconds 
and are used as the test utterances. 

For all experiments in this paper, each frame 
of the analyzed utterance has 256 samples with 128 
samples overlapping. Furthermore, 20 orders of 
LPCC for each frequency band are calculated and 
the first order coefficient is discarded. For our mul-
tiband approach, we use 2, 3 and 4 bands as fol-
lows: 
2 bands: (0-4000), (0-2000) Hz. 
3 bands: (0-4000), (0-2000), (0-1000) Hz. 
4 bands: (0-4000), (0-2000), (0-1000), (0-500) Hz. 

4.2 Effects of Decomposition Levels 

As described in Section 2, the number of subbands 
depends on the decomposition levels of wavelet 
transform. This experiment is to evaluate the effect 
of number of bands used for the FCGMM and 
MLGMM models with 50 mixtures in both clean 
and noisy environments. The experimental results 
are shown in Table 1. 

We can see that 3-band FCGMM model has 
better performance in low SNR conditions (for ex-
ample, 15 dB, 10 dB or 5 dB), but has poorer per-
formance in clean and 20 dB SNR conditions in 



comparing with 2-band FCGMM model. The best 
identification rate of the MLGMM model can be 
achieved in both clean and noisy environments 
when the number of bands is set to be three. It is 
shown that when the number of bands greater than 
three for both models, it not only increases the 
computation time but also decreases the identifica-
tion rate. In this case, the highest layer signals lo-
cate at very low frequency subband and the 
number of samples within highest layer subband is 
so small that it cannot accurately estimate the spec-
tral characteristics of speech. Consequently, the 
poor result in highest layer subband will down-
grade the system performance. 

 
Table 1. Effects of number of bands on the identi-
fication rate (%) for FCGMM and MLGMM 
models in both clean and noisy environments. 
 

            SNR(dB) 
Model 

clean 20 15 10 5 

2 bands 93.45 85.55 72.10 50.25 30.76

3 bands 91.09 83.87 76.64 60.50 46.22
FC-

GMM 

4 bands 88.07 81.18 74.29 63.03 43.36

2 bands 93.28 86.39 76.47 53.78 28.24

3 bands 94.96 92.10 86.89 68.07 43.53
ML-

GMM 

4 bands 94.12 89.41 84.87 71.76 43.19

4.3 Comparison with Conventional GMM 
Models 

In this experiment, the performance of the 
FCGMM and MLGMM models are compared with 
that of the conventional GMM model using full-
band 20 orders LPCC and MFCC features under 
Gaussian noise corruption. For all models, the 
number of mixtures is set to be 50. 

Here, the parameters of the FCGMM and 
MLGMM are the same as for Section 4.2 except 
that the number of bands is set to be three. Ex-
perimental results in Table 2 show that the per-
formance of both GMM models using full-band 
LPCC and MFCC features is seriously degraded by 
Gaussian noise corruption. However, the MLGMM 
model gives the best performance among all mod-
els in both clean and noisy environments, and 
maintains its robustness in low SNR conditions. 
The GMM model using full-band MFCC features 
has better performance in clean and 20 dB SNR 

conditions, but has poorer performance in lower 
SNR conditions in comparing with 3-band 
FCGMM. The GMM using full-band LPCC fea-
tures has poorest performance among all models. 
Finally, it can be concluded that the MLGMM 
model is effective to represent the characteristics 
of individual speaker and is robust to the additive 
Gaussian noise conditions. 

 
Table 2. Identification rates (%) for GMM using 
full-band LPCC and MFCC features, FCGMM, 
and MLGMM under white noise corruption. 

 

5 Conclusion 

In this study, on the basis of the time-frequency 
analysis of the wavelet transform, the effective and 
robust MBLPCC features proposed in the previous 
works are used as the front end of the speaker iden-
tification system. In order to effectively utilize 
these multiband speech features, we examine two 
different approaches. The FCGMM combines the 
cepstral coefficients from each band to form a sin-
gle feature vector used to train the GMM. The 
MLGMM recombines the likelihood scores of in-
dependent GMM for each band. Finally, the pro-
posed methods are evaluated using the KING 
speech database for the text-independent speaker 
identification. Experimental results show that both 
multiband schemes are more effective and robust 
than the GMM model using full-band LPCC and 
MFCC features. In addition, the identification rate 
of the MLGMM is more effective than that of the 
FCGMM. 
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                  SNR(dB)
Model Clean 20  15  10 5 

GMM using  
full-band LPCC 88.40 77.65 61.68 35.63 19.50

GMM using  
full-band MFCC 92.61 85.88 73.11 51.60 32.77

3-band  
FCGMM 91.09 83.87 76.64 60.50 46.22

3-band 
MLGMM 94.96 92.10 86.89 68.07 43.53



References 
Alamo, C. M., Gil, F. J. C., Munilla, C. T., and 

Gomez, L. H., “Discriminative training of 
GMM for speaker identification,” Proc. IEEE 
ICASSP, pp. 89-92, 1996. 

Atal, B., “Effectiveness of linear prediction char-
acteristics of the speech wave for automatic 
speaker identification and verification,” 
Acoust. Soc. Amer. J., 55, pp. 1304-1312, 
1974.  

Bourlard, H. and Dupont, S., “A new ASR ap-
proach based on independent processing and 
recombination of partial frequency bands,” 
Proc. Int. Conf. Spoken Language Processing, 
pp. 426–429, 1996. 

Daubechies, I., “Orthonormal bases of compactly 
supported wavelets,” Commun. Pure Appl. 
Math., 41, pp. 909-996, 1988. 

Furui, S., “Cepstral analysis technique for auto-
matic speaker verification,” IEEE Trans. 
Acoust., Speech, Signal Processing, 29, pp. 
254-272, 1981. 

Furui, S., “Comparison of speaker recognition 
methods using statistical features and dynamic 
features,” IEEE Trans. Acoust., Speech, Signal 
Processing, vol. ASSP-29, pp. 342-350, June 
1981. 

Godfrey, J., Graff, D., and Martin, A., “Public da-
tabases for speaker recognition and verifica-
tion,” in Proc. ESCA Workshop Automat. 
Speaker Recognition, Identification, Verifica-
tion, pp. 39-42, Apr. 1994. 

Hermansky, H. and Malayath, N., “Spectral basis 
functions from discriminant analysis,” Proc. 
Int. Conf. Spoken Language Processing, pp. 
1379–1382, 1998. 

Hermansky, H., Tibrewala, S., and Pavel, M., 
“Toward ASR on partially corrupted speech,” 
Proc. Int. Conf. Spoken Language Processing, 
pp. 462–465, 1996. 

Hsieh, C. T. and Wang, Y. C., “A robust speaker 
identification system based on wavelet trans-
form,” IEICE Trans. Inf. & Syst., vol. E84-D, 
no. 7, pp.839-846, July 2001. 

Lockwood, P. and Boudy, J., “Experiments with a 
nonlinear spectral subtractor (NSS), hidden 
Markov models and the projection, for robust 
speech recognition in cars,” Speech Commun., 
vol. 11, no. 2-3, pp. 215–228, 1992. 

Mirghafori, N. and Morgan, N., “Combining con-
nectionist multi-band and full-band probabil-
ity streams for speech recognition of natural 
numbers,” Proc. Int. Conf. Spoken Language 
Processing, vol. 3, pp. 743–747, 1998. 

Miyajima, C., Hattori, Y., Tokuda, K., Masuko, T., 
Kobayashi, T., and Kitamura, T., “Text-
independent speaker identification using 
Gaussian mixture models based on multi-
space probability distribution,” IEICE Trans. 
Inf. & Syst., vol. E84-D, no. 7, pp. 847-855, 
July 2001. 

Okawa, S., Bocchieri, E., and Potamianos, A., 
“Multi-band speech recognition in noisy envi-
ronments,” Proc. Int. Conf. Acoustics, Speech, 
Signal Processing, pp. 641–644, 1998. 

Pellom, B. L. and Hansen, J. H. L., “An effective 
scoring algorithm for Gaussian mixture model 
based speaker identification,” IEEE Signal 
Processing Letters, vol. 5, no. 11, pp. 281-284, 
Nov. 1998. 

Poritz, A., “Linear predictive hidden markov 
models and the speech signal,” Proc. ICASSP-
82, 2:1291-1294, 1982. 

Reynolds, D. A. and Rose, R. C., “Robust test-
independent speaker identification using gaus-
sian mixture speaker models,” IEEE Trans. 
Speech Audio Processing, vol. 3, no. 1, pp. 
72-83, 1995. 

Soong, F. K. and Rosenberg, A. E., “On the use of 
instantaneous and transitional spectral infor-
mation in speaker recognition,” IEEE Trans. 
Acoust., Speech, Signal Processing, 36, pp. 
871-879, 1988. 

Tishby, N. Z., “On the application of mixture AR 
hidden Markov models to text independent 
speaker recognition,” IEEE Trans. Signal 
Process., 39, pp. 563-570, 1991. 

Vergin, R., O’Shaughnessy, D., and Farhat A.: 
“Generalized mel frequency cepstral coeffi-
cients for large-vocabulary speaker-
independent continuous-speech recognition,” 
IEEE Trans. Speech and Audio Processing, 7, 
(5), pp. 525-532, 1999. 

White, G. M. and Neely, R. B., “Speech recogni-
tion experiments with linear prediction, band-
pass filtering, and dynamic Programming,” 
IEEE Trans. Acoustics, Speech, Signal Proc., 
24, (2), pp.183-188, 1976. 


