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Abstract

In this paper, a new adaptive constrained LMS time delay estimation (TDE) algorithm is devised. It is known that in
the TDE problem, the time differences between relevant sensors can be modeled as a finite impulse response (FIR) filter
whose weight coefficients are samples of a sinc function. Moreover, in case of non-integer TDE, the performance of
estimation result is highly dependent upon the convergence rate of weight coefficients of the FIR filter. To speed up the
convergence rate of the weight coefficients, in this paper, we propose a new constrained LMS TDE algorithm by making
use of the constraint that the sum of the squares of the weight coefficients of the FIR filter equals unity. Here, we show
that the constrained optimum solution is identical to the true weights solution which is the error free optimum solution.
Also, to document the advantage of the proposed algorithm, the statistical analysis of the steady-state weight-error vector
as well as the mean square error of the estimator, using the proposed algorithm, are derived. As confirmed by the
theoretical and simulation results, the new proposed algorithm for non-integer TDE outperform the conventional LMS
TDE algorithm. ( 1998 Elsevier Science B.V. All rights reserved.

Zusammenfassung

In diesem Artikel wird ein neuer adaptiver LMS-Algorithmus mit Nebenbedingungen zur Zeitverzögerungsschätzung
(TDE) konstruiert. Bekanntlich können beim TDE-Problem die Zietdifferenzen zwischen zwei relevanten Sensoren
durch ein Transversalfilter (FIR-Filter) modelliert werden, dessen Gewichtsfaktoren Abtastwerte einer sinc-Funktion
sind. Darüber hinaus hängt die Güte des Schätzergebnisses im Falle nicht-ganzzahliger TDE stark von der Konvergen-
zgeschwindigkeit der Gewichtsfaktoren des FIR-Filters ab. Um die Konvergenzgeschwindigkeit der Gewichts-
faktoren zu beschleunigen, schlagen wir in diesem Artikel einen neuen LMS-TDE-Algorithmus mit Nebenbedingungen
vor, indem die Bedingung ausgenutzt wird, da{ die Summe der Quadrate der Gewichtsfaktoren des FIR-Filters den Wert
eins ergeben mu{. Wir zeigen hier, da{ die optimale Lösung unter dieser Bedingung identisch ist mit der Lösung mit den
wahren Gewichten, die die fehlerfreie optimale Lösung darstellt. Um die Vortei© le des vorgeschlagenen Algorithmus zu
belegen, werden sowohl die statistische Analyse des Vektors der Gewichtsfehler im stationären Zustand wie auch der
erwartete quadratische Fehler des Schätzers unter Verwendung des vorgeschlagenen Algorithmus hergeleitet. Wie durch
die theoretischen und simulierten Ergebnisse bestätigt wird, übertrifft der neue vorgeschlagene Algorithmus für
nicht-ganzzahlige TDE den herkömmlichen LMS-TDE-Algorithmus. ( 1998 Elsevier Science B.V. All rights reserved.

Résumé

Dans cet article, nous présentons un nouvel algorithme d’estimation du délai temporel (EDT), par les moindres carrés.
Il est bien connu que dans un problème d’EDT, les différences temporelles entre des senseurs pertinents peut être
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modélisée comme un filtre à réponse impulsionnelle finie (FIR) dont les coefficients de poids sont des échantillons d’une
fonction sinc. De plus, dans le cas d’EDT non entier, la performance de l’estimation dépend fortement du taux de
convergence des poids du filtre FIR. Pour accélérer cette convergence, nous proposons dans cet article un nouvel
algorithme d’EDT par les moindres carrés, en faisant usage de la contrainte selon laquelle la somme des carrés des
coefficients du filtre FIR doit être égale à l’unité. Ici, nous montrons que la solution optimale sous contrainte est identique
à la solution exacte, optimale sans erreur. Pour mettre en évidence l’avantage de cet algorithme, nous présentons
également une analyse statistique du vecteur d’erreur sur les poids à l’état stable, de même que l’erreur quadratique
moyenne de l’estimateur. Comme la théorie et les résultats de simulations le confirment, le nouvel algorithme d’EDT non
entier proposé ici dépasse les performances de l’algorithme d’EDT par les moindres carrés conventionnel. ( 1998
Elsevier Science B.V. All rights reserved.
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Notation

D time delay
D

i
the decimal part of D

e(n) error signal
e
0
(n) estimation error produced in the con-

strained optimum solution
f smoothing factor
g
i

ith diagonal term of h
0
hT
0

h
i

weight coefficients of adaptive filter
h
m
(n) weight coefficient with the largest ampli-

tude
hH
m

optimum weight coefficient of h
m
(n)

h5
m

true weight coefficient of h
m
(n)

h weight vector
h
0

optimum weight vector
h
s

true weight vector of the true delay
J
.*/

(n) minimum mean-square error (MMSE)
J
%9
(n) excess mean-square error

K(n) weight-error correlation matrix
k
i
(n) diagonal terms of K(n)

m the integer part of D
M(n) mean-square difference (MSD)
M(R) steady-state MSD
2p#1 number of tap weights
r
yx

cross-correlation vector of y(n) and x(n)
R
xx

autocorrelation matrix of x(n)
s(n) source signal
s(n!D) delayed signal
w
1
(n) noise of the first sensor

w
2
(n) noise of the second sensor

x(n) vector of x(n)
x(n) input signal of the first sensor
y(n) input signal of the second sensor
z(n) filtered output signal

j Lagrange multiplier
c steady-state mean-square error (MSE) ra-

tio
+(n) gradient vector
k(n) step size
e(n) weight-error vector
p2
s

source signal power
p2
x

power of x(n)
p2
w

noise power

1. Introduction

The need to estimate time delay between signals
received at two spatially separated sensors arises in
many applications such as target localization by
sonar systems and position estimation by radio
navigation systems [1,2]. In the parametric estima-
tion approach, time delay between two sensors can
be modeled as an FIR filter whose weight coeffi-
cients are samples of a sinc function [3,4]. Generally,
the estimate of time delay can be obtained by
interpolating on the weights in the filter to select
the point in the tapped delay line that corresponds
to the peak weight [7] provided that the time delay
is an integer multiple of the sampling interval.
However, when this is not the case, the estimated
weight coefficients of the FIR filter have to be
applied to the interpolation formula, implemented
by various numerical methods [3,4,7], for extracting
the time delay which is not the integer multiple of
the sampling interval.

For non-integer time delay estimation (TDE), to
reduce the computation requirement, Ching and
Chan [5] proposed the look-up table method, where
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the weight coefficients of the FIR filter are adjusted
adaptively by using the constraint that the weight
coefficients are samples of the sinc function. During
the adaptation processes, an adaptive LMS filtering
algorithm is employed but only the weight with the
largest amplitude is adapted, which involves a look-
up table. The result is a faster adaptation and the
elimination of interpolation needed in [3,4,7] for
non-integer TDE cases. Since the performance of
non-integer TDE by this method is directly related
to the convergence behavior of the weight coefficient
with the largest amplitude. Therefore, in the low
signal-to-noise ratio (SNR) case, the weight coeffic-
ient with the largest amplitude, obtained by this
method, may not converge to its true value, yielding
a wrong result.

To circumvent the drawback described above,
recently, Chern and Lin [6] proposed an efficient
and simple scheme for non-integer TDE, which is
referred to as the direct delay estimation (DDE)
formula. Here, the DDE formula does not involve
the interpolation formula and the look-up table
proposed by Ching and Chan [5]. In [6], it was
shown that, for non-integer TDE, the DDE formula
approach is superior to the look-up table method
in both performance and computation complexity.
However, the performance of the DDE formula
highly depends on the relative values of the weight
coefficient with the largest amplitude and its two
adjacent weight coefficients (in both sides).

As described earlier, the performance of non-
integer TDE is highly related to the convergence
behavior of the estimated weight coefficients. Under
general conditions, the weight coefficients of the
FIR filter estimated by the conventional LMS TDE
algorithm [5—7], are not sufficient enough to con-
verge to their true values. To improve the conver-
gence speed of the weight coefficients to the true
values, in this paper, a new constrained LMS TDE
algorithm is developed by using the constraint that
the sum of the squares of the weight coefficients of
the FIR filter equals unity. Also, the weight coeffi-
cients, estimated by this new adaptation algorithm,
will be applied to the DDE formula for non-integer
TDE. To document the advantage of the proposed
algorithm, the performance of non-integer TDE is
examined and compared to the conventional LMS
TDE algorithm with the DDE formula. Moreover,

to further investigate the statistical property of this
new algorithm with application to TDE, theoretical
analysis under certain conditions is developed.

2. The constrained LMS TDE algorithm with
DDE formula

To proceed with the development of the new
constrained LMS TDE algorithm, we first consider
the signal model where the discrete signals, x(n) and
y(n), are received at two spatially separated sensors,
i.e.,

x(n)"s(n)#w
1
(n) (1)

and

y(n)"s(n!D)#w
2
(n), (2)

respectively. Here, s(n) is the desired source signal,
whose delayed version is s(n!D). Also, for con-
venience, we assume that the noises w

1
(n) and w

2
(n)

are stationary white Gaussian random processes
with zero-mean and uncorrelated with each other.
Here, parameter D is the time difference between
sensor outputs, thus, the problem of TDE is simply
to determine D from x(n) and y(n). Ideally, the
delayed signal s(n!D) can be represented by [3]

s(n!D)"
=
+

i/~=

sinc(i!D)s(n!i), (3)

in consequence, Eq. (2) can be expressed as

y(n)"
=
+

i/~=

h
i
x(n!i)!

=
+

i/~=

h
i
w
1
(n!i)#w

2
(n),

(4)

with

h
i
"sinc(i!D)"

sinp(i!D)

p(i!D)
, (5)

where the largest value of h
i
will occur at i"D,

provided that D is an integer. For convenience to
discuss, first, we consider the case without noises in
both sensors, such that the last two terms on the
right-hand side of Eq. (4) are null. Using the para-
metric approach [3], the TDE problem can be
modeled as depicted in Fig. 1, where the filtered
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Fig. 1. The configuration of the adaptive time delay estimation scheme.

output is given by

z(n)"
p
+

i/~p

h
i
x(n!i). (6)

In Eq. (6), h
i
, i"!p,2,0,2,p, are the weight

coefficients of the adaptive filter. From Fig. 1, the
error signal is defined by

e(n)"y(n)!z(n)"y(n)!hTx(n), (7)

where the weight and the input signal vectors
are designated by h"[h

~p
,2,h

0
,2,h

p
]T and

x(n)"[x(n#p),2,x(n),2,x(n!p)]T, respectively,
and the superscript T denotes the transpose opera-
tion. Indeed, the error signal e(n) defined in Eq. (7)
may not be null due to the effects of noise and the
value of p which is related to the length of weight
coefficients. The sensitivity of choosing the value of
p was examined in [4] and will not be discussed
here. The weight coefficients h

i
in Eq. (6) are ad-

justed to minimize the mean-square value of the
error signal, E[e2(n)]. The mean square error (MSE)
is designated by

E[e2(n)]"E[y2(n)]!2hTr
6 yx

#hTR
xx

h, (8)

where r
6 yx

"E[y(n)x(n)] is denoted as the cross-
correlation vector between the input vector x(n)
and desired response y(n), and R

xx
"E[x(n)xT(n)] is

the autocorrelation matrix of x(n).
The optimum weight coefficients can be obtained

by simply minimizing the MSE with respect to
weight coefficients. Moreover, it is known that the
performance of estimating the weight coefficients
can be improved, when the weight coefficients are

constrained in a natural manner. Indeed, in the
TDE problem, the weight coefficients have the
desired characteristics as described above. To see
this, we recall from Eq. (5) that h

i
"sinc(i!D), the

weights h
i
, i"!p,2,0,2,p, are the samples of

a sinc function. Theoretically, the sum of the squares
of the samples of a sinc function equals unity, e.g.,
+=

i/~=
h2
i
"+=

i/~=
sinc2(i!D)"1. For example,

for D"0.2 and p"15, we have +`p
i/~p

h2
i
"0.995.

Thus, for p to be large enough we may simply
assume that +`p

i/~p
h2
i
"1, or

hTh"1. (9)

In consequence, to minimize Eq. (8) subject to the
constraint of Eq. (9), we have

J(n)"E[y2(n)]!2hTr
6 yx

#hTR
xx

h#j(hTh!1),

(10)

where j is the Lagrange multiplier [8]. Taking the
derivative of J(n) with respect to h, we have the
gradient vector

+(n)"
LJ(n)

Lh
"!2r

6 yx
#2R

xx
h#2jh. (11)

The constrained optimum weight vector, h
0
, can be

obtained by setting Eq. (11) to null, i.e.,

h
0
"

r
6 yx

R
xx
#jI

, (12)

where I is an identity matrix. For convenience,
under the assumption that the desired source signal
and noises are white random processes and un-
correlated with each other, we have R

xx
"p2

x
I"

32 S.-N. Lin, S.-J. Chern / Signal Processing 71 (1998) 29–44



(p2
s
#p2

w
)I,r

6 yx
"p2

s
h
s
, with h

s
"[sinc(!p!D),2,

sinc(!D),2,sinc(p!D)]T. Here, h
s

is the true
weight vector corresponding to the true delay D.
Also, p2

x
, p2

s
and p2

w
are defined as the average

powers of the input signal, desired signal component
and noises (w

1
(n) or w

2
(n)), respectively. Conse-

quently, Eq. (12) can be rewritten as

h
0
"

p2
s
h
s

p2
s
#p2

w
#j

. (13)

It is noted that h
0

must satisfy the constraint in
Eq. (9), in consequence, the Lagrange multipler,
j , can be solved by substituting the constraint,
hT
0
h
0
"1, into Eq. (13), yielding

A
p2
s

p2
s
#p2

w
#jB

2
hT
s
h
s
"1. (14)

Moreover, by using the fact that hT
s
h
s
"1, we get

j"!p2
w
. (15)

Finally, we can easily show that h
0
"h

s
. The im-

plication of this result means that the optimum
solution of the constrained optimization problem
could achieve the true weight vector h

s
. However,

this is not the case when the conventional optimiza-
tion approach is adopted and can be viewed as the
special case of Eq. (13) with j"0.

Proceeding in a similar way as the conventional
LMS adaptation algorithm was derived, we have
the new constrained adaptive LMS TDE algorithm,
i.e.,

h(n#1)"h(n)#k(n)[e(n)x(n)!jh(n)]

"[1#k(n)p2
w
]h(n)#k(n)e(n)x(n). (16)

To assure the convergence of Eq. (16), the step-size
k(n) should be in the range 0(k(n)(2/power(n),
where power(n) is designated as the sum of the
square-values of x(n) for all the tap inputs of the
FIR filter at time n [6,8]. Again, for j"0, Eq. (16)
will reduce to the conventional adaptive LMS TDE
algorithm [5—7]

h(n#1)"h(n)#k(n)e(n)x(n). (17)

Thus, if we can show that the steady-state mean
weight vector of Eq. (16) could converge to h

s
, we

can expect that the result of non-integer TDE evalu-
ated by this new contrained algorithm with DDE
formula will be more accurate than the conventional
LMS TDE algorithm with DDE formula [6].

Since in a practical application the noise power,
p2
w
, of Eq. (16), is not available and needs to be

estimated. In what follows, we will introduce
a simple scheme for estimating the noise power.
First, from Eqs. (2) and (6), the cross-correlation
between y(n) and z(n), by definition, is given by

p2
yz
"E[y(n)z(n)]

"p2
s
[sinc(!p!D)h

~p
#2#sinc(!D)h

0

#2#sinc(p!D)h
p
]

"p2
s
hT
s
h"p2

s
Q, (18)

with Q"hT
s
h. Since the power of the input signal

x(n) was defined by p2
x
"E[x(n)x(n)]"p2

s
#p2

w
, we

have

p2
x
!p2

yz
"p2

s
(1!Q)#p2

w
. (19)

It is noted that, ideally, when h converges to the
true weight vector, h

s
, the parameter Q will approach

unity. Hence, we may use Eq. (19) to estimate the
noise power, p2

w
, and apply it to Eq. (16) during the

adaptation processes. From Eq. (19), we learn that
the accuracy of estimating the p2

w
depends on the

estimation results of parameters, p2
x

and p2
yz
. One

possibility of estimating both p2
x

and p2
yz

can be the
one as discussed in [9]:

pL 2
x
(n)"fpL 2

x
(n!1)#(1!f )x2(n) (20)

and

pL 2
yz
(n)"fpL 2

yz
(n!1)#(1!f )y(n)z(n), (21)

with f being the smoothing factor, 0(f)1.
Finally, after the weight coefficients of the FIR

filter being estimated by the constrained LMS TDE
algorithm of Eq. (16), the DDE formula [6] can be
applied to estimate the time delay (integer or non-
integer). For convenience, we let h

m
(n) be the weight

of the FIR filter with the largest amplitude at nth
iteration, for i"!p,2,0,2,#p, with m being
one of the integer index numbers of i. Accordingly,
the weights h

m`1
(n) and h

m~1
(n) can be determined

when h
m
(n) is identified. As discussed in [6], if

h
m`1

(n)*0, in order to achieve better performance
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for TDE, the DDE formula

DK (n)"m(n)#
h
m`1

(n)

h
m`1

(n)#h
m
(n)

(22)

is used, otherwise, we have

DK (n)"m(n)!
h
m~1

(n)

h
m~1

(n)#h
m
(n)

(23)

instead, where DK (n) is the estimated time delay at
the nth iteration. The implication of the DDE
formula shown in Eqs. (22) and (23) is that the time
delay (integer or non-integer) can be directly esti-
mated if three weight coefficients are available
during the adaptation processes.

3. Statistical analysis of the constrained LMS TDE
algorithm

In this section, the steady-state characteristic of
the constrained LMS TDE algorithm with the DDE
formula for TDE is examined.

3.1. Mean square difference of weights

We first evaluate the sum of the weight-error
variances (i.e., mean-square difference (MSD)) in
steady state. For convenience, the weight-error
vector is denoted as e(n)"h(n)!h

0
; from Eq. (16),

we get

e(n#1)"[I#k(p2
w
I!x(n)xT(n))]e(n)

#k[x(n)e
0
(n)#p2

w
h
0
], (24)

where I is the identity matrix, and e
0
(n)"

y(n)!hT
0
x(n) is the estimation error when the con-

strained optimum solution is achieved. By definition,
the weight-error correlation matrix is designated by
K(n#1)"E[e(n#1)eT(n#1)], from Appendix A,
we have

K(n#1)"(1#2kp2
w
#k2p4

w
)K(n)

!(k#k2p2
w
)[K(n)R

xx
#R

xx
K(n)]

#2k2R
xx

K(n)R
xx
#k2R

xx
tr[R

xx
K(n)]

#k2R
xx

J
.*/

#k2p4
w
h
0
hT
0
, (25)

where J
.*/

"E[e2
0
(n)] is the minimum mean-square

error (MMSE) and tr( ) ) denotes the trace operation.
Using the assumption we made earlier, e.g.,
R
xx
"(p2

w
#p2

s
)I"p2

x
I and r

6 yx
"p2

s
h
s
, Eq. (25) can

be simplified

K(n#1)"(1#2kp2
w
#k2p4

w
)K(n)

!2(kp2
x
#k2p2

x
p2
w
)K(n)

#2k2p4
x
K(n)#k2p2

x
J
%9
(n)I

#k2p2
x
J
.*/

I#k2p4
w
h
0
hT
0
, (26)

where J
%9

(n)"tr[R
xx

K(n)]"tr[p2
x
K(n)] is defined

as the excess MSE of the constrained adaptive
LMS TDE algorithm. To use the fact that
r
6 yx

"p2
s
h
s
, hT

0
h
0
"1 and h

0
"h

s
, we get J

.*/
"

E[e2
0
(n)]"2p2

w
.

To investigate the steady-state performance of
the estimated weight coefficients, we let M(n) be the
mean-square difference (MSD) which equals to
tr[K(n)]. Thus, to evaluate the mean-square differ-
ence (MSD), we need to obtain the diagonal terms
of K(n), k

i
(n), i"1,2,2p#1. From Eq. (26),

k
i
(n#1) is given by

k
i
(n#1)"k

i
(n)!2kp2

s
k
i
(n)#2k2p2

x
p2
s
k
i
(n)

#k2p4
w
k
i
(n)#k2p2

x
J
%9

(n)

#k2p2
x
J
.*/

#k2p4
w
g
i
, (27)

where g
i

denotes the ith diagonal term of h
0
hT
0
.

In the steady state, Eq. (27) can be further simplifed
under certain conditions. In our case, if the step
size, k, can be chosen properly, in general,
excess MSE (i.e., J

%9
) will be relatively smaller

than MMSE (i.e., J
.*/

). For example, for k"
0.001 and SNR"5 dB, we have J

%9
(R)/J

.*/
+

1/37. So in Eq. (27), p2
x
J
%9

(R) can be neglected
comparing with p2

x
J
.*/

. Thus, in the steady
state, we may obtain the closed-form expression of
k
i
(R),

k
i
(R)"

k[(1#p2
w
/p2

s
)J

.*/
#(p4

w
/p2

s
)g

i
]

2[1!kp2
s
(1#(p2

w
/p2

s
)#1

2
(p2

w
/p2

s
)2)]

. (28)
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c"
(1!D

i
)2(1#1

2
p2
w
/p2

s
)#D2

i
(1#1

2
p2
w
/p2

s
)

(1!D
i
)2(1#1

2
(p2

w
/(p2

s
#p2

w
))g

m`1
)#D2

i
(1#1

2
(p2

w
/(p2

s
#p2

w
))g

m
)

"

(1!D
i
)2(1#1

2
(1/SNR))#D2

i
(1#1

2
(1/SNR))

(1!D
i
)2(1#1

2
(1/(SNR#1))g

m`1
)#D2

i
(1#1

2
(1/(SNR#1))g

m
)
, (34)

In consequence, the steady-state solution of MSD
is given by

M(R)"tr[K(R)]"
2p`1
+
i/1

k
i
(R)

"

k[(1#p2
w
/p2

s
)(2p#1)J

.*/
#(p4

w
/p2

s
)hT

0
h
0
]

2[1!kp2
s
(1#(p2

w
/p2

s
)#1

2
(p2

w
/p2

s
)2)]

"

k[(1#p2
w
/p2

s
)(2p#1)J

.*/
#(p4

w
/p2

s
)]

2[1!kp2
s
(1#(p2

w
/p2

s
)#1

2
(p2

w
/p2

s
)2)]

.

(29)

Since p2
s
/p2

w
"SNR is the signal-to-noise ratio,

Eq. (29) can be expressed as

M(R)"
k[(1#1/SNR)(2p#1)J

.*/
#(1/SNR)p2

w
]

2[1!kp2
s
(1#(1/SNR)#1

2
(1/SNR)2)]

.

(30)

From Eq. (30), we see that the steady-state MSD is
controlled by the parameters of the SNR, the step
size, k, and the value of p which is related to the
length of the FIR filter.

3.2. Mean square error of estimated time delay

To evaluate the quality of estimated time delay
(or estimator), using the proposed algorithm with
the DDE formula, in this subsection, a theoretical
analysis is performed. Recall that, at the nth iter-
ation, after having obtained the weight vector by
Eq. (16), using the proposed algorithm, the esti-
mated time delay, DK (n), can be evaluated by the
DDE formula defined in Eq. (22) or Eq. (23). The
mean square error (MSE) of the estimated and the
true time delay, at the nth iteration, is defined by
E[(DK (n)!D)2]. From Eq. (B.7) of Appendix B, we

have the steady-state MSE to be

lim
n?=

E[(DK (n)!D)2]

+

0.5kd
1

(h5
m
#h5

m`1
)2G(1!D

i
)2CA1#

p2
w

p2
s
BJ.*/

#

p4
w

p2
s

g
m`1D#D2

i CA1#
p2
w

p2
s
BJ.*/

#

p4
w

p2
s

g
m`1DH,

(31)

where D
i

is the decimal part of D, d
1
"

1/(1!kp2
s
(1#(p2

w
/p2

s
)#1

2
(p2

w
/p2

s
)2)), J

.*/
"

E[e2
0
(n)]"2p2

w
, g

m
"(h5

m
)2 and g

m`1
"(h5

m`1
)2.

Here, h5
m

and h5
m`1

represent the true weight coeffi-
cients of h

m
(n) and h

m`1
(n), respectively.

For comparison, the steady-state MSE of the
estimated and the true time delay, using the con-
ventional LMS TDE algorithm with DDE formula,
can be obtained in a similar way as we did for
Eq. (31) (see Eq. (B.10) of Appendix B),

lim
n?=

E[(DK (n)!D)2]

+

0.5kd
2

(h5
m
#h5

m`1
)2A1#

p2
w

p2
s
B
2
[(1!D

i
)2J{

.*/
#D2

i
J{
.*/

],

(32)

with d
2
"1/(1!kp2

s
(1#p2

w
/p2

s
)) and J@

.*/
"

p2
s
#p2

w
!p4

s
/(p2

s
#p2

w
).

At this moment, it is interesting to compare the
steady-state MSE estimators of the proposed algo-
rithm with the conventional algorithm. To do so,
we define the steady-state MSE ratio, c, to be

c"
Eq. (32)

Eq. (31)
. (33)

In this study, since the value of kp2
s
@1, Eq. (33) can

be simplified to get, i.e.,
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Fig. 2. The performance of TDE using the LMS TDE algorithm with DDE formula, for D"0.2 and SNR"0dB.

where SNR"p2
s
/p2

w
is the signal-to-noise ratio.

Note that if the value of c is greater than unity, we
may have an improved performance by the pro-
posed algorithm. Also, observed from Eq. (34), when
SNR becomes lower, the value of c becomes rela-
tively large. To see this, we consider the case with
true time delay D"0.2 (i.e., m"0 and D

i
"0.2)

and the step-size k"0.001, in consequence,
we have the corresponding parameters g

m
"

g
0
"(h5

0
)2"sinc2(0!0.2)"0.8751 and g

m`1
"

g
1
"(h5

1
)2"sinc2(1!0.2)"0.0547. Substituting

these parameters in Eq. (34), we get c"1.15 for
SNR"5 dB, c"1.23 for SNR"3dB, and c"1.46
for SNR"0 dB, respectively. This means that the
performance improvement is relevant to the SNR,
that is, the lower the value of SNR, more improve-
ment with the proposed algorithm can be obtained
with respect to the conventional algorithm.

4. Computer simulation results

To demonstrate the merits of our method, com-
puter simulation is carried out to evaluate the
performance of non-integer TDE, where both sta-
tionary and nonstationary time delay environments
are considered. Also, the accuracy of the theoretical
analysis in terms of steady-state mean square differ-
ence (MSD) of weights and steady-state mean square

error (MSE) of the estimator, are examined. In
computer simulation the source signal s(n) and
noises, w

1
(n) and w

2
(n), are generated from three

separated white Gaussian random signal generators
with zero mean. The delayed signal, s(n!D), is
obtained by passing s(n) through an FIR filter of
order 41 (should be greater than the weight coeffi-
cients, 2p#1, of the adaptive filter), with its impulse
response being the samples of a sinc function. On
the other hand, the number of weight coefficients of
the adaptive filter is chosen to be 31 (e.g. p"15).
Moreover, the simulation results are the average of
100 independent realizations (or runs).

4.1. Stationary time delay case

First, we consider the case with constant time
delay, D"0.2, and to have fair comparison the step
size is chosen to be k(n)"0.001 for all methods.
Also, the smoothing factor of Eqs. (20) and (21) is
chosen to be f"0.995. It is noted that for D"0.2,
the value of the true weight coefficient with the
largest amplitude, by definition, should be
h
0
"sinc(0!0.2)"0.935489, e.g., m"0. For

SNR"0 dB, as depicted in Fig. 2(a), we see that
the weight coefficient with the largest amplitude
estimated by the conventional LMS TDE algorithm
could not converge to the true value (h

0
"0.935489).
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Fig. 3. The performance of TDE using the constrained LMS TDE algorithm with DDE formula for D"0.2 and SNR"0 dB.

Table 1
The comparison of TDE performance between the conventional method and the proposed method, for constant time delay D"0.2

5 dB 3 dB 0 dB

Mean MSE Mean MSE Mean MSE

Conventional method 0.196990 0.000250 0.196134 0.000484 0.194526 0.001547
Proposed method 0.198163 0.000216 0.197884 0.000383 0.196759 0.001015

But, the performance of non-integer TDE evaluated
by the DDE formula is still satisfied as evident from
Fig. 2(b). On the other hand, as depicted in Fig. 3(a),
under the same condition as in the proposed algo-
rithm, the weight coefficient with the largest ampli-
tude estimated by our method converges much
faster and closer to the true value. Also, from
Fig. 3(b) we learn that the new proposed algorithm
with the DDE formula for non-integer TDE is
superior to the one shown in Fig. 2(b). For com-
parison, the statistical characteristics of TDE results,
in terms of the steady-state mean and mean-square
error (MSE) of the estimated time delay, with
different SNR are listed in Table 1 as reference.
From Table 1, we learn that the proposed method
(i.e., constrained LMS TDE algorithm with DDE
formula) has better mean and smaller MSE than
the conventional method (i.e., LMS TDE algorithm
with DDE formula). This is, especially, true when
SNR becomes lower.

Although, ideally, the new constrained LMS TDE
algorithm could reach the true weight vector, it
depends on the accuracy of the estimated noise
power of Eq. (19), or, equivalently, it is related to
the convergent property of parameter Q (of
Eq. (18)).Therefore, it is interesting to see the effect
of parameter Q. For SNR"0 dB, Fig. 4(a) and
Fig. 4(b) show the convergence behavior of para-
meter Q with the smoothing factor to be f"0.995
and f"0.998, respectively. From Fig. 4(a) and
Fig. 4(b) it can be observed that the parameter
Q could converge near to unity (desired value),
which implies that the proposed scheme for estima-
ting the noise power is reasonable.

4.2. The theoretical analysis results

In this section, the accuracy of the theoretical
analysis of the steady-state MSD (see Eq. (30)) as
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Fig. 4. The convergence behavior of Q value for SNR"0 dB and different smoothing factor.

well as the steady-state MSE (see Eqs. (31) and (32))
for the estimator of TDE is investigated. First, to
verify the accuracy of the steady-state MSD for
weight coefficient, we consider the case with D"0.2
for SNR"0 dB and the parameters k"
0.0007, f"0.995 and p"15. From Fig. 5, the ex-
perimental result of steady-state MSD agrees with
the theoretical analysis result (dot line) very well.
Some other results for SNR"5 and 10dB with
k"0.001, are listed in Table 2 as reference. To
further examine the accuracy of the theoretical
results for SNR"5 dB with different values of
step-size, k, is illustrated in Table 3. From Table 3,
again, we found that the theoretical results of

Fig. 5. The experimental result of MSD for SNR"0 dB.

Table 2
The accuracy of the analysis results of the steady-state MSD by
Eq. (30), for different values of SNR, with parameters D"0.2,
f"0.995 and p"15

Experimental Theoretical
SNR (dB) MSD value MSD value

0 0.045167 0.043827
5 0.013058 0.012919
10 0.003434 0.003413

Table 3
The accuracy of the analysis results of the steady-state MSD by
Eq. (30), for different values of k, with parameters SNR"5 dB,
D"0.2, f"0.995 and p"15

k
Experimental
MSD value

Theoretical
MSD value

Error ratio
(%)

J
%9

(R)

J
.*/

0.0010 0.013058 0.012919 1.06 0.027262
0.0013 0.017063 0.016800 1.56 0.035608
0.0016 0.021135 0.020704 2.08 0.044105
0.0019 0.025269 0.024568 2.85 0.052752
0.0022 0.029466 0.028459 3.54 0.061555

steady-state MSD agreed quite well with the ex-
perimental results. Especially, when the parameter
k becomes smaller, the error ratio between the
theoretical and experimental values is relatively
small. This is because the derivation of Eq. (30) was
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Fig. 6. The performance comparison of TDE using the LMS TDE algorithms with and without constraint, for D(n)"sin(np/4000) and
SNR"3 dB.

Table 4
The accuracy of the analysis results of the steady-state MSE based on Eqs. (31) and (32), with parameters D"0.2 (i.e., D

i
"0.2),

k"0.001, f"0.995 and p"15

5 dB 3 dB 0 dB

Exp. Theo. Exp. Theo. Exp. Theo.
MSE MSE MSE MSE MSE MSE

Conventional method: Eq. (32) 0.000250 0.000240 0.000484 0.000467 0.001547 0.001496
Proposed method: Eq. (31) 0.000216 0.000209 0.000383 0.000380 0.001015 0.001022
Steady-state MSE ratio:

c"Eq. (32)/Eq. (31) 1.16 1.15 1.26 1.23 1.52 1.46

performed under the assumption that the excess
MSE (i.e., J

%9
) is much smaller than the MMSE

(i.e., J
.*/

).
Next, we would like to verify the accuracy of the

steady-state MSE of the estimator of TDE derived
in Eqs. (31) and (32) for the constrained and uncon-
strained adaptive LMS TDE algorithms with DDE
formula, respectively. The results are listed in
Table 4. From Table 4, we learn that the improved
ratio of performance, in terms of steady-state MSE
of the estimator, using the theoretical expression
(see Eq. (34)) is consistent with the one of experi-
mental results. Also, we found that the performance
improvement is relevant to the SNR, e.g., c"1.15
for SNR"5 dB, c"1.23 for SNR"3dB, and
c"1.46 for SNR"0dB. This means that the lower

the value of SNR the more improvement with the
proposed algorithm can be obtained with respect to
the conventional adaptive LMS TDE algorithm.
We may conclude that the proposed algorithm is
superior to the conventional algorithm in terms of
non-integer TDE.

4.3. Nonstationary time delay case

Next, to investigate the tracking capability of
the proposed method, we consider the case with
nonstationary time delay,

D(n)"sinA
np

4000B. (35)
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Fig. 7. The performance comparison of TDE using the LMS TDE algorithms with and without constraint, for D(n)"0.2#n/500]0.06

and SNR"0 dB.

Here, k(n)"0.54/power(n) and the smoothing
factor f"0.952 are chosen. The results of esti-
mated delay, D(n), with number of iterations, are
shown in Fig. 6(a) and Fig.6 (b), for SNR"3 dB.
From Fig. 6(a) and Fig. 6(b), we learn that the
result of TDE obtained by the constrained LMS
TDE algorithm with DDE formula is superior to
that of the conventional LMS TDE algorithm
with DDE formula. Specifically, during the adapta-
tion processes, when the integer index (m(n)) is
changed from one (m(n)"1) to zero (m(n)"0), the
spurious peak occurred in Fig. 6(a) for the conven-
tional LMS TDE algorithm with DDE formula.
However, this is not the case when the new con-
strained LMS TDE algorithm with DDE formula
is used.

To further examine the tracking capability, we
consider another case with

D(n)"0.2#
n

500
]0.06. (36)

The results are shown in Fig. 7(a) and Fig. 7(b), for
SNR"0 dB with k(n)"0.25/power(n) and
f"0.952. Similarly, the spurious peak also occurs
in Fig. 7(a) for the conventional LMS TDE algorithm
with DDE formula, when m(n) is changed from zero
(m(n)"0) to one (m(n)"1).

5. Conclusions

In this paper, a new constrained LMS TDE
algorithm has been developed in a noisy environ-
ment for speeding up the convergence rate of the
weight coefficients of the FIR filter. This will result
in having better performance for non-integer time
delay estimation (TDE) with the DDE formula,
compared with the conventional adaptive LMS
TDE algorithm.

Moreover, the closed form expressions of the
steady-state MSE of the estimators for TDE, using
the proposed algorithm, were derived. Based on
these theoretical expressions, we also showed that
the proposed algorithm did perform better than the
conventional one. Especially, in Section 4.2, we
showed that the lower the value of SNR the more
the improvement with the proposed algorithm was
obtained, compared with the conventional adaptive
LMS TDE algorithm.
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Appendix A.

In this appendix, the derivation of Eq. (25) is given in what follows. By definition, the weight-error
correlation matrix is designated by K(n#1)"E[e(n#1)eT(n#1)]. From Eq. (24), we have

K(n#1)"(1#2kp2
w
#k2p4

w
)K(n)!(k#k2p2

w
)[K(n)R

xx
#R

xx
K(n)]#k2E[x(n)xT(n)e(n)eT(n)x(n)xT(n)]

#k2R
xx

J
.*/

#k2p4
w
h
0
hT
0
, (A.1)

where J
.*/

"E[e2
0
(n)] denotes the minimum mean square error (MMSE). The third term on the right-hand

side of Eq. (A.1) involves fourth-order moments of sample vectors of the input process. These high-order
moments can be evaluated by using the Gaussian moment factoring theorem [8]. Let z

1
, z

2
, z

3
and z

4
denote

four samples of a real Gaussian process with zero mean. By the Gaussian moment factoring theorem [8], we
have

E[z
1
z
2
z
3
z
4
]"E[z

1
z
2
]E[z

3
z
4
]#E[z

1
z
3
]E[z

2
z
4
]#E[z

1
z
4
]E[z

2
z
3
]. (A.2)

To use Eq. (A.2), we express the (2p#1)-by-(2p#1) matrix representing the multiple product
x(n)xT(n)e(n)eT(n)x(n)xT(n) as a multiple sum of the elements of the component vectors. Let the brace notation
Ma

ij
(n)N denote this matrix having elements a

ij
(n), with i,j"0,1,2,2p. We may then write

Ma
ij
(n)N"x(n)xT(n)e(n)eT(n)x(n)xT(n)"G

2p`1
+
l/1

2p`1
+

m/1

x(n!i)x(n!l)e
l
(n)e

m
(n)x(n!m)x(n!j)H, (A.3)

where x(n!i)x(n!l) denotes the element on the ith row and lth column of x(n)xT(n), e
l
(n)e

m
(n) denotes the

element on the lth row and mth column of e(n)eT(n), and x(n!m)x(n!j) denotes the element on the mth row
and jth column of x(n)xT(n). Thus, we have

E[Ma
ij
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where tr( ) ) denotes the trace operation. Finally, substituting Eq. (A.4) into Eq. (A.1), we obtain

K(n#1)"(1#2kp2
w
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. (A.5)
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Appendix B.

The steady-state theoretical expression of the mean square error (MSE) of the estimator for time delay
estimation is derived, in this appendix, under certain conditions. To proceed with the analysis, we recall that,
at the nth iteration, after having obtained the weight vector by Eq. (16), using the new constrained LMS TDE
algorithm, the estimated time delay, DK (n), can be evaluated by the DDE formula defined in Eq. (22) or
Eq. (23). Also, as described before the value of true time delay, D (or D(n)) was defined by D"m#D

i
, where

m denotes the integer part of D and D
i
is the decimal part of D.

In our cases, Eq. (22) (i.e., DK (n)"m#h
m`1

(n)/(h
m
(n)#h

m`1
(n))) is adopted, the error between the estimated

and true time delay, at the nth iteration, is given by
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For convenience, we denote the estimated weight errors, e
m
(n) and e

m`1
(n), to be e
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m
and
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, respectively. Here, hH
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represent the optimum weight coefficients of h
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and h
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(n), respectively. Now, by using the fact that D
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In the steady state, since we have e
m
(n)@hH

m
and e

m`1
(n)@hH

m`1
(the errors are smaller compared to the

optimum values), we may simplify Eq. (B.2),
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In consequence, the steady-state MSE of the estimator, can be obtained as
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It is noted that both e
m
(n) and e

m`1
(n) are two components of weight-error vector e(n) defined in Eq. (24). The

last two terms, lim
n?=

E[e2
m`1

(n)] and lim
n?=

E[e2
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(n)], on the right-hand side of Eq. (B.4), can be easily

obtained, from k
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(R) of Eq. (28), that is,
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and
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with J
.*/

"2p2
w
, g

m
"(hH

m
)2 and g
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"(hH

m`1
)2. Again, from Eqs. (13) and (15), the constrained optimum

weight vector, h
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, (i.e., h
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]T), is shown to be identical to the true weight vector, h
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. Finally, by substituting Eqs. (B.5) and

(B.6) into Eq. (B.4), we get the steady-state MSE of the estimator, by the constrained LMS TDE algorithm
with DDE formula, i.e.,
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with d
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"1/(1!kp2
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(1#(p2
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2
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w
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s
)2)).

For comparison, we need also to derive the steady-state MSE of the estimator, by the conventional LMS
TDE algorithm with DDE formula. This, in fact, can be performed in a similar way as we derived Eq. (28).
First, k

i
(R) of the conventional LMS TDE algorithm can be obtained as we did for Eq. (28), that is,

k
i
(R)"kJ@

.*/
/(2[1!kp2

s
(1#p2

w
/p2

s
)]), with J@

.*/
"p2

s
#p2

w
!p4

s
/(p2

s
#p2

w
). In consequence, we have the

corresponding expressions of lim
n?=

E[e2
m`1

(n)] and lim
n?=

E[e2
m
(n)], i.e.,

lim
n?=

E[e2
m`1

(n)]"k
m`1

(R)"
kJ@

.*/
2[1!kp2

s
(1#p2

w
/p2

s
)]
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and

lim
n?=

E[e2
m
(n)]"k

m
(R)"

kJ@
.*/

2[1!kp2
s
(1#p2

w
/p2

s
)]

. (B.9)

Next, from Eq. (13) with j"0, we have the optimum weight coefficients, hH
m

and hH
m`1

, of the conventional
LMS TDE algorithm, to be hH

m
"(p2

s
/(p2

s
#p2

w
))h5

m
and hH

m`1
"(p2

s
/(p2

s
#p2

w
))h5

m`1
, respectively. Finally, we

have the steady-state MSE of the estimator, by the conventional LMS TDE algorithm with DDE formula,
i.e.,

lim
n?=

E[(DK (n)!D)2]+
0.5kd

2
(h5

m
#h5

m`1
)2A1#

p2
w

p2
s
B

2
[(1!D

i
)2J@

.*/
#D2

i
J@
.*/

], (B.10)

with d
2
"1/(1!kp2

s
(1#p2

w
/p2

s
)). This completes the derivation.
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