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ABSTRACT

The optimal equalization solution under the classical symbol-by-symbol decision-making archi-
tecture is an inherently nonlinear problem; therefore, some degree of nonlinear decision making ability
is desirable in the equalizer structure, even for a linear channel. The Bayesian equalizer has been
shown to be an optimum solution for a symbol-by-symbol equalizer in terms of signal detection. In this
paper, the performance of the adaptive Bayesian decision feedback equalizer (DFE) with the complex
radial basis function/stochastic gradient (CRBF/SG) algorithm used as a non-linear channel (e.g., a radio
channel with a high-power amplifier) estimator for channel equalization is investigated. Also, the
Bayesian decision making (or classification) of the adaptive Bayesian DFE, for the M-level complex
signaling scheme, is implemented using the CRBF network. To evaluate the performance of this adap-
tive Bayesian DFE, the error rate in symbol detection is evaluated and is shown to be better than that
of the conventional least mean square (LMS) DFE and other existing methods.

Key Words: adaptive Bayesian equalizer, high power amplifier, non-linear distortion, complex radial

basis function, channel estimator

. Introduction

Channel equalization is the recovery of a sig-
nal distorted in transmission through communication
channels having amplitude and delay distortions. It
can be viewed as a classification problem where the
equalizer is constructed as a decision-making device
which reconstructs the transmitted symbol sequence
as accurately as possible (Lee et al., 1995; Chang
and Wang, 1995; Chen et al., 1993b, 1995). For sig-
nal detection, basically, two categories of equalizers,
viz., sequence-estimation and symbol-by-symbol-deci-
sion equalizers, are considered. The optimal sequence-
estimation equalizer is known to be the maximum
likelihood sequence estimator (MLSE) while the opti-
mal symbol-by-symbol equalizer is the Bayesian
equalization solution. It has been shown that, for sta-
tionary linear channels, the performance of the adap-
tive Bayesian decision feedback equalizer (DFE) is
better than that of the conventional least mean
square (LMS) DFE but is inferior to that of the
adaptive MLSE (Chen et al., 1994b, 1995). However,

T To whom all correspondence should be addressed.

the adaptive Bayesian DFE has a significant advan-
tage over the adaptive MLSE for rapidly time-vary-
ing channels, such as dispersive Mobile radio chan-
nels (Chen et al., 1995).

The realization of the optimal equalization solu-
tion under the classical architecture for making deci-
sions symbol-by-symbol is known to require a non-
linear processing capability. Therefore, some degree
of nonlinear decision making ability is desirable in
the equalizer structure, even in the case of a linear
channel (Gibson et al., 1991; Lazzarin et al., 1994).
On the other hand, nonlinear distortion is now a sig-
nificant factor hindering further increase in the
attainable data rate. Although sources of channel
nonlinear characteristics, such as non-linearity in data
converters, may be regarded as memory-less, these
nonlinear components are connected to or embedded
in a linear dynamic network having memory; conse-
quently, the overall channel response is a nonlinear
dynamic mapping. That is, the signal received at
each sample instant is a nonlinear function of the
past values of the transmitted symbols. Due to the
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fact that nonlinear distortion varies with time and
from place to place, in general, effective non-linear
compensation should be adaptive.

In this paper, we will investigate the perfor-
mance of the adaptive Bayesian DFE with a non-lin-
ear channel estimator for application to a radio chan-
nel with a high-power amplifier (HPA) (Chen et al.,
1994a; Pupolin and Greenstein, 1987). For the radio
channel of interest, its input-output response can be
totally described by a pair of AM-AM and AM-PM
responses. The fundamental description will be ad-
dressed in Sec. V.

It is known that in the conventional adaptive
Bayesian DFE (Lee et al., 1995, Chen et al.,
1993b), a linear channel estimator is required in
order for the linear dispersive channel to estimate
the channel output states required for decision mak-
ing in the Bayesian DFE. Because the channel con-
sidered in this paper is non-linear, a non-linear chan-
nel estimator is required and is implemented by the
complex radial basis function (RBF) network. The
operation of RBF networks is based on basis func-
tions, and the functions a RBF network implements
are generally non-analytic. However, an RBF net-
work can approximate any analytic function arbitrari-
ly well in a compact domain (Cha and Kassam,
1995). Recently, RBF networks have been extensive-
ly used in the area of channel equalization (Chen et
al., 1991, 1994b; Cha and Kassam, 1995).

In Chen et al. (1991, 1993b), an RBF network
was employed to implement the Bayesian decision-
making function for linear channel equalization based
on binary signals (real-valued inputs). Moreover,
Chen et al. (1994a, 1994b) and Cha and Kassam
(1995) extended the real-valued RBF network to
obtain the complex-valued RBF network, the so-
called complex RBF (CRBF) network. In Chen et al.
(1994a), the CRBF network with two tracking algo-
rithms, viz., the orthogonal least squared (OLS) and
the hybrid clustering (HC) algorithms, was used as
a channel estimator to estimate the states of a non-
linear channel. On the other hand, in Chen et al.
(1994b), the CRBF network with a clustering algo-
rithm, which is different from the HC algorithm dis-
cussed by Chen et al. (1994a), was used to directly
estimate the states of a linear dispersive channel and
the Bayesian equalizer solution (or Bayesian deci-
sion-making function). Also, in Cha and Kassam
(1995), the so-called stochastic gradient (SG) train-
ing algorithm, which can adopt all the free parame-
ters of RBF networks, was employed for non-linear
channel equalization with third-order non-linearity.
The SG method has been shown to be well-suited
for RBF networks with localized basis functions

(e.g., Gaussian function) and to have better perfor-
mance in terms of the normalized mean-squared-error
(NMSE) and symbol-error-rate (SER), compared to
the HC algorithm and other existing methods (Cha
and Kassam, 1995). It is noted that the SG algorithm
is well-suited for on-line adaptive signal processing
unlike block-processing algorithms, such as the OLS
algorithm.

In this paper, we consider a more complicated
non-linear channel, a radio channel with an HPA,
where the non-linear channel estimator as well as the
Bayesian decision-making function are both imple-
mented using CRBF networks, along with the HC
algorithm and SG algorithm, to achieve the optimum
solution of the Bayesian DFE. Here, the performance
of the adaptive Bayesian DFE in terms of the error
rate is investigated. This paper first reviews the con-
ventional Bayesian DFE and discusses the rationale
behind it. After that, the non-linear channel estimator
based on the CRBF network with the SG training
algorithm will be addressed and used to update the
channel output states which are required in the
Bayesian decision making function for non-linear
channel equalization. The performance of the adap-
tive Bayesian DFE based on the proposed non-linear
channel estimator is investigated with 4-ary quadra-
ture amplitude modulation (4-QAM) signals and
compared with the non-linear channel estimator with
the CRBF/HC algorithm and other conventional
methods.

Il. Adaptive Bayesian Equalizer with
Decision Feedback

In this section, the fundamental idea behind the
adaptive Bayesian DFE discussed by Lee et al.
(1995) and Chen et al. (1993b) is introduced. To
proceed with the development, the configuration of
the basic communication system model with the
adaptive Bayesian DFE is illustrated in Fig. 1, where
a complex-valued digital sequence s(k) is transmitted
through a dispersive complex channel and the chan-
nel output is corrupted by added complex-valued
noise e(k). Generally, the channel output signal is
governed by the following discrete time difference
dynamic equation, i.e.,

F(K) = C(s(k), - s(k =n, +1)), (1)

where C(-) is a functional of complex-valued digital
sequence. For example, if the channel is linear, Eq.
(1) can be expressed as
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na-1
r(k)= ZO as(k —i), (2)

where {a} is the impulse response of the channel
and n, is denoted as the maximum lag of the chan-
nel. For the 4-QAM signaling scheme, the constella-
tion of s(k) is given by

D =1+i,
O

=@ = 4],

S(K) = sr(K) +is (k) =0 (3)
05® =1,
0

%s(‘” =-1-i.

Here, the real and imaginary parts, sg(k) and s/(k),
of s(k) are mutually independent sequences. In con-
sequence, the received signal can be represented by

r(k) =r(k) +e(k). (4)

Here, the real and imaginary parts, eg(k) and e(k),
of e(k) are assumed to be white Gaussian processes
with variance 2 and to be mutually independent of
each other. Also, e(k) and s(k) are assumed to be
uncorrelated. In symbol-by-symbol equalization, the
task of the equalizer is to reconstruct the transmitted
symbols as accurately as possible based on the noisy
channel observation r(k).

1. The Optimal Bayesian Solution of Equalizer

In Fig. 1, the equalization process essentially
uses the information present in the observed channel
output vector, with feed-forward weight order, m,
which is defined by

r(k)=[r(k)---r(k =m+1]", (5)

to produce an estimate, §(k —d), of s(k—d), where d
denotes the equalizer delay. For a noiseless linear
FIR channel as defined in Eq. (2), the filter coeffi-
cients of the equalizer may be chosen so that the
overall channel-plus-equalizer filter has an impulse

e(k)
s(k) ik H_b k) s(k)
—>| Channel A Equalizer [

Fig. 1. Baseband discrete-time model of a data transmission sys-
tem.

response that best approximates a unit impulse at
time k—d. However, to achieve the optimum solu-
tion of the symbol-by-symbol equalizer for a non-lin-
ear channel, the channel estimator and the Bayesian
solution approach, depicted in Fig. 1, have to be
employed. In this subsection, the optimal Bayesian
solution for the DFE equalizer is first reviewed.

Since from Eq. (5), the channel output vector
involves m terms of delayed version of received sig-
nals and recognizing that the order of the channel is
n, for 4-QAM, we can have ng= 4" combina-
tions of channel input sequences, i.e.,

s(k) =[s(k)--s(k=m-n, +2)]". (6)

Correspondingly, the noise-free channel output vec-
tor is

F(k) =[F(k)---F(k—=m+D)]", (7)

and it has ng desired corresponding states. Thus, the
equalization problem can be treated as a classifica-
tion problem. The task is to assign regions within
the observation space spanned by the noisy vector,
r(k) defined in Eg. (5), to represent the input s(k —d)
with four possible values, in the case of 4-QAM. To
proceed the our discussion, we denote R4 as the set
of noise-free channel output vectors. It can be parti-
tioned into four subsets according to the value of s(k
—d), i.e,

Rm,d = U Rr('rlL)d' (8)
1<I<4
where
Rf(YIL)d ={F(k)‘5(k—d) =S(I)} 1<1<4 (9)

with the number of states in Ry being n{ = ny4
and with each element denoted as t{, where #{
ORY, for 1<1<4 and 1< q<nd). It is noted that,
in the noisy case, f(k) can only be estimated based
on r(k). Also, for convenience, we denote 69 as the
a priori probability of 7. Under the assumption that
all the desired states have the same probability of
appearing, 1/ng, we have the conditional probability
density function (p.d.f.) of r(k), given s(k—d) =s", as

Pr(r (k)is(k - d) =s")

0

=V (k) = Y 6Ppe(r (k) -F), 11 <4, (10)
q=1

where po(-) is the p.d.f. of the noise vector
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ek) = [e(K)...e(k—m + 1)]T, and the sum in Eq. (10)
is more than r§ OR{.

For convenience, we may introduce a complex
decision function, fg(r(k)), denoted by

fa(r () ={[n®(r09) +n @ (r ()]
{7@r () +n (r )]}
+i{[19 ¢ 09) +n D r (i)
~[19¢0) +n @)}
= @+ () + (-1+1)nD (r ()

+@-)n®@(r k) +(L =M@ (r(k) (11)

From Appendix A of Chen et al. (1994b), we have
an equivalent Bayesian solution, i.e.,
S(k —d) =sgn(fg(r (k))). (12)

Here, sgn(-) is the complex signum function and is
defined as

|j.+i, Re[fB]ZOﬂ |m[fB]20,

0

El—1+i,Re[fB] <0 nIm[fg] 20,
sgn(fg) =0

[1-i, Re[fg]=0nIm[fg]<0,

0

H1-i,Re[ fg] <0 n Im[ f5] <O.

Substituting Eqg. (10) into Eq. (11), the optimal
Bayesian decision function takes the form

ng R
fB(r(k))=q§1hqpe(r(k)-rq) (13)
where
o i),y DR
a
2 - n(2 ~ 2
o7 +ief? iy DR,
=0
3 - (3 ~ 3
P -i6, iy ORD,
D ~
057 -6, 7 DR,

with 63 being defined as the a priori probability of

tQ), for 1<1<4. The intimate link between the
Bayesian decision function and the CRBF network
will be discussed in Sec. IlI.

2. Bayesian Decision Feedback Equalizer

As shown in Fig. 1, the estimated feedback
vector of the equalizer with feedback order n is des-
ignated by

§ (k—d) =[8(k -d -1)---§(k -d -n)] . (14)
The conventional DFE is based on a linear filtering
of this equalizer input vector and is defined by

DFEEQ(r (k), ¢ (k—d)) =w'r(k) +b"§; (k —d), (15)

where w = [w;--w,]" and b =[b;-.-b,]" are the coeffi-
cients of the feed-forward and the feedback of the
equalizer. It has been shown that it is sufficient to
employ a feedback order,

n=n, +m-2-d, (16)
for the adaptive Bayesian DFE to achieve the desired
result (Chen et al., 1993b, 1995). In consequence,
the feedback vector &(k —d) may have n; = 4" possi-
ble combinations. If we denote s, 1<i<n; as the
feedback states, then a subset of the channel states
R{, can be partitioned into n; subsets according to
the feedback states, that is,

R :]siLSJnf R 1=1<4, (17)
where
ROy ={F0lstk—d) =s” n 8k -d)=s;}
1<i<n;. (18)

Now, each subset R\)y; contains n{) = n{/n; = 4°
states. Under the assumption of a correct feedback
vector §(k—d), the conditional Bayesian decision
function, given §(k—d) =s;;, takes the form (Chen
et al., 1994b)

n,

and
fa(r(Sr (k- =sr,) =5 5 O exp((r (k)

q
—-rMH(r(k) -1y /202), (19)

where the terms in the inner sum are those, 9
OR(Yg;. It is noted that as discussed by Chen et al.
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s(k) r(k)® 1(k)
Te(k)
channel y
r(k-m+1)

esfimator > r(k'!).
v

subset > decision
states

function
A

feedback ,
vector  8,(k-d)

Fig. 2. A schematic diagram of a non-linear communication sys-
tem with the adaptive Bayesian DFE.

(1994a, 1994b), the decision feedback in the
Bayesian DFE can be employed not only to improve
the performance of the Bayesian feed-forward equal-
izer, but also to reduce the computation complexity
dramatically.

We may conclude that the structure of a
Bayesian DFE is specified by the equalizer delay d,
feed-forward order m and feedback order n. Here, d
specifies the number of states required for computing
the Bayesian decision function and, thus, determines
the computational complexity. Given d, it can be
proved that m=d+ 1 is sufficient (Chen et al.,
1994a). This means that a Bayesian DFE of m=d +
1 will have the same performance as that of m>d +
1. Substituting this result into Eq. (16) gives rise to
the corresponding feedback order n=n,—1. The
overall computation load of the Bayesian DFE con-
sists of three parts, namely, the channel estimator
(based on the CRBF network with the training algo-
rithm), calculation of R(,{{d,i based on the states
obtained by the channel estimator, and computation
of fg(r(k)) (Chen et al., 1995) (which is implemented
by another CRBF network).

[1l. Complex Radial Basis Function
Networks

The RBF network is known to be an extremely
powerful type of feed-forward artificial neural net-
work (Mulgrew, 1996; Widrow and Winter, 1988). It
is a single-hidden-layer network, which can be used
to implement a non-linear mapping on inputs by lin-
early combining the outputs of hidden nodes, each
of which is computed by evaluating the radially
symmetric basis function of the distance between the
input and a parameter vector, called the center, asso-
ciated with each hidden node.

A schematic of an RBF network with N, inputs,
No outputs and N; hidden nodes is depicted in Fig.

Fig. 3. Schematic diagram of a radial basis function (RBF) net-
work.

3. As shown in Fig. 3, an RBF network contains the
following: (1) an input layer of branching nodes, one
for each feature component, just as does a multi-
layer perceptron (MLP) (Chang and Wang, 1995); (2)
a hidden layer of neurodes, where each neurode has
a special type of activation function centered on the
center vector of a cluster or sub-cluster in the fea-
ture space; therefore, the function has non-negligible
response for input vectors close to its center; (3) an
output layer of neurodes that sum the outputs from
the hidden neurodes; that is, the output layer uses a
linear activation function.

Such a network implements a mapping f:
RM_ RY according to

Ny _
fi= Zl%Wq.i 1<) =No, (20)
q:

where @, = @(OIX — cq@) is a given function, [
denotes the Euclidean norm, ¢, U RM 1<qg<n, are
known as the RBF centers, x O R™ is the input vec-
tor, and wg; represents the connection weights.
Theoretical investigation and practical results suggest
that the choice of the non-linearity ¢(-) is not crucial
to the performance of an RBF network. In this
paper, the Gaussian function is chosen and is defined

by
V) =exp(~v* | (),

where the parameter p in Eqg. (21) is used to con-
trol the spread of the radial basis functions such that
its values decrease more slowly or more rapidly as x
moves away from the center vector ¢, as [X — C4[I
increases. Also, in Eg. (21), we see that @(v) - 0 as
V - o,

So far, we have introduced the RBF network

(21)
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Fig. 4. Schematic diagram of a complex radial basis function net-
work (CRBFN).
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with real-valued input and output signals, and real-
valued centers. In this paper, complex-valued signals,
like 4-QAM modulated signals, are considered in the
egualization problem. It is natural to extend the RBF
network to obtain the CRBF network. The CRBF
network model, since it preserves the radial symme-
try of its real counterpart, is a natural extension of
the RBF network. Chen et al. (1994a) and Cha and
Kassam (1995) proposed an essentially identical
complex RBF network extension structure indepen-
dently. Such a network is depicted in Fig. 4.

In a CRBF network, both the input signals and
the centers are complex-valued. The Euclidean norm
of the difference between the input and each center
is now defined in the usual way for complex-valued
vectors, and the basis functions remain real-valued.
In order to implement complex-valued outputs, we
assign two different sets of weights, one for the real
part of the network output and the other for the
imaginary part. For simplicity, the network output
vector is reduced to one dimension; therefore, in this
case, the CRBF network operates on a complex-val-
ued input vector x 0 C™ to produce a complex out-
put according to Chen et al. (1994a) and Cha and
Kassam (1995), i.e.,

N
f(x)= zlqo(Hx ~ G ) (Wiq +iwig), (22)
£

where

x —ch2 =(x —¢q)" (x —Cy). (23)
Here, the superscript H denotes the complex conju-
gate transpose, ¢(-) is still a real-valued radial basis
function as shown in Eq. (20), and wg = Wgq + iwq
and quCNX, 1< g< N, denote the N}, complex con-
nection weights and N,-dimensional vector complex-
valued centers, respectively. Examination of Egs. (22)

and (23) reveals that the CRBF network treats the
real and imaginary parts of an input as if they were
two separate real inputs. Therefore, a CRBF network
with N, complex inputs and a complex output can be
viewed alternatively as a real RBF network with 2N,
real inputs and two real outputs. In this sense, the
complex RBF network is a straightforward extension
of the real RBF network. It is noted here that to use
a CRBF network as a channel estimator, the weights
in Eq. (22) have to be updated by the training algo-
rithms.

Next, we will discuss the intimate link between
the Bayesian decision-making function of the equal-
izer and the CRBF network. By comparing Eg. (22)
with Eg. (13), we learn that both equations have the
same form; the connection weights, w,, of the CRBF
network and the coefficients h, of fz (-) are pairs.
Also, the centers, ¢y, of the CRBF network corre-
spond to the channel states, fy, and the response of
each hidden node resembles a component conditional
p.d.f. in Eq. (13). Moreover, because the noise p.d.f.
pe(*) is real, the choice of real non-linearity for hid-
den nodes is well justified. Finally, by using r(k) as
the input vector of the Bayesian DFE and s(k—d) as
the desired output, the CRBF network can be used
to realize the solution of the Bayesian equalizer. In
the next section, we will introduce the adaptive
implementation of the Bayesian DFE, which consists
of a channel estimator followed by Bayesian deci-
sion making, implemented using an independent
CRBF network which has a similar structure.

IV. Adaptive Implementation

Basically, in the Bayesian DFE, the channel
estimator first updates the connection weights of the
CRBF network during a training period; thus the
channel estimate may be fixed throughout a trans-
mission period. In Chen et al. (1995), the LMS
channel estimator was employed to estimate the lin-
ear channel model as defined in Eq. (2). Since, in
this paper, a nonlinear channel is considered, the
CRBF network with the SG training algorithm sug-
gested by Cha and Kassam (1995) is adopted as a
channel estimator. On the other hand, the CRBF net-
work can also be used to implement the Bayesian
decision functions defined in Eq. (13) and Eq. (19),
respectively.

1. Estimating the Non-linear Channel M odel
Using the CRBF Network

In this section, we will address a CRBF net-
work with the SG training algorithm used as an non-
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linear channel estimator to estimate the channel
states required for Bayesian decision-making. Note
that Chen et al. (1995) employed the LMS channel
estimator to estimate the channel states using linear
channel model. First, for a linear channel model, as
defined in Eq. (2), we can define the channel esti-
mate as

(k) =[80(K)+++8n, 1(K)] -

The LMS algorithm can be applied to the channel
estimator to obtain a channel estimate:

(24)

e(k) =r(k) - a(k -1 & (K), (25)

a(k) = a(k ~1) +aae(k)Sa(K), (26)
where a, is the adaptive gain or step size. During
data transmission, a decision-directed and a delayed
version of Eqgs. (25) and (26) are used to track time-
varying channels:

g(k—d)=r(k-d)-a' (k -d -1)s,(k -d),  (27)

a(k—-d)=a(k -d -1) +ae(k —d)s;(k =d), (28)
where 8,(k—d) = [3(k —d)---8(k —d —n, + 1)]" is the
estimated s,(k —d), consisting of detector symbols.
Given the estimated channel model &, it is straight-
forward to compute the set of channel states Ry, 4. A
noise variance estimator can also be incorporated
into the channel estimator.

However, in the case of a nonlinear channel,
the linear transversal filter structure with the LMS
algorithm channel estimator can not cope with the
serious distortion caused by the nonlinear property,
inter-symbol interference (I1SI) and added noise. That
is, the linear estimator structure can not be used to
identify the nonlinear channel correctly; the result of
the computed channel states of Ry,q may not be pre-
cise and the performance, in terms of error probabil-
ity, maybe degraded. Based on the above discussion,
it is reasonable to adopt the CRBF network with the
SG training algorithm as a non-linear channel esti-
mator to obtain a better channel state estimate for
Bayesian decision-making. Furthermore, the same
CRBF network structure for channel estimation can
also be used for Bayesian decision-making. This is
easy and straightforward in terms of hardware imple-

mentation.

2. The Stochastic Gradient Training Algorithm

As described earlier, Cha and Kassam (1995)
proposed a simple SG training algorithm for updating
all the free parameters of a CRBF network simulta-
neously by using stochastic gradient descent for the
error criterion, in the case of third-order non-lineari-
ty channel equalization. The SG algorithm takes the
instantaneous gradient of the squared error [1e(k)[T?
at the output and moves the network parameters in
the direction of opposite that of their respective gra-
dients. Here, as a non-linear channel estimator, the
error signal e(k) at time k is defined as e(k) = f(x(k))
—d(k) (f(x(k)), a complex output of CRBF for the
channel estimator as defined in Eq. (22)), where d(k)
denotes the complex-valued desired response. Thus,
a network parameter (which can be a weight, a cen-
ter, or a spread parameter) is adapted at time k
according to

e Ole®)?
Ak+D) =A(k) —a A K) ,

(29)
where a controls the speed of adaptation. The SG
algorithm has certain advantages over existing meth-
ods (Cha and Kassam, 1995). First, all the free net-
work parameters are adapted simultaneously, usually
yielding improved overall solutions. This method can
also provide greater robustness for poor initial choic-
es of parameters, especially for the centers. Second,
the algorithm is well-suited for on-line adaptive sig-
nal processing, unlike block-process algorithms, such
as the Moody-Darken or the OLS algorithms (Chen
et al., 1994b). It is also computationally quite feasi-
ble. All the parameters in a CRBF network are
updated as follows:

we(k+1) =w (k) +awe(k)a (sa(k)), (30)
for t=1, 2, ..., N,, with null initial weights, when
the SG algorithm is used to train the channel states,
and

gy (k+1) =0y (K) +as¢ (sa(k))[Re{w (k)} Re{e(k)}

2
+ Im{m 0y mgeqioy] 20 ®I (31)
(k)

[Ref{w; (k)} Re{e(k)} Re{s, (k) — ¢ (K)} +i Im{w; (K)} Im{e(k)} Im{s, (k) —ci (K)} S

c(k+1) =c (k) +ac@(sa(k))%

a? () 0 (32)
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respectively. In our case, the centers are initialized
by forming them using the first few symbols, (s(k)),
in the training mode (Cha and Kassam, 1995), where
each center requires three data symbols and each
symbol has four possible values as defined in Eg.
(3). This is because the training symbols are avail-
able at the receiver end. For the purpose of compar-
ison, to estimate the channel output states, we can
also apply the so-called HC algorithm (see Appendix
B of Chen et al. (1994a)) to the CRBF network as a
channel estimator to estimate the channel states.

3. The CRBF Network for Bayesian Decision-
Making

Comparing Eq. (22) with Eq. (19), we find that
the structure of the CRBF network is identical struc-
ture to that of the Bayesian DFE. The CRBF net-
work is, therefore, an ideal means of implementing
the latter. We can set the number of hidden nodes
in the network to match the number of desired
states, N, =ng (see Sec. 111), and group the hidden
nodes in accordance with the conditional subsets of
the channel states. Whether a CRBF network can
realize an optimal equalizer strongly depends on
whether the centers can be corrected at the desired
states. Here, the CRBF centers, c,, are, in fact, the
corresponding states, iy L Ryg, and the feedback vec-
tor determines which subsets of hidden nodes are
active at each sample k.

As suggested by Chen et al. (1993a), the width
of the hidden nodes can be selected as p = 20§ and
the non-linearity of the hidden nodes can be selected
as P(x%p) = exp(—x?/p) (the Gaussian function). The
hidden nodes realize conditional p.d.f’s in the
Bayesian solution. In this case, the connection
weights of the CRBF network have fixed values due
to the fact that the complex coefficients, h®, in the
Bayesian decision function have equal probability.
Thus, the CRBF network precisely implements the
Bayesian solution. As described by Chen et al.
(1995), due to the nature of the Bayesian decision
function, small variations in 02 cause hardly any
change in the Bayesian decision boundary. Using the
estimated noise variance to set the network, satisfac-
tory accuracy in realizing the Bayesian equalizer can
usually be obtained. Adjusting the RBF centers adap-
tively so that they converge to the channel states is
the key in implementing the Bayesian solution. Thus,
for Bayesian decision-making, we first apply the
CRBF network to implement Eqg. (19) (or Eq. (13))
in order to evaluate f(x(k)) using the SG algorithm.
After evaluating f(x(k)), Eq. (12) is employed for
final decision-making. As stated earlier, since h) in

Eqg. (19) has equal probability, the weights in Eq.
(30) remain constant. We only need to update Egs.
(31) and (32) adaptively.

V. Computer Simulations

To investigate the performance of the proposed
method, a communication channel with serious non-
linearity is considered. In this channel model, besides
a high power amplifier, there additive white Gaussian
noise and a static nonlinear device are included in
the channel. We will first describe the general sys-
tem blocks of this channel.

1. Communication System with the Nonlinear
Transmit Amplifier Pupolin’s M odel

The digital radio link to be studied here is
depicted in Fig. 5. The dashed boxes represent oper-
ations that may or may not be included in the
design. All the time waveforms shown are either
base-band or base-band equivalents (complex envel-
opes of band-pass signals). Similarly, all the frequen-
cy responses are either low-pass functions or low-
pass equivalents of band-pass functions. Finally, all
the sequences shown have complex values. In what
follows, we will describe each component shown in
Fig. 5.

(1) Input Data: The input is a sequence of M-
level complex data values, s(k), where Kk is
the time index and successive data are spaced
by T seconds. Each s(k) is taken from an M-
point letter of the alphabet {V,}, where m is
the index for the M discrete points. The set
consisting of these points in the complex

) pulse quadiature high fransmission
INPUt f shaping |—»|ampitude |—sipower »| filter
;ﬂ(ckl]fd, S URE ) modulator amplifier H,(f)
Transmitter
A 4
radio
channel
Receiver
A
- down-
ﬂxeq . convertion
detes (detector sampler «—receiving [«— coherent
data filtter, He(f) demod.
decisiond fiming 4

thresholds reference

Fig. 5. Baseband equivalent model of adigital radio channel.
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plane is called a data constellation.

Pulse Shaping: The pulse shaping circuit
transforms the input (complex) data stream
into a pulse stream, 2s(k)g(t —KT). The choice
of g(t) or G(f) (the Fourier transform of g(t))
is dictated by the need for spectrally efficient
transmission. Accordingly, we will confine our
attention to two classes of band-limited puls-
es, namely, cosine roll-off and root-cosine
roll-off pulses:

G(f) = TCousin(f;0) O G(f) =T[Cousin(f; 0)]"%,(33)

©)

w(t) = a% s(k)g(t —kT).

4

where Cgun(f;0) is the cosine-roll-off function
typically used in digital radio and p is the
roll-off factor (0O<p<1).

Modulator: The (complex) base-band pulse
stream is applied to a quadrature amplitude
modulator, the bandpass output of which has
a complex envelope, i.e.,

(34)

The constant a is an amplitude-scaling factor
whose value determines the high-power ampli-
fier (HPA) input power. If modulation is per-
formed at IF, then up-conversion to RF is
conducted prior to high-power amplification.
High-Power Amplifier: For the radio channel
of interest, wherein the bandwidths are 40
MHz or smaller, any HPA can be character-
ized as a memory-less band-pass non-linearity.
This means that its input-output response can
be completely described by a pair of AM-AM
and AM-PM responses. For concreteness, we
will begin this study with a functional
description of z in terms of w that is known
to be accurate for traveling wave tubes
(TWT’'s). We will then apply a simple poly-
nomial approximation and identify the input
signal range over which this approximation is
accurate. The functional description we begin
with is

2W\/E 2 g
1+w2 pH%uw g (35)
AM-AM AM-PM

This description assumes, for convenience
only, that the maximum possible HPA output
power P, occurs with an input power of 1
Watt. Thus, 2% = Py When tw¥ =1, and the

©)

(6)

(7

(8) Sampler and Detector:

phase shift for that maximizing input power
is @. We will use @ =16, which is a typical
value.

Transmission Filter and Propagation Chan-
nel: We assume that the Federal Communi-
cations Commission (FCC) mask for common
carrier radio channels sets the limit for the
transmitted power spectral density. Whenever
the HPA output spectrum does not lie under
this mask, an RF transmit filter is assumed to
have a ¢th order Butterworth response:

HS

He(f)f =— %,
Hr (1) 1+(2f 1 )

(36)

where p is the 3 dB RF bandwidth and H? is
the mid-band filter gain. The line-of-sight
radio path has a flat frequency response under
normal conditions.
Down-conversion/Coherent Demodulation:
Our primary assumption about the down-con-
version/coherent demodulation is that the car-
rier is ideal, i.e., is locked to the received
carrier and has no phase jitter.

Fixed Receive Filter: We assume a fixed
receive filter for which, in the absence of
non-linearity and selective fading, the end-to-
end link response to a unit input datum will
be a cosine-rolloff pulse. Thus, Hg(f) is de-
signed such that

G(f)Hr (fF)HR(F) = TCcusine(f;0). (37)
where p is the roll-off factor.

A sampling in each
symbol period is assumed to occur at the
peak of the designed cosine-rolloff data pulse.
We have not studied sensitivity to timing off-
sets, but the method of analysis is general
enough to accommodate arbitrary timing ep-
ochs.

2. The Simulation Channel Model

The simulation channel model and the math-

ematical equations for each block are shown in Fig.

s(k)

e(k)
k) (k)

utky V(k]: Nonlinear

Device

HPA FIR

Filter

Fig. 6. Baseband equivalent discrete-time model of a nonlinear
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6. The input signals are 4-QAM and are transmitted
to a high power amplifier working at saturation
point:

s
3 1+[s(K)

25(k)
1+[s(k)?

The output of Eq. (38) is then passed through a FIR
filter, which represents the memory effect of the
transmission filter, propagation channel and receiver
filter, i.e.,

u(k) = fs(s(k)) = —— s exp(j 7 ——-5). (38)

V(z)
M=o =547

i=0

=(0.3725 +i0.2172)

[1-(0.35+i0.7)z7%)

M-(05+i)zY).  (39)
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Fig. 7. (a) Comparison of CRBF/SG with other methods in terms
of the error rate with varying SNR. (b) Comparison of the
CRBF/HC with other methods in terms of the error rate
with varying SNR.

Finally, a Volterra static nonlinear device is added in
order to include the other nonlinear effect:

F(k) = f,(v(K)) =v(k) +0.2v?(k) —0.1v3(k),  (40)
and

e(k) = er(k) + je (k)

is additive complex Gaussian noise. In all cases, the
number of symbols used in training depends on the
value of SNR, which will correspond to the error
rate.

(41)

Finally, to document the advantage of the
CRBF/SG algorithm, a comparison of the perfor-
mance, in terms of the symbol error-rate (SER) with
different signal-to-noise ratios (SNR) and d =2 (the
optimum decision delay for the nonlinear channel),
is given in Fig. 7. It is noted that, in our simula-
tion, 1.1 x 10* total symbols were used, where ten
percent of symbols were employed in the training
mode for equalization. The training data symbols
were, in fact, available at the receiver end. Also, in
the channel estimator, the initial centers of the
CRBF network were formed randomly by applying
the 64 sets (with each set having 3 symbols) of
symbols, s(k), in the training mode, where each data
symbol has four levels as defined in Eq. (3).

From Fig. 7, we learn that the conventional
LMS DFE equalizer did not perform well. As by
Cha and Kassam (1995), we found that the MLP
network equalizers performed better than the one
with the LMS DFE due to the fact that the MLP has
the nonlinear processing ability. Moreover, the two-
hidden-layer MLP outperformed the one having just
one layer (MLP).

Next, the channel estimator approach using both
the CRBF/SG and CRBF/HC algorithms had the best
performance compared to the other approaches. Here,
the performance obtained using the CRBF/SG algo-
rithm, as shown in Fig. 7(b), was found to be better
than that obtained using the CRBF/HC algorithm as
shown in Fig. 7(a), especially, for SNR greater than
14 dB. Moreover, as described earlier, the CRBF/SG
algorithm has certain advantages over existing meth-
ods. Typically, all free network parameters are adapt-
ed simultaneously. This provides greater robustness
for poor initial choices of parameters. Also, it is
computationally quite feasible although from Figs. 8
and 9, we learn that it may not be able to calculate
the channel states concisely using the CRBF/SG and
CRBF/HC algorithms as channel estimators. How-
ever, if we can devise some techniques which we
can use to discard the overlapping states, then the
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performance can be further improved. This will be
investigated in our future research. However, as indi-
cated in Fig. 7, the channel estimator approach did
have the best performance compared with the other
conventional approaches.

V1. Conclusions

In this paper, we have investigated the perfor-
mance of the adaptive Bayesian DFE using the non-
linear channel estimator approach, along with the
CRBF/SG algorithm, for radio channels having HPA.
From the simulation results, we have observed that

signal space diagram

o]
2+ ©,
@, o} > + 0
’ e . F S0 © )
- © o]
> O+ +
o o}
% + ‘ ‘() M 4C
5 Or + © o *o ]
o + L0 +
(=8
1F o+ O +
Y 40
+ ! + o
o o +
o +
2F el +0
o]
+ +
o]
3 L L L ! L
-3 2 1 0 1 2 3
in-phase

Fig. 8. State constellation. ‘0’ channel, ‘+' states identified using
the hybrid algorithm with SNR=18.

signal space diagram

quadrature
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Fig. 9. State constellation. ‘0’ channel, ‘+' states identified using
the SG algorithm with SNR=18.

the performance obtained using the CRBF/SG algo-
rithm was better than that obtained using the
CRBF/HC agorithm and other conventional methods.
This finding agrees quite well with the results
obtained by Cha and Kassam (1995) for third-order
non-linearity channels. This indicates that the
CRBF/SG algorithm is well suited for implementing
the Bayesian DFE equalizer, which is the optimum
equalizer under the classical symbol-by-symbol deci-
sion-making architecture, in a more complicated non-
linear channel like the one discussed in this paper.
From Figs. 8 and 9, we see that to further improve
the performance, the overlapping states should be
discarded in the decision-making process. This will
be investigated in our future research.
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