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ABSTRACT

Most physical systems are nonlinear to some extent. One variety

of nonlinear system uses a relay or other on-off device as a control

element

.

Since in the process industries or relay servo systems, one often

encounters a type of time delay called transportation lag or dead time.

It is highly desirable to investigate the effects of the transportation

lag on the process or relay servo system.

This paper is to demonstrate the effects of the transportation lag

on the relay servo system and show how to eliminate these effects.

Experimental results indicate that the transportation lag causes a

continuous oscillation with a steady state over- and under-shoot, the

response can never be settled, and also it leads to a longer rise time.

In addition to those, the transportation lag results in a terminal limit

cycle. Though the tachometer feedback has been used to compensate the

system, this oscillation can never be eliminated completely when some delay

exists. Therefore, a five percent overshoot and undershoot was considered

acceptable.

The author wishes to express his appreciation for the advice, assist-

ance and encouragement given by Dr. Richard Carl Dorf, Professor of Electri-

cal Engineering, United States Naval Postgraduate School, throughout this

investigation. He also owes a debt of gratitude to Dr. John R. Ward,

Professor of Electrical Engineering Department, U. S. Naval Postgraduate

School, for his assistance during the initial stages of the work.
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1 . Introduction .

Systems which utilize feedback for control purpose have become es-

sential elements in modern technology. They range all the way from

simple toys to the most complex automatic factories and production equip-

ment. Feedback control is the guidance that makes modern automation pos-

sible, and as such is in a large measure responsible for the ever-increas-

ing productivity and rising standard of living of man.

It is noted that feedback control systems are seldom truly linear,

but rather they are subject to the introduction of a considerable number

of nonlinearities. Some nonlinearities may be introduced intentionally by

the system designer. An example of this might be the selection of a re-

lay servomechanism with its attendent nonlinearity. On the other hand

there may be no way of avoiding a nonlinearity in the system design. An

example of this would be the mandatory inclusion of a gear train with its

attendent backlash. A nonlinearity which frequently can neither be avoided

nor neglected is transportation lag.

In some control systems, especially in the field of process control,

a non-eligible propagation time is encountered. That is, there is a definite

lapse of time between the initiation of a change in the signal at one point

in the system and the appearance at some other point of any effect of this

change. But be sure that this kind of lag is not to be confused with the

type of lag introduced by factors of the form 1/(TS + 1) or l/vfS" + 2 f TS

+1) in the transfer function relating the two signals. Factors such as these

in the transfer function of a component do reveal a tendency of the com-

ponent to retard the signal, in a sense, by introducing phase lag at all

frequencies, but they do not result in a finite dead time which must elapse

before any effect of a change in input can be noted in the output of the

component

.



Dead time of appreciable magnitude can be observed, for example in

long pipes carrying fluid under pressure. A change in pressure at one end

of such a pipe is transmitted with finite velocity to the other end, pos-

sibly but not necessarily being distorted in transmission. Another type

of system in which dead time is often encountered is shown in Fig. 1-1.

In such a system two different fluids are mixed at the mixing point, and

the relative concentration is read at the metering point. If the meter-

ing point is located at an appreciable distance from the mixing point,

the dead time between the establishing of a change in relative concentra-

tion and the detection of the change may be appreciable.

Another example is illustrated below. In Fig. 1-2 the shaded area

represents a slug of water at position 1, the outlet of the steam nozzle.

Position 2 represents where the temperature sensing element will be placed,

Let the temperature of the shaded area water slug at the steam nozzle be

quickly changed from Q to $, . Before the change can be measured, the

slug of water must travel from the steam nozzle to position 2 where the

sensing element would be located.

The effect of the delay caused by the slug traveling down the pipe

can be shown by locating sensing elements at position 1 and 2 as shown in

Fig. 1-3, If the time constants of the sensing element at position 1 is

taken as the input and the element at position 2 as the output, Fig. 1-4

becomes the reaction curve for the process.

This type of reaction curve is typical of a dead time lag (or trans-

portation lag) and may be defined by the time lag T. The magnitude of

the dead time lag will depend on the water velocity and the distance be-

tween position 1 and 2. The lag time may be calculated as follows:

T(min.) = d(ft) / V(ft/min)
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where, T = dead time lag (min)

d = length (ft) *

V = velocity of flowing medium (ft/min)

Dead time lag is very common in the process industries. Because

of the complete lack of the response during the dead time, this type of

lag is very detrimental to control. An examination of the equation de-

fining the dead time lag shows that increasing the length or decreasing the

velocity will increase the lag time, and we shall see later, make the

problem of control more difficult.

To determine the frequency response of the dead time lag, a sinuscilal

wave having an amplitude of 10°F will be generated around a bias tempera-

ture 9.. At some low frequency the curve as recorded by the sensing ele-

ments at position 1 and 2 would appear as shown in Fig. 1-5 (a).

Fig. l-5(b) and 5(c) show similar results for two successively higher

frequencies. As can be seen, as the frequency increases the period decreas-

es. However, the lag time which is dependent only on the velocity and

length remains constant. Thus the magnitude of the phase angle will in-

crease proportionally to each decrease in period (increase in frequency).

The phase angle may be calculated as follows:

(degree) = -

—

. . ,\ /—;—r— X 360 (degree/cycle)° Period (min/cycle) & J
'

or (degree) = - T(min) X f(cpm) X 360 (degree/cycle)

From this equation we see that the phase angle for the dead time lag

is directly proportional to the frequency. The phase angle approaches

zero degrees as the frequency approaches zero and negative infinity as

the frequency approaches infinity. This will be discussed in S" 6.
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2. Relay servo system.

2.1 General Description.

When economy is of importance, many feedback control systems utilize

a contactor for energizing the actuator. Such a system is called a contac-

tor or, alternatively, an on-off control system, since the contactor is an

element whose output can usually have only two values. In some cases

these correspond to a fixed positive action and no actuator action. This

usually is the case with thermostatic controls, for example. In other

cases the two values correspond to maximum positive and negative actuator

action.

In Fig. 2-1 it is assumed that N is a relay or switch which has an

output +1 or -1, depending on the sign of E = R - b. A positive output cor-

responds to a positive sign of E and a negative output corresponds to a

negative sign of E. When the switch is a perfect switch this can be de-

noted symbolically by the equation

V = Sign E (2.1)

~\ £ N V
Q

C
J
h

H
Fig. 2-1 Block diagram of the contactor servomechanism

Since the contactor is frequently an electrically controlled or equivalent

element, there may be a delay in the it itiation of switching action as

well as a finite time interval during which switching action takes place.

The contactor action ordinarily applies full control force or torque to

the system. Since the output of N is therefore not necessarily unity, the



actual value is included in the gain constant of the following element.

The block G in Fig. 2-1 will be assumed to be a linear servomotor

with viscous damping and no load torque except that due to inertia. The

limiting case of zero viscous damping is of interest and will also be

considered. Including the gain constant of the switch, the motor transfer

function is

where T = KE is the stall torque of the motor and J is the total inertia
o o

of motor and load. In the absence of damping, 1/r- is set to zero in this

equation. It should be emphasized that since N is nonlinear element, there

is no particular reason to assume that the feedback element is linear. In

particular, the feedback signal could be any algebraic function of position

and its derivatives. However, for the method of analysis used here the

feedback function can depend only on the position and velocity and must

not on the derivative of the velocity (acceleration). The symbol H, there-

fore, no longer represents a linear transfer function, but a possibility

nonlinear feedback function involving the output position and velocity.

Symbolically this will be written as

b = f(C,C) (2.3)

where C = dC/dt

2.2 Relay servos

The system behavior can be prescribed by combining the equations :

C •/- — C= -h ~y~ R -f(c c ) > o

c"} j

Between switching times the response is described by a second order

differential equation. For this reason such a system is called a second-



order contactor servo or feedback system. The two equations are inte-

grable between switching times and the entire solution can be obtained

by matching final and initial conditions of the two sets of solutions at

the proper switching time. The solution is therefore easy to obtain in

principle. The details, however, are so complex that another method of

solution is desirable.

The analysis of the system can be simplified by using the fact that

it is possible to plot the response of the system as a trajectory in the

phase plane, the trajectory being composed of a series of arcs or curves

which have a characteristic shape dependent upon the properties of the

system. The behavior of a physical system where only one coordinate is of

interest is usually specified by determining this coordinate as a function

of time, C = fj (t). This function depends upon the differential equation

describing the system and upon a set of initial conditions. For some

purpose, an equal suitable way of describing the behavior of the system

is by means of a functional relationship between position and velocity:

fz (^) (2.5)

When such a relation is known, the time dependence of C, if required,

can be found directly by integrating the equation

gf- - C = £ (C) or i-Z =1 £7~y (26)

Equation 2.5 can be represented graphically with position and velocity

taken as rectangular cartesian coordinates; position is usually plotted

as abscissa and velocity as ordinate. The behavior of the system is des-

cribed by a plot of all successive pairs of values of position and velo-

city. The plane on which this plot is made is called the phase plane, and

a



the graph of Equation 2.5 is called the phase-plane trajectory.

For the system to be considered in this paper, the differential

equations of interest will not contain time explicitly. For the

second-order system this implies that the acceleration can be written as

C =^F(c j cj

The importance of this concept here results from the fact that for such

systems, the behavior and therefore the trajectory are uniquely specified by

the initial values of C and C. This means that there is an only tra-

jectory through a given (nonsingular) point in the phase plane. In this

paper it is restricted to the systems described by second order differential

equations and hence by phase plane trajectory in the two dimensional C-C

phase-plane.

The slope of the trajectory in the phase plane can be written as

cic dt
./ ~ cf<

(2.7)

at

According to this equation the slope is equal to the quotient of ac-

celeration and velocity. In the upper half plane, C is positive and

nonzero, and therefore the slope is nonifinite and either positive nega-

tive, depending upon whether the acceleration is positive or negative.

Similarly, in the lower half plane the slope is non- infinite and either

positive or negative, depending on whether the acceleration is negative

or positive. For a point on the horizontal axis the velocity is zero,

and therefore unless the accelerations also zero the slope dC/dC is in-

finite. In general, then, trajectories cross the horizontal axis verti-

cally. Direction of motion along the trajectory can always be determined

by the fact that for C positive C must become more positive with time and



for C negative C must become more negative with time. Motion along

the trajectory is therefore to the right in the upper-half plane and to

the left in the lower-half plane. The horizontal component of the

trajectory velocity is equal to the system velocity C = dC/dt and

the vertical component of the trajectory velocity is equal to the system

acceleration C = dC/dt. These considerations make it clear that a trajec-

tory can not end except on the horizontal axis. If there are points on

• • •*

the horizontal axis where both C and C are zero they are called

singular points, and the value of C at such a point corresponds to an

equilibrium condition of the system. Trajectories can emerge from or

return to some of these singular points with a non- infinite slope, since

the slope dC/dC is undefined at this point except through other considera-

tions.

2.3 Phase plane trajectory.

Some of the ideas in S2.2 will now be illustrated with the system

shown in Fig. 2.1 and defined by Equation 2.2 through 2.4. The Equation

2.4, which are second-order differential equations, can be reduced to

pairs if first-order equations by substitution of Equation 2.6

eft
which gives

dt j
c.

l ~ * ~ ( - 8)

an alternative expression for velocity, dV/dt = V(dV/dC), can be used

with Equation 2.8 to give the following equation;

\s dl, V _, To

This equation can now be integrated with the result

C-ce = -4/V ± Y LfO +£%)] (mo

10



Evidently the constant of the integration C is the value of C at

which V = 0. This equation can be put in dimensionless form by the

substitutions

V — ^—V, c = pfjr-C (2.ii)

which gives

Z " Zo = -[& ± -^7 O-T ?)] (2.12)

Typical trajectories for particular values of C art shown in Fig. 2.2.

Through use of the dimensionless variables v and c, all systems of this

type have identical trajectories.

In the absence of damping, the trajectories are parabolas. If 1/^,

is set to zero, integration of Equation 2.8 gives the result

C ~ C =± -s2-~ -jj£ (2.13)

In this case the substitution 2.11 can not be used. For the case of

finite damping it is sometimes convenient to have an expression for the

trajectory which shows the deviation from the parabolic shape more

directly than Equation 2.10 or 2.12. This can be obtained by use of the

power series expansion for log (1 + x)

:

VI
~l l t 3 Zm Tc

f 4 (g„ To J I

or

C-C„=±-f[lt |-F+ ^(P/t ^(P) 3
+ :- 1

(2.15)

These equations are particularly useful when an approximate result is

desired. For accurate computations Equation 2.10 or 2.12 is more use-

ful, since the series given above converges rather slowly except for

small values of v, and indeed diverges for jv| .">* 1.

Reference to Fig. 2.1 and Equations 2.1 and 2.3 shows that the

11
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Fig. 2.2. Phase plane trajectory for the second-order
contactor servomechanism.

condition governing switching from one trajectory family to the other is

given by the equation

/? - f (C, C) = O (2.16)

For the present it will be convenient to restrict attention to step in-

puts with initial velocity zero. In this case a simple translation of

the origin can be used so that the initial conditions are c = -c , V = 0,

and the final desired steady-state conditions are R = C = V = 0. Setting

R = in Equation 2.16 gives the equation

-f (C. &)= O
( 2„i7)

The graphical plot of this equation separates the phase plane into two

parts, in one of which the system follows trajectories corresponding to

V 3 +1, and in the other of which the system follow trajectories corres-

ponding to V = -1, this is illustrated in Fig. 2.3.

For certain functions f(c,c) an anomalous situation arises. Consider
s

for example, the point P in Fig. 2.3, which will supposed to be reached

by motion along the trajectory marked (1). When the switching line is

12
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Ftg. 2-3. Switching line for contactor servomechani sm«
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reached, the system will normally transfer to the trajectory of the

other family which pass through P , this is the trajectory (2) in Fig.

2.3. However, when the point P~ is reached, for example along trajectory

(3), a paradoxal situation arises. Although switching should take place

at this time, there is no trajectory of the other family along which the

system can move, since P- is an end point rather than a starting point for

trajectory (4), In terms of real physical systems the paradox can be

resolved by recognizing that a small delaying switching is unavoidable.

This permits the system to overshoot the switching line so that a small

section of allowable trajectory is available in other family. When this

trajectory reaches the switching line another slight delay allows over-

shoot back into the left-half plane. The resultant trajectory consists

of a series of short arcs in which the system oscillates about the switch-

ing line as it approaches the equilibrium point at the origin. In terms

of the ideal system, one can say that the trajectory follows the switching

line to the origin accomplished by an infinite number of switching which

provide, on the average, the proper force to give an acceleration consist-

ent with the location in the phase plane and the slope of the switching

line.

Using the above considerations some interesting general conclusions

can be drawn:

(1) For no viscous damping ( £^ ==. oo) and no rate feedback

Lt (C' C-)~c] the trajectories are parabolas separated by the vertical line

c = 0. The system is neutrally stable in the sense that for any amplitude

of step input the oscillation will persist indefinitely, as shown in Fig.

2.4a.

(2) For viscous damping and no rate feedback QfC^z) — c l, the

14



(a)

=£0

slope =

Fig. 2-4, Typical phase plane trajectories
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trajectory are the "asymmetric parabolas" of Fig. 2.2, separated by the

verticle line c = 0. The system exhibits a damping or decrement of the

oscillations produced by a step input. The per-unit decrement is a func-

tion of amplitude and approaches zero as the amplitude approaches zero.

In other words, for large input the initial per-unit decrement is high, but

decreases to zero as the amplitude of the oscillation approaches zero.

This can be observed qualitatively in Fig. 2.4b.

(3) With linear rate feedback, the feedback function is f(c< <•) - c * *t

V

If there is no viscous damping ( £^ =r c^>) , then the trajectories are

parabolas separated by the straight line

C = ~ JT C (2-18)

Again the system shows a per-unit decrement or damping which varies with

amplitude. However, in this case the damping is small for large amplitude

and as the amplitude decreases the damping increases until the final tra-

jectory into the origin lies along the line

j. _ I ~C - ~P~£

with no further overshoots. An illustration of this is shown in 2.4c.

The above conclusions shows that no simple linear feedback function

will give optimum response, regardless of the system's viscous damping.

If rate feedback is adjusted to give no overshoot for the largest expected

input then the system moves to the origin slowly for small inputs. If the

rate feedback is adjusted to give faster response for small input, then

overshoot and oscillations will follow application of a large step input.

It is natural to ask whether any feedback function can be found to

give optimum response for all inputs. This turns out to be a difficult

question. Since the system is nonlinear and does not have an easily deter-

mined response for arbitary inputs. However, a definite answer can be found

16



for the case of step inputs by following chain of reasoning. For most

rapid response without overshoot it is necessary to apply full positive

acceleration torque until that instant at which full negative torque will

bring the system to rect at the origin in the phase plane. This is il-

lustrated in Fig. 2.5 for a particular initial starting point. The tra-

jectory shown passing through the origin can be designated as the homing

trajectory. In order to achieve switching on this trajectory for all in-

puts, it is necessary that feedback function set equal to zero,

-f
(<=; 6) = O (2.19)

being the equation of this homing trajectory. In this case, when any

trajectory crosses this line switching will occur, so that the applica-

tion of full reverse torque will just bring the system to reset at the

origin.

Homing trajectory

Switching point

starting point

Fig. 2.5 Switching point for optimum step response

Since the trajectory of Equation 2.8 is roughly parabolic, a suit'

able form of the feedback function is

<7
f (*,</) ^K(c t -£ \?\Q\)= c + ^~ v\A (2.20)
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Strictly speaking, this equation should be modified to match the appropri-

ate "asmmetric parabola", although for practical purposes the refinement is

not necessary. In other words, if the position feedback is linear and the

rate feedback roughly quadratic (except for sign) then it is possible to

obtain optimum response for this particular type of input. It will be

seen that switching delays give rise to oscillatory motion of small ampli-

tude unless a linear velocity-feedback term is introduced. For this reason

it is usually desirable to introduce a small amount of such feedback (in

addition to the quadratic feedback) in order to eliminate or minimize this

oscillation. This does not significantly affect the results for large

amplitudes.

It is quite important to remember tr.at this optimization does not

necessarily give optimum response for arbitary inputs. Further considera-

tion is beyond the intended scope of this paper.

2,4 On-off control.

There probably are more on-off discontinuous controllers in the world

than the number of all other servomechanisms and regulators put together.

Hot-water heaters, ovens, refrigerators, furnaces, electric irons, battery

chargers, liquid-level controls, and compressed-air pressure regulators

are all commonly of this type.

A relay system is one which contains a decision function. It is

commonly in the error amplifier and in its most elementary form is an on-

off switch. If the positive error exceeds a certain amount, the switch is

turned from on to off, and if the negative error exceeds a certain amount,

the swtich is turned from off to on. When the switch is on, a predetermined

constant corrective force is applied into the rest of the system to bring

the output back into correspondence with the desired value. When the switch

18



is off, this force is removed. The differential equation for each is the

open-loop equation, with one term, the corrective force, having two differ-

ent values for the two periods. Each switch operation starts a new period

for which the initial values are the final values of the previous period.

One characteristic of a relay is that it delivers an output having one

of only two values, independent of the continuous changes in the input,

except they specify the switching instants. It also has hysteresis, the

phenomenon that the input values for switching on and for switching off

are not exactly equal. The actual time of motion of the armature will be

considered negligible, but the system may contain the dead time of flow of

material through a long pipe, equivalent to the time of transmission of an

electric signal on a long distoritonless line.

The term relay is used to apply to any device having at least the first

of these characteristics. In this paper, we are interested primarily in

discontinuous control of continuous processes, so that the relay is only

one part of the system.

The on-off control, or two position control, is undoubtedly the most

widely used type of control for both industrial and domestic service. It

is the kind of control generally employed on home heating systems and

domestic water heaters.

Two position control is a position type of controller action in which

the manupulated variable is quickly changed to either a maximum minimum

value depending upon whether the controlled variable is greater or less

than the set point. The minimum value of the manupulated variable is usually

zero (off). This mode of control is illustrated by the electric level-

control in Fig. 2.6. A float in the vessel operates an electric switch

which controls power to a solenoid valve. When the liquid level rises,
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Fig. 2-6. Two position control

rn

Fig. 2-7

Two-position control without
differential gap

Fig. 2-8

Two-position control with
differential gap
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the switch contacts are closed, the solenoid valve closes, and the flow is

cut off. When the liquid level falls, the switch contacts are opened, the

solenoid valve opens, and the inflow resumes. If the float lever has no

bearing friction and the electrical contact draw no arc, the action is sharp

or "knife'edge" as shown in Fig. 2-7.

The equation for the two-position control are

m = M. when e ;?»•

m = M when e -<-
o

where m = manupulated variable

M. = maximum value of manupulated variable (on)

M = minimum value of manupulated variable (off)

e = deviation

Thus two-position control must be described by two equations, each apply-

ing in a certain region of deviation.

A differential gap in two-position control causes the manupulated vari-

able to maintain its previous value until the controlled variable has moved

slightly beyond the set point. In actual operation it is the same as hystere-

sis, as may be seen in Fig. 2-8.

A differential gap is caused in the two-position controller of Fig. 2.6.

If small static friction exists at the bearing on the float arm, the liquid

level must rise slightly above the desire value to create sufficient buoyant

force to overcome friction when the level is rising. Also, the liquid level

must fall slightly below the desired value when the level is falling so that

the weight force may overcome the friction. This kind of differential gap

may be caused by unintentional friction and lost motion.

A differential gap may be intentional, as when a magnet is installed on

the float arm in Fig. 2.6, causing a hysteresis in float-arm action. Similar

arrangements are common in domestic thermostats and are employed for the

purpose of preventing rapid operation of switches and solenoid valves for

reducing of electrical contacts.
21



3. Description of the system .

The nonlinear feedback control system to be studied is a relay servo

system as shown in Fig. 3-1.

Block one contains the transportation lag. The nature of this block

and its analytic representation will be discussed in section 6.

Block two is the ideal relay, no dead zone and no hysteresis.

Block three is the motor load unit or plant. It is assumed to be a

second order system. In order to have the transfer function always low

pass in nature, we choose the value of G(s) as

Q(s) =-
S(Si-<) (3.1)

Block four is a tachometer. In this system velocity feedback compen-

sation is used.

This system, in addition to the velocity feedback, will also use unity

position feedback.
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4. Nonlinear analysis .

4.1 General

In many cases the system designer is forced to work with components

which are not entirely linear. In order to linearize the response of a

nonlinear actuator we use the feedback. The basic difficulty with the non-

linear equation is that it is not possible to exhibit a general solution.

Associated with this is the fact that there is no complementary function

or transient solution made up of terms with characteristic shapes, there

are, therefore, no system roots such as were defined for linear systems

with constant coefficients. It is not the scope of this paper to include

a comprehensive treatment of nonlinear systems.

Many systems are approximately linear when the amplitude of the

system variables are not too large or too small. For large enough ampli-

tude all physical systems must become nonlinear. A system which for small

amplitude is a linear unstable system must become nonlinear when the oscil-

latory amplitude exceeds some value. Such a system will sometimes reach a

stable oscillatory motion which is termed a limit cycle. Although such

motion is usually periodic, it need not be sinusoidal.

There are other large-amplitude nonlinearities which are in a sense

destablizing. In these systems, small amplitude response may be stable

and satisfactory, but large disturbances may send the system into uncontrol-

led large-amplitude oscillations.

There are also nonlinearities which become important for small amplitude

motions. Mechanical friction and backlash are good examples of this type.

In the case of backlash it is not unusual to find a limit cycle of small

amplitude which leaves the system capable of following commands or inputs
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with good accuracy and in an essentially linear mannes except for the small

limit cycle motion which is superimposed on the desired response.

4.2 The describing function.

Many functions involved in automatic control are not desirable by

elementary techniques, and they must be described by graphical or other

methods.

The output of a nonlinear element will not necessarily be sinusoidal

even though the input is a pure sinusoid, but it will generally contain

fundamental and harmonic waves. The frequency of the fundamental of the

output will often be the same as the frequency of the input. In this case

a describing function can be used and the element may be treated as a lin-

ear element.

Since most elements of a feedback system are of a low-pass nature, the

higher harmonics may be greatly attenuated in the rest of the loop, so that

the input to the nonlinear element may be quite accurately sinusoidal. If

this is the case, it is necessary to compute the transmission around the

loop for the harmonics. In particular, for the nonlinear element we need

only a function to describe the fundamental component in the output as a

function of the amplitude and frequency of the sinusoidal input. This furc-

tion has been named a describing function. Since the describing functions

are approximations to the output -input ratio of an element having slight

nonlinearily, it is anolagous to the transfer function of a linear system,

and for certain purposes will be used in a similar manner. There is, of coursej

one important difference. Since a transfer function describes a linear sys-

tem, it may be frequency-dependent but it is not amplitude-dependent. On

the other hand, the describing function is usually amplitude-dependent and

may also be frequency-dependent. The describing function is expressed in
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terms of the amplitude and phase of the fundamental of the output signal

related to the amplitude and phase of the input signal. The describing

function can be obtained analytically or experimentally.

Describing functions are generally useful in automatic control anal-

ysis if the neglect of the harmonics in the output signal does not cause

difficulties. They may be used with adequate results when the element in

question is followed by one or more elements having appreciable attenua-

tion of the harmonics in question.

4.3 Computation of the describing function.

Consider a nonlinear element whose input is sinusoidal,

x = X sin art (4.1)

and whose steady state output can be written as a Fourier series:

Y = y(t) = a A+ a, cos c-t/t + b. sinort + a„cos2ct/t + b„ sin loft* ol*- 112 2

+

= a J2~ ^^_ (a cosk<^t + b sink^/t ) + ....(4.2)

Evidently

a
Y =2,rTJ

)

y(Ocos(k«/ t)d(«/t) (4.3)

b = 2//z f* y(t)sin(k*/t)d(«/t) (4.4)

The describing function is defined as the complex number

Of
N = N + jN

2
= Nc€ (4.5)

where

or, alternatively,

N
x

= b /X N
2

= a /X
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This definition immediately puts certain restrictions on the permissible

nonlinearities. The output function must be a periodic function with

period equal to that of the input. According to this definition, devices

which produce subharmonic response do not have a describing function.

The form of Equation 4.1 implies that the input is sinusoidal and

does not contain d-c bias. If a nonlinearity in a feedback system is not

symmetric, then in general there will be such a bias.

Because we are only interested in the nonlinear device of ideal relay

only ideal relay will be discussed. The characteristic of the ideal relay

is as shown in Fig. 4-1.

o *v

+
o C(

-V

ost

e = + Y
o

e = - Y
o

Fig. 4-1. Characteristic of ideal relay.

From Fig. 4-1

o *c o/t -c n

The describing function of the ideal relay can be obtained very simply

by carrying the integration indicated in Equations 4.3 and 4,4 and 4.6. And

in calculating the describing function, we are only interested in the funda-

mental terms. Thus we have the describing function of the ideal relay as

GJ/w) 7TX (4.7)
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From the above results, we know that the describing function of the

ideal relay is amplitude-dependent and independent of frequency. This

function is plotted against X in Fig. 4.2.

Co

X
Fig. 4.2. Describing function of ideal relay.

4.4 Analysis of the limit cycle.

4.4.1 Frequency response method

Limit cycle angular frequency oX , as predicted by the frequency re-

sponse method, is such that the loop phase shift is 360 degrees and this

occurs when the loop frequency response function has no imaginary part.

The flow diagram for sinusoidal quantities is shown in Fig. 4.3; the

relay is represented by a describing function in cascade with a time de-

lay transfer function and the relay output takes on the values + or - unity.

The condition for

Fig. 4.3.

a limit cycle is therefore met when

Q (/«*)

-j'oJ±td

is real

by rationalizing this expression the condition becomes:

L^a.
2
1-JV<.] is real
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Expanding the exponential term gives the limit cycle condition as

(CoS 6Jt td - jS;n OJ, td )(0/J + /C«tJ is real

Equating the imaginary terms to zero yields the condition

<vith**it,=J P *=%T (4 - 8)

For a given value of t , (delay time) the dimensionless period P =
.

d
v , „_, r ^

is multivalued. These values correspond to the possible modes of oscilla-

tion and only the longest period is stable.

According to the frequency response method the servo loop gain at limit

cycle frequency is unity since the oscillation is exactly regenerated in the

loop. To determine the limit cycle amplitude at the input to the on-off

element it is therefore necessary to solve the equation obtained by equating

the loop frequency response function to unity at the angular frequency, that

is , .,

-£-/_£ 2- _/ (4.9)

where X. is the amplitude of the fundamental component of the error signal

when limit cycling. Thus at limit cycle frequency, the imaginary part of

the loop frequency response function is zero and by rationalizing the left-

hand side of equation 4.9 and equating the imaginary part to zero we obtain

£ J
6Jj Cos aJLtj -h S i-*? ckS*. -t</ 1 __ 4

W*. ( l + OS* I ~
J

or

L
*<- x*p I TT7J-* 7 (4.io)

where x is the dimensionless measure of misalignment limit cycle amplitude

and P is the time limit cycle period.

The values of P and x from equations 4.8 and 4.10 are plotted as shown

29



in Fig. 4.4. From Fig. 4.4 we can predict limit cycle amplitude and period

in an on-off system.

Equation 4.9 can be rewritten as

Equation 4.11 may be analyzed for stability by Nyquies method or by root

locus method if the describing function G is amplitude-dependent only.

When G_ is amplitude- but not frequency-dependent, it is possible to

reduce a very simple criterion for predicting stability or instability.

The basis for the criterion is that the leftside of equation 4.11 is only

frequency-dependent and the right side is only amplitude-dependent. Margin-

al stability as predicted from the Nyquist criterion and the describing fun-

ction concept requires a solution of equation 4.11, or in other words, an

intersection of these two curves. At the point of intersection, the frequency

parameter on the one curve and the amplitude parameter on the other give the

frequency and amplitude of the corresponding oscillation. If there is no

intersection, then the system is presumably stable or unstable for all condi-

tions of operation. Since it is difficult to find a rigorous definition of

stability for nonlinear systems, the above statement must be regarded as pro-

visional, pending more detailed investigation or more careful definition of

stability for urusual systems.

From equation 4.11, we have CrC/'«f) a=s==

if we put t , = .2 seconds and by assigning some values of lkJ~ , we can have

the following data; and from these data the Nyquist plot can be plotted as

shown in Fig. 4.5.
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Fig. 4-5 Nyquist Plot of Eq. 4-11
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From the Nyquist plot, a limit cycle is observed; it is at a point where

CO"=^-
4 52 and X asSi 1.71. (The intersection of these two carves). The

intersection may indicate a stability boundary in the sense that excitatio
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at level below that corresponding to the intersection will be unstable fot

the system, and should reach a limit cycle in which the input to the non-

linear element is roughly sinusoidal with angular frequency 6c7 = .52 and

X = 1.71. The system should be unstable for low level of excitation and

stable for level above that corresponding to the intersection.

4.4.2 The root locus method

Because the describing function of an ideal relay is independent

of frequency, so that the root locus method can be readily applied. The

nonlinearity introduces no phase shift but only a gain dependent on ampli-

tude. It will be assumed here that the behavior of the nonlinear system

can be approximated through use of a root-locus diagram for the system with

the nonlinearity eliminated. By block diagram manupulation as follows;

^O^O— Q,
-•\

G, Q.
a

H

( a

;

9-_5 fD G*

H-r /

'n

<*,Q*(H-n)

Fig. 4.6.
cc;

and algebraic manupulation provides the stability relationship, the

characteristic equation

G
l

G
2 VH +1) =

" 1 (4 " 12)
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G(S) = - 1 (4.13)

o(.) =
K

'
:K

t
s

'

X) e
" St

S(S + 1 )

jtX

K
t

S = H

For t = . 5 second,
d

put K =1.5 then we have

_ K (S + 0.67)e"-
5S

GCS) ~ S (S + 1)

Equation 4.13 Is complex and may be split into two equations by equating

the magnitude and phase angle on both sides respectively. Thus we have the

magnitude equation

|G(S)|= 1 (4.14)

and the phase angle equation

/G(s) = ± 180° (4.15)

where

/G(s) = /g'(s) - u/T

/G'(s) -cat = ± 180° (4.16)

i. n ' t n K (s + 0.67 )where G (s) = —» ; -;
s (s + 1)

4
a method is introduced to obtain the required locus of equation (4.16).

First it is to construct a family of root loci (or phase-angle loci) of

the equation

^G y
(s) =

X

where 0. is a constant phase angle. Thus a family of loci can be plotted

by various values of , Fig. 4.7 illustrates a family of root loci for the

transfer function G '(s). Since the locus with phase angle 0. is symmetrical
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to that, with phase angle (-0) with respect to the real axis, only the loci

on the upper half plane are shown.

Next, it is to construct another family of phase-angle loci (the name

dead time lag loci is suggested) on the s-plane from the relation

-&7T =
2

the dead time lag loci family is also plotted in the same sheet as shown in

Fig. 4.7. Then by superimposing these two families of loci on the same

s-plane, the point of intersection of the corresponding curves with the sum

of phase angles 0. and 0~ equal to 180 degrees are the points of the locus

required. The curve drawn through these points is the required locus. It

is the required locus because each point on it satisfies equation 4.16.

The determination of the gain can be carried out then by the criterion in

the root-locus method. The magnitude equation is

K=
|<H<r+ }ar)\ e'

Ts
(4.17)

which will give the gain K of any point on the required locus.

The required roots are the points where the value of gain K is equal

to one. The gain limit, which is the maximum gain below which the system

can have damped oscillation, can be found readily. This is the value of

gain at the point of intersection of the required locus and the imaginary

axis. This value is found to be 1.21.

This given function transfer has an infinite number of roots, which

can be obtained by constructing additional branches of required locus.

In general, the number of influential roots depends on the relative

magnitudes of the dead time T and the other time constant in G'( s )»

The limit cycle occurs at CW= 1.67 rad/sec. and k = 1.21 where

k = k'k
t

4Y 2

n X rr X
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k
t

- 1.5

K = 1.21 =

X =

* X

2 x 1.5

2

n X
x 1.5

« x 1.21
= .788
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5, System with Dead Time .

5.1. Transfer function associated with pure dead time

If the input to component with a pure dead time characteristic is f(t)

u(t), then the output of the component is f(t - T), where TJ> is the

dead time. The transfer function associated with pure dead time is, there-

fore,

0(.) - 4^ (5.1)

• e"
TS

(5.2)

For sinusoidal input at frequency cjt , the transfer function given

in equation 5.2 becomes

G(jor) = e" j^ T
(5.3)

The gain is thus seen to be independent of the frequency and equal to unity,

and the phase shift is seen to be directly proportional to frequency.

5.2 Frequency response of a system with dead time.

It is of interest to compare the frequency characteristics of a unit

with pure dead time T and a unit with a first-order lag transfer function

with time constant equal to T. That is,

and

G
x
(s) = e"

TS
(5.4)

G2< S
> ^TlVT < 5 ' 5 >

The gain associated with G
1
(j OX) and G„(j«_r) are

GjUar)! = i (5.6)

|G
2
(jdV)| = s/l + cuT (5.7)

and their respective phase angles are

X
= -orT (5.8)
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and

= - arc tan&JT (5.9)

The Bode diagram for the two units are plotted as shown in Fig. 5.1, where

it can be seen that for o/T <£. 1, the units have nearly the same effect on

a given input signal. Generally, however, since for higher frequencies the

dead-time unit exhibits more phase lag and more gain than the first-order

lag unit, the introduction of the dead-time unit in cascade within a given

closed- loop system has more adverse an effect on the stability of the system

than does the introduction of the first-order unit.

Dead time has the characteristic of a pure phase shift since the magni-

tude is always one. Seen easily from the graphs drawn in Fig. 5.2 that no

other dynamic element builds up phase lag so much as dead time. In combina-

tion with other dynamic elements the phase lag of dead time is simply added

to obtain the total phase lag.

u

3

CM
3

Frequency, T

Fig. 5-2. Dead- time element.

A useful approximation for dead time T is the following function from

the Pade list,

GfS N _ 2 - TS
G(S) ~ 2 + TS

(5.10)
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The magnitude of this function is everywhere 1.0 and the phase lag cor-

responds very closely to dead time up to frequencies given by o/T = 0.5.

In addition, this function may be easier to incorporate into complex system

analysis.

The destabilizing effect of the transportation lag, as dead time is

also known, and clearly illustrated in a Nyquist diagram. For example, if

a unit with a pure dead-time characteristic given by

GjCS) = e (5.11)

is connected in cascade with a component with transfer function

ys
> - s(s

2

+d (5 - l2>

as in Fig. 5.3, the Nyquist diagram for the system for various values of

the dead-time appears as in Fig. 5.4. As can be seen in this graph, for

small values of transportation lag the introduction of the dead-time unit

merely results in a decrease in relative stability, but for large values of

transportation lag the system can be unstable.

The effect upon stability of the introduction of a transportation lag

in cascade within a closed-loop system of the type illustrated in Fig. 5-5

(a) can be determined from the Nyquist curve for the original system in the

following manner. The characteristic equation of the original system is

1 + G
a
(s)G

b
(s) = (5.13)

and that of the system which is obtained by introducing a transportation

lag T within either the forward path or the feedback path is

1 + G
a
(s)G

b
(s)e'

Ts
= (5.14)

Equation (5.14) can be rewritten as

G
a
(s)G

b
(s) = -e

+Ts
(5.15)

or, in terms of frequency response, as

G
a
(joOG

b
(j«/) = -eJa/r

(5.16)
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Fig. 5-3. Block diagram of a simple feedback
system with transportation lag.

Fig. 5-4. Nyquist diagram for the system
illustrated in Fig. 5-3
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Fig. 5-5 Block diagram of a single loop feedback system
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Fig. 5-6 Stability locus in the G G, -plane for a
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system of the type shown in Fig. 5-5(b).
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Fig, 5-7 Determination of phase margin in a
system with transportation lag.
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The locus of G (io/')G, ($c<s) is the Nyquist curve for the original system;
a b

equation (5-16) states that the effect of introducing transportation lag T

is to shift the critical stability point in the G G, -plane from -1 + jO to
a b

-coso/T - jsin<xrT. That is, the critical point becomes a critical locus,

in the form of the unit cycle in the G G, -plane, as shown in Fig. 5-6.
a b

The characteristic equation (5-16) is satisfied only if the locus of

G (JC«/)G, (jou?) intersects the stability locus in such a manner that the
a. D

frequency on the Nyquist curve and the frequency on the stability locus are

the same at the point of intersection. If the two frequencies are not equal

at the point of intersection, a measure of relative stability is afforded by

the stability locus. Thus, if the Nyquist diagram for a given system has the

appearance shown in Fig. 5-7, the phase margin can be determined as follows:

1. Determine the cross-over frequency CWC , at whichthe Nyquist

curve crosses the unit circle.

2. Locate the point on the stability locus for <xr =• oj^ .

3. Draw a radial line segment from the origin through each of

these points.

4. Measure the angle between these line segments. This angle is

the phase margin, with the same positive sense as in the case of a system

without transportation lag.
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6. Transportation lag .

6.1. General

The phenomenon of dead time, sometimes called transportation lag or

time delay or ideal time lag, can best be categorized as a lack of change

in output for a specified interval of time following a change in input,

this is illustrated in Fig. 6.1.

in

T t

Fig. 6.1

Transportation lag may be encountered in process involving pressure,

temperature, and also may be found in process involving chemical reactions

when a finite time must elapse before a reaction begins to occur.

Occasionally in analyzing engineering systems, it becomes necessary to

simulate time delay (or transportation lag). For example in studying trans-

mission processes through hydraulic or pneumatic lines or in studying the

motion of radio active particles in neuclear reactors it is necessary to

produce an output voltage which is identical with an input voltage but dis-

placed in time by a specified amount.

Transportation lag may be expressed by the following mathematical re-

lationship: Given f (t) for t^ 0, the function f (t - T) differs from the

function f(t) by the dead time T, where f(t - T) is defined to be zero for

t < T.
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A direct and accurate method for generating such time delay is to

employ a magnetic tape recorder in which the space between the recording

and reading heads is adjustable, by suitably controlling the relative loca-

tion of the two heads and the speed of the tape a wide range of time delay

can be simulated.

Approximate methods which do not require special auxiliary equipment,

once an analog computer is available, are based upon the Laplace-transforma-

tion relationship

c/l^(^-T)]= F(s)e
ST=J(fw]e

ST
(6#1)

-sT
since e cannot be expressed as a rational function, the transfer func-

tion for dead time can be simulated only approximately, thus the remaining

9
methods depend on an approximate series or technique of network synthesis.

The Taylor series expansion of this function is

~* T
, tk (T5j2 (rs)

3 ,[rjf ATS? „
9 ^C = / - TS -h —j - -jy f ^y- \ n i

(6.2)

The generation of the terms of this series would require successive differ-

entiation with attendent noise problems. The rate of convergence of equa-

tion 6.2 is further relatively slow, particularly for large values of T,

or high frequencies. For this reason the Taylor series is not well suited

to the generation of transportation lag for problems involving high fre-

quencies or long time constants.

6.2 Pade approximation

A more practical approach to the generation of the transportation lag

9
function is to employ the so called Pade' approximation. From equation

6.1 the transfer function of transportation lag is

e-*r= /C+u-tJ) = ,
£,

(6#3)
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substituting s = jo/ to find the frequency response gives

C 4
I

thus

fi,

ft
JCOS *cv T -f SSfi'co I /

(6.4)

<? = /c* Y~ Cosco-t)
=-">'

. (6.5)

from the above equations the frequency transfer function of the trans-

portation lag is characterized by an amplitude ratio which is unity for all

frequencies and a phase angle which varies linearly with frequency over the

desired range of interest. From equations 6.4 and 6.5 it is seen that the

quotient of any pair of complex-conjugate polynominals has an amplitude of

unity and also possess considerable phase shift.

In the Pade' approximation the exponential is approximated as the ratio

of two polynominals in s, according to

e
J7~== %

(s)
(6.6)

where subscripts m and n refer to highest power of s in the numerator and

denominator, respectively. Expressed in its basic form, the Pade' approxi-

mation is

e X= Lm. F»-* (x >
(6.7)

where

F (X ) /+ v* + V(t/"M
,

(6.8)

47



U d (i/- * )(o- 2) 2> 1 X* (6.9)

the convergence for this series expansion is quite rapid and often values

of u and v of 2 will give good accuracy for short time lag and lou frequenc-

ies.

-sT
The Pade' approximation of e for u = v = 2 and if x = -sT is

/
2

-9-
(s T) -t

2
"3-.'

(5 T)
/ + $ Cs r) •+ a (ST) 2

5 2
;

r z ~~

~

£, 5 T + 12
S T* + 6ST -t 12.

the higher the powers of the numerator and denominator, the more terms of the

series can be matched and the smaller the error in the time delay function.

Equation 6.11 is the second order Pade' approximation. The fourth order Pade'

-sT
approximation (u = v = 4) for e is

-sr (SJ)" ~20(st)3 +\$Q(st) - S4Q(^T) +IG8Q

(STJV 2o(st) 3 t t&o(s TJ
3
+ 840(sr) -t-1630

Higher order pade' approximations provide improved accuracy and fre-

quency response. It is noted that the order of the characteristic equation

-sT
is raised by the order of the approximant used to simulate e '

. If the

second order approximant is used, two additional roots are introduced into

the characteristic equation.

6.3 Simulation of transportation lag

Equation 5.12 can be rewritten as

/ _ 2Q 1 8o
__ 84-

O

, IG8Q

oClf-Cti] ~
/ 2Q ISO d4Q I68Q
' ST C*V* I*?) 3

r
(STJ4

since the differential operator, D, and Laplace operator are interchangeable
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when initial conditions are zero, equation 6.13 can be expressed as

2Q ISO _ 840 + I G&Q

-f(-t - T) __
' DJ (or)* (6r)> (&0+

f(t)
~ l+ 2°

.,
'0Q 84Q ^ I68Q

1 Of (DTj* (OT)3 (DTp

(6.14)

rearrange equation 6.14 and we get

f«- T)= i (t) - [22. fit) + **f(t- T)]-£-

+ (<& f») - -UpS-tH - V] £ (6. 15)

according to equation 6.15, the analog computer circuit can be simulated

as shown in Fig. 6.2.

The time delay T in second is determined by the magnitude of the input

resistors to the four integrators. Such a circuit works well only in a

limited frequency range (direct current to approximately 50 cps). In-

stability results if the variation of the input signal f(t) is too rapid.

It is therefore not feasible to apply a step function to this circuit. In

case f(t) is not equal to zero at the commencement of the computer run, it

is necessary to apply appropriate initial conditions to the integrators.

The transportation lag devices described thus far are limited to applica-

tions in which the delay time T remains constant throughout the computer

run.

The method of simulating transportation lag by the Pade* approxima-

tion yields what may be termed optimally flat phase characteristics at the

origin but does not fit the phase characteristics as well over an extended

frequency range. The major drawback to the use of the Pade' approximation

to simulate transportation lag is their response to a step input or other
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input having high frequency components, since the amplitude ratio is

always unity but the phase shift is approximated only for low ctfT pro-

ducts. The phase shift characteristics of certain of the Pade' approximation

are shown in Fig. 6.3. As a result of the inability of this approximation to

linearly phase shift high frequencies, the output of an approximant rings

badly for high-frequency inputs. This behavior is illustrated in Fig. 6.4.

The actual location of the transportation lag transfer function in the

forward path is immaterial and it may be placed at the end of the path in

the computer where the high frequency components have been attenuated to the

greatest possible extent.

In the great majority of cases the fourth order Pade' approximant is

more than adequate for the simulation of transportation lag. In cases

where linear phase shift of higher cwT products than those shown in Fig.

6.5 is desirable, higher order Pade' approximants or more complex curve

-sT
fitting techniques may be used to simulate e '

. The phase shift character-

istics of the sixth order and eighth order Pade 1 approximants are shown in

Fig. 6.5. On the basis of this result it may be inferred that the order

of the Pade' approximation may be increased to increase the magnitude of

the cvl product that is linearly phase shifted without distorting the

phase shift of low <xr T products. Because the Pade 1 approximation may be

expressed in a general form from which any order approximant may be develop-

ed, it is felt that the use of curve fitting techniques requires a needless

expenditure of effort without any tangible benefit.

6.4 Generation of time delay from magnetic tape recorder.

The transportation lag generated by using the magnetic tape recorder

is very accurate, and it saves a lot of time and labor for simulation by

using amplifiers.
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(a) delay time ^ 1»° second

(b) delay time ^ 10 seconds

Fig. 6-4 Curves obtained from Fade approximation
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The magnetic tape recorder used has the following specifications:

Ampex Model FR1107 magnetic tape recorder

Tape speed: 3-3/4, 7-1/2, 15, 30, and 60 inches per second.

Input impedance: 100,000 ohms unbalanced to ground.

Input level: 1 volt rms recommended for normal recording level.

Output impedance: 125 ohms 75 /Yf, unbalanced to ground.

Output level: 1 volt rms normal, across 10,000 ohms load impedance at

normal recording level.

The response curves obtained from the magnetic tape recorder are as

shown in Fig. 6.6. Compare this with that obtained from analog computer

as shown in Fig. 6.4, it is obvious that the magnetic tape recorder is

most desirable for simulating the time delay, since it gives a more ac-

curate result.
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(a) delay time ^ .4 second

(b) delay time - ^•7 seconds

Fig. 6-6 Curves obtained from magnetic tape recorder
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7. System simulation .

7.1. Analog computer simulation

The block diagram of the system to be investigated is as shown in

Fig. 7.1.

&+C^+r\ -ST
e

W
J So

L
9 f

-V
S(S+i)

Kt S

Fig. 7.1. The block diagram of the relay servo system.

The simulation of the transportation lag is shown in Fig. 6.2. The Simula

tion of the ideal relay is as shown in Fig. 7.2.

Fig. 7.2. The simulation of the ideal relay.

From the block diagram of the system, the analog computer circuit

diagram can be simulated as shown in Fig. 7.3.

Because of its convenience and accuracy, the magnetic tape recorder is

selected for the generation of transportation lag (e '

) through the experi-

ments.
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7.2. Digital computer program

The block diagram of the system is shown below.

f(t) + £(t)

"<^9?<

CTACH
DA DELAY

ADELAY

Fig. 7.4. The block diagram of relay servo system.

The variable names used in the program, E(IT)
S
EDELAY, etc,, are shown

below their mathematical counterparts. Note that the fixed point IT or the

floating point T indicates the number of increments, starting with IT = 1

:

zero time

\ r
time = DELAT/~-time = 2 DELAT, etc.

I 1

IT = 1 IT = 2 IT = 3

T = 1. T = 2. T = 3.

E(l) E(2) E(3)

etc. etc. etc.

The method of computation is simply to evaluate the analytic expression for

the response at each increment point. The response is always supposed to

have started at the time of the last relay operation (TF in increment measure)

with initial condition equal to the final values of A(IT) = AF, and DA(IT)/

CTACH = DAF at the end of the previous response segment;
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new response computation starts here
based on relay operation at IT = TF

J
*if computation at this point shows change of sign of EDELAY from previous
value, the relay operates here, TF, AF, and DAF are recorded as the current
value of IT, A(IT) and DA(IT).

Analytic response.

The plant transfer function is

A(s) /

6(V

3(s)

5(3 t o<)

3 A(s) -t o(SA(s)

and the differential equation describing the plant is

t>(t)
d act) , ^ d ccit)

c/t s ~ +
c/t

with initial conditions a(0) and a(0) (AF and DAF in program).

The input is a step V

-¥- = 5 /Ks) - Sa(o) ~ dCo) -t-otSACs) - oSa(o)

si r __ Vt S*ci(o) + sfcL(o) + °ca_co ) }" ACS) s ^
(s ^. (X j

This can be expressed into partial fractions

equating the coefficient of s

Y •+ z: = a (o)

s
f x + Y<*= d(o) -h oiaio)

S :

(7.1)

(7.2)

(7.3)

(7.4)

(7.5)

(7.6)

(7.7)

(7.8)
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X =* ex,
" = V/ALPHA In program

Y = -~-
j (1(0) -f-

o(tf(oj - )(} = (DAF + ALPHA- X) /ALPHA

^ - acc) - Y = AF - Y

from equation 7.5, the time solution is

-ott

act)=xt + y -t^ e

= X*TAU + Y + Z*EXPF(-ALPHA*TAU) in program

dfc)=x -2^ e~**

= X - Z*ALPHA*EXPF(-ALPAH*TAU) in program

t « -— TAU is time from last relay operation

Program accuracy.

1). The time delays can be introduced only as an integral number

of increments (each of magnitude DELTAT)

.

2). The only actual inaccuracy is the fact that the relay can only

operate at integral values of IT*. The accuracy, for a given increment size,

DELTAT could be fairly easily improved by introducing an interpolation pro-

cedure between computation points. The same technique could be used to

introduce non- integral number of the delays.

The plant dynamics can be easily changed by re-working the partial

fraction expression and the expression for a(t) and a(t).

The program for the relay servo system is shown below. And one case

of its output (t, = .8 second, k = 2.0) is attached to this program,
a t

*This error may be regarded as a variability in the forward path time delay,
so that the actual delay may lie between the desired IDl and IDl+1.
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.JOB CHIANG MAX. TIME 3 MIN.
PROGRAM TLR50J

RESPONSE CALCULATIONS FOR RELAY SERVO SYSTEM WITH OELAYS 101,102 AND
ID3 IN THE FORWARD, FEEDBACK AND TACHOMETER PATHS, RESPECTIVELY.
SOLUTION IS OBTAINED FOR A TOTAL TIME OF TMAX SECONDS IN INCREMENTS
OF DELTAT SECONOS. IN THE PROGRAM BOTH T AND IT ARE THE NUMBER OF
TIME INCREMENTS PLUS ONE. THAT IS, THE INITIAL'TIME IS T=l.. THE THREE
DELAYS ARE MEASURED BY THE NUMBER OF TIME INCREMENTS. THE SYSTEM
FORCING FUNCTION IS SPECIFIED BY PROGRAM STATEMENT NUMBER 1, AND TWO
FOLLOWING CARDS.
INPUT DATA.

IN ON CARD 1. RIGHT JUSTIFIED IN COLUMNS 1 AND 2
101 » 102,103 ON CARDS 2 THRU 4. RIGHT JUSTIFIED IN COLUMNS 1 THRU 3
V ON CARD 5. IN COLUMNS 1 THRU 10 WITH DECIMAL POINT
ALPHA ON CARO 6. IN COLUMNS 1 THRU 10 WITH DECIMAL POINT
CTACH ON CARD 7. IN COLUMNS 1 THRU 10 WITH DECIMAL POINT
TMAX ON CARD 8. IN COLUMNS 1 THRU 10 WITH DECIMAL POINT
DELTAT ON CARD 9. IN COLUMNS 1 THRU 10 WITH DECIMAL POINT
INCPRNT ON CARD 10. RIGHT JUSTIFIED IN COLUMNS 1 ANO 2.

INCPRNT IS THE NUMBER OF INCREMENTS BETWEEN PRINT OUTS
V IS THE RELAY VOLTAGE
ALPHA IS THE PLANT TIME CONSTANT
CTACH IS THE TACHOMETER CONSTANT
THE MAXIMUM NUMBER OF INCREMENTS IS 1000. THE NUMBER OF INCREMENTS
MAY NOT EXCEED 900 IF A GRAPH IS REQUIRED.
IN IS THE NUMBER OF CASES TO BE SOLVED. NOTE THAT THERE MUST BE ONE
DATA DECK OF NINE CARDS FOR EACH CASE. THE FIRST CARD CONTAIN! ING IN
IS NOT REPEATED. PUT IN«1 IF ONLY ONE CASE IS TO BE SOLVED.
EACH SET OF DATA CARDS MUST CONTAIN THE REQUIRED GRAPH FORMAT CARDS.
REMOVE CALL GRAPH STATEMENT ANO GRAPH FORMAT CARDS IF NO GRAPH IS
REQUIRED.

DIMENSION AI1001 ),B( 1001 ),E( 1001 ),DA( 1001 ),DE( 1001), ET( 1001),
1 TIMES(1001),FIN(1001 ),BS<1001)
READ 150, IN

150 FORMAT (12)
DO 3U K=1,IN
READ 1 00 , ID 1, 1 02, 1 03, V, ALPHA, CTACH, TMAX, DELTAT, INCPRNT
PRINT 200
PRINT 201
PRINT 202, 101,102, ID3.V, ALPHA, CTACH, TMAX, DELTAT

100 FORMAT ( I3/I3/I3/F10.1/F10.1/F10.1/F10.1/F10.1/I2)
200 FORMAT (//)
201 F0RMAT(31H RELAY SERVO SYSTEM INPUT DATA //)
202 FORMAT ( 8H ID! *I 3/ 8H ID2 =13/ 8H 103 =I3/8H V =F7.3/

* 1 8H ALPHA =F7.3/ 8H CTACH =F7.3/ 8H TMAX =F7.3,5H SEC./
2 8H 0ELTAT*F7.3,5H SEC.)
PRINT 203
PRINT 204

204 FORMAT ( 6X42HCALCULATED RESPONSE OF RELAY SERVO SYSTEM )

203 FORMAT (1H1)
T=l.
TF*1.
A( 1 )=0.
DAM )*0.
AF=0.
DAF*0.
EDELAY=0.
INC=TMAX/DELTAT
NUM=INC-2

1 F=l.
DF = 0.

205 FORMAT (6X30HF0RCING FUNCTION * A UNIT STEP)
FINt IT)=F
IF(T-1.) 7,2,7

2 PRINT 205
PRINT 200
PRINT 206
PRINT 207

206 FORMAT ( 7X4HTIME5X7HF0RC ING5X6HSYSTEM5X5HPLANT4X5HPLANT7X4HRATE
1 7X4HRATE)
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207 FORMAT ( 16X8HFUNCTI0N4X5HERR0R6X5HINPUT4X6H0UYPUT5X6H0UTPUT
1 6X5HERROR/)
E ( 1 ) =F
ET(1)=F
IF(E(1) )3,5,3

3 IF(I01)SfU f 5
4 B(l )=SIGNF(V,E(1>) V

GO TO 6
5 B(1 )=0.
6 TIME*0.
DE(n-OF
PRINT 208, TIME,F,ET(1), BC 1 1 , A( 1 ) ,DA( 1 ).DE( 1 )

208 FORMAT ( 6XF6.3,3XF8.4,4X F8. 4,3XF6.2,3XF8.4,3XF8.4,3XF8.4)
00 33 IT*2,INC
T = IT
TIME=(T-1.)«0ELTAT
TIMES(IT)*TIME
EDELAYl'EDELAY
J = l

GO TO 1

7 TAU=(T-TF)«DELTAT
TAU IS TIME FROM LAST RELAY OPERATION (OR FROM TIME ZERO)
TF IS THE TIME OF THE LAST RELAY OPERATION (INCREMENT MEASUREMENT)

X = B( IT-D/ALPHA
50 Y*(DAF*ALPHA»AF-X)/ALPHA

Z=AF-Y
AF AND OAF ARE THE PLANT OUTPUT AND RATE OUTPUT AT TIME OF LAST RELAY
OPERATION. X,Y AND Z ARE THE COEFFICIENTS IN THE PARTIAL FRACTION
EXPANSION.

A( IT )=X«TAU+Y+Z«EXPF(-ALPHA«TAU)
DA(IT)= X-Z*ALPHA«EXPF(-ALPHA»TAU)
IF(ID2)9.8,9

8 ADELAY=A(IT)
GO TO 12

9 IF(ID2-IT+1)10.10 9 11
10 ADELAY*A(IT-ID2)

GO TO 12
11 AOELAY»0.
12 IF(ID3)14,13,14
13 DADELAY=DA(IT)

GO TO 17
14 IF(ID3-IT+1)15. 15,16
15 DA0ELAY=DA(IT-I03i

GO TO 17
16 DADELAY*0.
17 E(IT)=F-ADELAY-OADELAY«CTACH

GO TO (51,31 ).J
51 IF(ID1)19, 18,19
18 EDELAY=E(IT)

GO TO 22
19 IF(ID1-IT*1)20.20,21
20 EDELAY=E(IT-ID1)

GO TO 22
21 EDELAY=0.
22 IF(EDELAY)24,23,24
23 B(IT)=0.

GO TO 25
24 B(IT)=SIGNF(V,EDELAY)
25 IF(XM0DF((IT-1 ) ,40»INCPRNT )) 27, 26,27
26 PRINT 203
27 IF(XM00F((IT-1),10»INCPRNT))29,28,29
28 PRINT 210

210 FORMAT (/)
29 IF(B(IT)-B(IT-1))30, 31,30
30 IF(ID1-IT+1)332,331,332

331 S=0.
GO TO 333

332 S=ABSF(EDELAY)/(ABSF(EDELAY)*ABSF(EDELAY1>)
333 TF-T-S

AF=A(IT)-S»(A(IT)-A(IT-1 ))
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DAF=DA(IT)-S»(OA(IT)-DA( IT-1))
C THE LAST SEVEN STATEMENTS SET THE INITIAL VALUES FOR THE NEXT SEGMENT
C OF THE CALCULATION IF RELAY OPERATION HAS BEEN DETECTED BY STATEMENT
C NUMBER 29. THE TIME OF SWITCHING HAS BEEN FOUND BY LINEAR
C INTERPOLATION AS HAVE AF AND DAF. F SHOULD BE CONTINUOUS EXCEPT AT
C TIME ZERO.

TIMEMT-S-1. )»DELTAT
PRINT 209.B( IT), TIME

209 FORMAT (22H THE RELAY SWITCHED TO F6.1.10H AT TIME = F7.3.5H SEC.)
C WE HAVE NOW TO CORRECT AUT),B(IT) AND EUT) FOR SWITCHING AT TF.

TIME«(T-1.)»DELTAT
J=2
TAU=(T-TF)»DELTAT
X=B{ IT)/ALPHA
GO TO 50
BS( IT)=B(IT)«0.125/ABSF( V) +0.125
ET(IT)=F-A(IT)
DEUT)=DF-DAUT)
IF(XMODF( (IT-1 ),INCPRNT) ) 33,320.33
PRINT 208,TIME,F,ET(IT),B( IT) , AUT) ,DA( IT) , DE( IT )

CONTINUE
(NUM,ET,DE,8)
(NUM,A ,DA,8)
(NUM,TIMES,A,8)
(NUM,TIMES,DA,8)
(NUM. TIMES, BS, 8)
(NUM. TIMES, ET,8)

31

320
33

34

CALL
CALL
CALL
CALL
CALL
CALL
PRINT
END
END

GRAPH
GRAPH
GRAPH
GRAPH
GRAPH
GRAPH
203

.5
1.
.02
30.
0.05
10

O.OOE+OO +0.00E+00
E02 EDOT VS.

02 CHIANG
.

0, +0.00E+00 +0.00E+00
02 CDOT VS.C
02 CHIANG

+U.00E+00 +5.00E-01
C AND CDOT VS. TIME02
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RELAY SERVO SYSTEM INPUT DATA

ID1 16
I 02
103
V .500
ALPHA 1.000
CTACH * 2.000
TMAX * 30.000 SEC.
DELTAT* • 050 SEC.

!
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7.3 Comparison of the results obtained from the digital computer and from

the analog computer.

The result obtained from the digital computer for the system with time

delay .4 second has been checked with analog computer. They are quite in

agreement with each other as shown in Fig. 7.5 and 7.6.

comparison of the results

by digital by analog
computer computer

3.5 2.6

5.9 5.7

overshoot and undershoot

rise time

Because the digital computer can give an accurate and exact value for

any desired instant, therefore, the digital computer is selected for con-

ducting most of the experiment work, and the analog computer is used to

check the results obtained by digital computer. They are quite in agreement.
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(a) results obtained from digit computer

RECORDER MARK II chart no. ra292

(b) results obtained from analog computer

Fig. 7-5 Output, velocity of the system, t, - .4 second

m



Fig* 7-6 .
Phase trajectory of the system with t, - .4 second
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8. Effect of transportation lag on relay servo system .

8.1. General

From the proceeding sections, we know that the time delay has an adverse

effect on control systems, and which is unavoidable in nearly all the control

systems. Because the time delay may basically be represented by an infinite

series of terms, this creates an infinite number of roots.

Later on in this section, it will be noted that the time lag results in

successive overshooting and undershooting of the correct final value, re-

presenting serious oscillations about the final position. In addition to

this it will also change the root locus and phase trajectories.

8.2 The frequency response.

From Fig. 4.6(c) we have the transfer function with G removed

/-Yo (/ -t K t s)e
ST

(j(s)— s(s+>) (8A)

where K and T are variables. In case of time delay equal to .5 second
s it

is found that the tachometer gain, k = 1.5, will compensate the system to

an acceptable optimum operation, this will be seen' in section 9, now equation

8.1 can be written as

0(5)= (! + /-ss)e*
s

w
5(5 + '

)
(8 ' 2)

The Bode diagram for the above transfer function is shown in Fig. 8.1. So

far as the linear system is concerned, the gain margin for .5 second time

delay system is approximately 1.6 db, but for the undelayed system, it is

stable for all gains and never unstable.

The time delay has introduced additional branches into the diagram.

These branches appear due to the periodic nature of the time delay, and the

increasing phase shift introduced at higher frequencies. It is evident that
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the gain margin for each of the branches increases. This is analogous to

the statement that the roots of the primary branch would go unstable first

if the gain were raised.

The gain vs, log ur curve of the delayed system is identical to that

of the undelayed system, since the time delay introduced no additional gain

to the system. The phase angle vs. log&/ curve of the delayed system is

drastically changed since the equation for the phase angle is

Cf> — - (90° -t ta.s>~'oo- + cut) + tan'O'Sej) (8.3)

The COT term in the above equation has a predominate effect to the phase

angle, it introduces additional phase shift and extra branches.

The limit cycle occurs at a/ - 1.7, k = 1.20.

8.3 The root locus.

The root locus of any system will be greatly changed when a transporta-

tion lag was introduced. As a matter of fact, for an undelayed system the

transfer function in Equation(8. 2) becomes

/• 5 ( S -f-6 7)
G(S) (8.4)SCSff)

no limit cycle exists, because the root locus never intersects the imaginary

axis as shown in Fig. 8.2, which shows a stable system for all gains.

Hi a—
-/ -67

a

Fig. 8.2. Root locus of Eq. 8.4.

But when time delay is introduced this situation will be changed. The root
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locus for Eq, 8.2 (.5 second delayed system) is shown in Fig„ 8,3. The

construction details for this root locus were described in section 4.4.2.

Fig. 8.3 illustrates the effect of time delay on the root locus. It

is apparent that this system will go unstable with only a small increase

in gain. The primary branch stability limit before the root locus corsses

the imaginary axis are k = 1.2., and <</ = 1.76 rad/sec, where the limit

cycle occurs, this almost checks with Bode diagram where k = 1.20
a cu~ - 1.7

rad/sec.

Because time delay introduces periodically phase shift of 360 degrees
9

so there presents additional (upper) branches when at high frequencies. It

is noted that for the same gain the additional roots on the upper branches

are attenuated more than the roots on the primary branch. This substantiates

the Bode diagram findings, which shows that the roots on the primary branch

phase shift would cause instability.

8,4 Transient response.

Because of time delay introduced in the system
s
there is no graphical

method that can be easily used to produce the transient response of any

system. The transient response of the delayed relay servo system (second

order) for various delay time and various k. (taehometei gain) are shown
t

in Fig. 8.4. In Fig. 8.4(a) there are six curves under the same tacho-

meter gain (k = .02); curve (1) is an undelayed system, the rest of the

five curves are with ,1, .25, .5, .8 and 1.0 second delay time respectively.

For 1 second time delay system it presents an overshoot and undershoot of

approximately 60 percent.

Table 8.1 is the data obtained for M s t „ t under different values
Pt P r

of k and t . Plotting these data into curves it is found that they appear

P
t

as a straight line. In Fig. 8.5 are shown M and t versus delay time, in
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upper branch

J6J-

//

/Q

9

limit cycl<

primary
branch

5

4

3

-6 S -4 -3 -2 -I a / 2 <T

Fig. 8-3 Root locus of relay servo system with time

delay of .5 second.

76



>
•H
+»
ti

a
CO

V
u

«
o
o
o
01

00

10

o
II

+»

6
V
tS V

>»
CO

o
>
u
o
CO

>>
co

©
U

O
©
(0

« w
o o
p, •

CO II

i

00

w
•H
1*4

77



78



Table 8.1. Data for first overshoot t and M under various time delays
P P

t

for a step input.

K
t

T
d

M
P
t

t
P

t
r

amplitude of
limit cycle

.02 .0 1.1285 3.50 2.828 no limit cycle
II

.1 1.1870 3.70 2.95 .08
II .25 1.2510 4.10 3.095 .1625
II

.5 1.3750 4.60 3.350 .2575
II

.8 1.5300 5.10 3.650 .4910
II 1.0 1.6500 5.50 3.850 .5900

.2 .0 1.0370 3.35 2.900 no limit cycle
H

.1 1.0870 3.51 2.950 negligible
n .25 1.1630 3.81 3.080 .057
ii

.5 1.2880 4.30 3.350 .213
ii

.8 1.4370 4.95 3.650 .388
n 1.0 1.5310 5.40 3.850 .49

.4 .0 / / / no limit cycle
ii

.1 / / /
ii

ii .25 1.0600 3.70 3.200 .024
it

.5 1.1650 4.20 3.420 .125
ii

.8 1.3280 4.80 3.700 .302
it 1.0 1.4300 5.20 3.900 .390

.8 .0 / / / no limit cycle
it

.1 / / /
ii

ii .25 / / / .015
ii

.5 1.0000 3.70 3.60 .061
ii

.8 1.1500 4.39 3.65 .153
ii 1.0 1.2495 4.71 3.85 .2495

1.0 .0 / / / no limit cycle
ii

.1 / / /
it

ii .25 / / / .014
n .5 / / / .055
n

.8 1.0550 4.10 3.70 .137
ii 1.0 1.1550 4.60 3.85 .205
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t (time for first overshoot)
P

- - - - M (magnitude for first overshoot;)

N
** 2.0

Fig. _&-5_ M and t vs. delay time
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Fig. 8.6 is shown the rise time versus delay time, there it shows that the

effect of time delay on the transient response is to increase the over-

shoot and undershoot and cause continuously oscillations and make the rise

time longer, it turns out that the response of the system can never be

settled.

It is noted that M , t . t increase as the delay time increases,
Pt P r

But when we increase the value of k they decrease. And to a certain value

of k some of them become acceptable optimum operation this will be seen in

section 9.2.

In Fig. 8.7 are shown the plant output, rate output and system error.

Fig. 8.7(a) is the response of the undelayed system, the plant output set-

tled at 7 seconds; Fig. 8.7(b) shows the plant output, rate output and

system error for a system with delay time of .5 second and k = .02, the
c

output continuously oscillates with an overshoot and undershoot of approxi-

mately 30 percent; Fig. 8.7(c) shows the plant output rate output and system

error for a system with time delay of one second and k - .02. The plant

output continuously oscillates with an overshoot and undershoot of approxi-

mately 60 percent, the frequency of oscillation is slower than that of .5

second time delayed system; Fig, 8.7(d) shows the plant output, rate out-

put and system error for a system with delay time of 2,5 seconds and k =

.02, the plant output continuously oscillates with an overshoot and under-

shoot of approximately 135 percent, the frequency of oscillations is much

slower than that of .5 second time delayed system,

8.5 Time delay in the phase plane diagram.

The effect of time delay in application or removal of the applied

torque after the control has signaled that the operation should be perform-

ed. It will be of interest to study the effect in terms of the phase plane

diagram.
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Because of the time delay the trajectory in the phase space will be

prolonged beyond the point c° = R' by an amount such that the difference in

coordinates is just equal to the time delay. That is
s

in Fig, 8.8 the torque

should reverse at a, but it does not reverse until B is reached,, and (C° - C°]

(v' - v')/2 is equal to t° . Similarly., the torque is reversed at point D

instead of at c, and at F instead of at E. It is apparent that a curve could

be drawn through points such as B and F so that the switching of torque

direction would take place when the trajectory crossed this line
s
and the

line from B to D would play the same role as the line through R° for the

control without time delay.

3.0 C

Fig. 8.8. Normalized phase plane diagram for relay servo
system with a time delay of .1 second^ for a

step unit.

The effect of time delay is thus to skew the switching line from the

verticle in the phase space, and quite approximately the angle of skew is

-tan t , and is in clockwise direction.
a

It is seen in Fig. 8.8 that the trajectory appears to repeat itself
s

since the last two oscillations are nearly identical. The control oscillates



with a constant amplitude on the trajectory. Such a repetive diagram i

presenting the steady state oscillation is called limit cycle, From the

experimental work it shows that the relay conl Is Ith time delay and

dead zone exhibits the defect of continuous oscillations.

In Fig. 8.9 is shown a family of trajectories ranged that the

initial and final points of each are symmetrically located with respect to

the origin. Thus each trajectory represents just such a limit cycle,, and

since the time delay for each is fixed,, the locus of the end points of these

limit cycles measures the time delay required to obtain the amplitude of

oscillation. As would be expected^, the larger the time delay the. larger is

the magnitude of the oscillation, and with that
s

the lower is the frequency

of oscillation as indicated in Fig. 8„5„ In Fig. 8.10 is shown a plot of

time delay and oscillation amplitude , It turns aut to be a straight line s

therefore, we can obtain an equation to express the relation of oscillati.

amplitude with time delay as

/lose = ' 6 td (8.4)

the above equation is for a second order system specified by

Q(S) =
s ($ + /)

It is interesting to see the relay type c rol that can continuesuly

cycle when a time delay is present, The relay type of control always

oscillates about the equilibrium position. For any time delay the system

would always cscillate, and with a magnitude of oscillation depending on

the time delay. The relay type control can never be unstable in the sense

that the amplitude of oscillation will continue to increase without limit.

Tt is obvious that this is the advantage of the relay servo system.

In Fig. 8.11(a) the phase plane of the relay servo system with a time

delay of zero and .5 seconds is plotted on the same sheet, In Fig„ 8.11(b)
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is the phase plane of the relay servo system a time delay of one and 2.5

seconds plotted on the same sheet. From these phase portraits we find a

most important aspect of the phase portrait is the switching line which is

not vertical. The effect of the dead time is t I *te the switching line

into the first and third quadrants, the result is growing oscillation.

The process of moving the switching line from vertical axis to a line

in the first and third quadrants is seen to affect the nature of the response

very unfavorably. On the other hand, if the switching line can be made to

lie in the second and fourth quadrants by me £' phase advance, or lead,,

on the error signal
s

the relay servo system is likely to be a very well be-

haved one, in that it has small overshoot and will reach and remain within

a given value of error in a short time. This will be seen in section 9.

Dead time will result in a terminal limit cycle which may or may not be

acceptably small, the amplitude of oscillation depends upon delay time as

shown in Fig. 8.9 and .10.

8.6. The effect of time delay in steady state oscillation frequency.

In Fig. 8.12 the curve of system error against time is shown. Initial

condition of the error is due to a suddenly applied step input signal
s
this

gives an initial error and velocity {output rate) to the form of response

waveform as shown in Fig. 8.12. After the trans las died out the out-

put shaft follows the input by performing oscillation about a final posi-

tion as shown in Fig. 8.5.

In Fig. 8.12 curves 1, 2, 3, 4
8
and 5 are for a delay time of .l

s . 25 s

.5, .8 and 1.0 second respectively. It indicates that the smaller time

delay causes high frequency oscillation with smaller amplitude, in other

words, the frequency of the oscillation is higher^ and the larger value

of time delay results in larger oscillation amplitude with lower frequency
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as shown in Fig. 8.12,

Tn Fig. 8.13 curves 1, 2, 3, 4, 5, and 6 are for a delay time of 0, .1,

.25
s

.5, ,8, and 1.0 second respectively. The curves show the relation of

the rate output to time delay.

From Fig. 8.5 or Fig. 8.12, the data for oscillation frequency against

time delay can be obtained as shown in Table 8,2.

Table 8.2. Data for steady state oscillation frequency vs. time delay.

delay time frequency

.1 .455

.25 .294

.5 . .200

.8 .156

1.0 .135

The data plotted in log log scale sheet there appears to be a straight

line as shown in Fig. 8.14; it is seen that the frequency decreases as

the delay time increases. Because the curve of oscillation frequency

against time delay is a straight line, therefore we can obtain an equation

to express their relation as

/ = f -S7 (8.5)

From Fig. 8.12 we take the steady state error for each time delay
>

tabulate, the data as shown in Table 8.3.

Table 8.3. Steady state error vs. time delay.

Delay time Error

.1 .09

.25 .18

.5 .31

.8 .484

1.0 .588

Fig. 8.15 is the plot of error vs. delay time. It comes out approximately

a straight line, it indicates that the steady state error is proportional
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Fig 9-14, Steady state oscillation
frequency vs. time delay.

Fig.'8-15*7 Systemerror against time delay
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to tbe time delay.

8.7. The effect of the magnitude of the relay voltage,

':
i the experimental work, we find that the magnitude of the relay

. effects on the response curve and phase trajectory of

the system. ',Jhen the relay voltage is smaller the response has a longer

rise time and a smaller overshoot and undershoot, and there is presented

some velocity saturation in the phase trajectory , the amplitude of the

limit cycle is smaller.

In Fig. 8.16 shows two curves with the same delay time of .5 second

and same value of k = .02, but with different relay voltage, curve (1) is

with V =»2 volt and curve (2) is with V -#5 volt. From these curves it is

indicated that the smaller relay voltage causes smaller oscillation amplitude

and lower frequency, but it presents a longer time rise which is its dis-

advantage
i

so far as the time rise is concerned the larger value of relay

voltage is desirable, therefore, in all the experiments we set the relay

voltage equal to .5 volts. The rise time for .2 volts of relay output is

6.5 seconds, and the rise time for .5 volts is 3.35 seconds. The overshoot

and undershoot for .2 volt system is 12.5 percent, and that for .5 volt is

30 percent

.

In Fig. 8.17 the phase plane with the same delay time and same value of

k is shown, but with different relay voltage, it presents a velocity satura-

tion for the system with .2 volts of relay output, and the limit cycle is

smaller.
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9. Elimination of the steady state oscillation

In many applications steady state oscillations of the output shaft are

inadmissible; besides causing continual operation of relay contacts and

wear of gears and bearings the power consumed in oscillations may be objec-

tionable. The simplest method of eliminating the oscillation is to intro-

duce a dead zone in the relays so that the error always returns to the

dead zone after a disturbance. But the relay used has been thus far assumed

an ideal relay with no dead zone, so we shall not discuss this possibility.

9.1 Velocity feedback stabilization

A very effective method of reducing the settling time and limit cycle

oscillation of an relay-servo is to make the relay switching conditional

not only on misalighment but also on its rate change. This can be achieved

by feedback within the position control loop if the feedback signals can

be added algebraically to the misalignment signal at the error sensing

device.

The effect of negative velocity feedback is illustrated on the phase

plane diagram in Fig. 9.1; and the corresponding time response is shown

in Fig. 9.2.

It is obvious that the larger the value of k the smaller the ampli-
c

tude of the limit cycle, and the more the switching line shifted to counter-

clockwise direction; and the amplitude of oscillation is reduced; the over-

shoot and undershoot for k = .02 is about 15 percent, for k = .8 is

about 2 percent as shown in Fig. 9.2.

9.2 Optimising the transient response.

Because of the introduction of the time delay in the system, it is

difficult to derive a method to determine the value of k which will give
t

°
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an optimum operation, which can only be determined h experimentation.

As we know the system damping will be improved by the tachometer feed-

back, the net effect of the derivative signal is to cause the relay to

operate early, so by using k we can control the switching characteristics

of the relay. For many applications of relay servoinechanism, the tacho-

meter feedback compensation is adequate.

Through experimentation it was found Chat the system with a delay time

below .5 second can be compensated for 5 percent overshoot and undershoot

which is considered to be acceptable.

The response and phase plane of the compensated system for various time

delays are shown in Fig. 9.3(a) through Fig. 9.3(e). They have been compen-

sated by velocity feedback. The values of k (which give acceptable optimum
t

operation) are as follows:

Table 9.1 Optimum value of k for eliminating the effect
of time delay.

t k o/o overshoot
and undershoot

.3 /

.1 ,4 .1

.25 .8 1.6

.5 1.5 5.2

For systems with .8 and 1.0 second time delay , it is found that they can

not be compensated for 5 percent overshoot and undershoot,, even when we

increase the tachometer gain, k to a considerable value, the amplitude
t

of steady state oscillation is still rather large as shown in Fig. 9.4 and

Fig. 9.5; the only effect of increasing k at this time is to shift the

whole response curve downward, as shown in Fig. 9.5 the response of the

system with one second time delay at k =4,5 is rather Tew but still with
t
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considerable oscillation amplitude which is almost the same as that when

k =1.5, which is beyond the acceptable value.

Fig. 9.6 illustrates the time delay vs, k curve at the range from to
t

.5 second time delay. The curve appears to be a straight line, but when

the time delay above .5 second occurs this situation does not hold, since

the system with a delay time above .5 second cannot be compensated. When

the time delay is less than .5 seconds, the system can be compensated; and

because t vs. k curve is a straight line, therefore,, it can be expressed

by an equation as given in equation 9.1.

Table 9.2 and 9.3 are the results for comparing the uncompensated and

compensated system. The data in Table 9.2 is for the undelayed system

for which k = .3 will compensate the system to give optimum operation.

The data in Table 9.3 is for a .5 second time delayed system for which k

=1.5 will compensate the system to give acceptable optimum operation.
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plant output, velocity and error vs. time
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Response and phase plane, t, - 0, k, - .3
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plant output, velocity and error vs. time
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plant output, velocity and error vs. time
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plant output, velocity and error vs. time

phase plane

Fig. T, Response and phase plane, t - 1.0 sec. k,. - 2.4
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I Lated response of relay servo system Forcing function =

t sl'ep t
d

1
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2. 5
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14,0
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tern error

t
k = .

t
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.4323 .4323
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• resj d£ el servo system Forcing function =
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10. The response of relay servo system to ramp function input .

In the previous sections we have been concerned primarily with the

response to step function input. Experimental results obtained from the

relay servo system with a ramp function input are shown in several graphs.

'//hen a unit ramp input is applied to the relay servo system, the out-

put and the error of the system are shown as a straight line, and the velocity

for most part is a horizontal line, as shown in Fig. 10.1. The Cdot vs. C

and Edct vs. E phase planes have the same shape, merely the Cdot vs. C plane

appears above X- axis. Fig. 10.2 shows the Edot vs. E plane. This is with

a relay voltage equal to .5 volt. When the relay voltage is increased to

1.0 volt the same situation remains. For relay voltage at .5 and 1.0 volt

the only effect of the time delay on the relay servo system is to cause some

delay in the response, no oscillation has been observed.

But when the relay voltage is increased to 1.5 volts, this situation is

changed. For an undelayed system the output still appears as a straight line

but the system error is no more a straight line, and the velocity curve is

with some oscillations as shown in Fig. 10.3. Cdot vs. C and Edot vs. E

phase planes have a different shape as shown in Fig. 10.4 and Fig. 10.5.

For delayed system the output no more remains a straight line but with some

oscillations, and the system error and velocity are much different than that

of the system with relay voltage of .5 or 1.0 volt as shown in Fig. 10.6.

The Cdot vs. C and Edot vs. E phase planes are quite different as shown in

Fig. 10.7 and Fig. 10.8 respectively. Oscillations and limit cycle has been

observed when the relay voltage is 1.5 volts.

The effect of time delay on the response of the system can also be com-

pensated by velocity feedback. For the .5 second time delayed system, when

k - 2.0, the response can be compensated to an acceptable optimum operation

as shown in Figures 10.9,10, 11.
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11. Conclusions .

The aim of this thesis was to demonstrate the effects of transj

lag on the relay servo system.

For conducting the experiment by means of an analog computer
a

first one

could simulate the time delay by Pade's approximation or by magnetic tape

recorder. It was seen that the generation of time delay from magnetic tape

recorder presents a more accurate and better result than that from the Fade";

approximation. Therefore, the magnetic tape recorder was selected to

generate the time delay throughout the experiment.

In this investigation most of the experiments were conducted by using

a digital computer which gave more accurate results than the analog com-

puter does; especially since it can give an exact value at any desired in-

stant. The analog computer has also been used to check the results ob-

tained from the digital computer. It is noticed that they are quite in

agreement

.

From the analysis and experiments the following conclusions has been

obtained.

The root locus of the system was greatly changed due to the intro-

duction of the transportation lag; and because time delay introduced

periodicaly a phase shift of 360 degrees, it results in an additional (apper^

branches when at high frequency.

The effect of time delay on the transient response is to increase the

overshoot and undershoot and causes oscillations and also leads to a longer

rise time
s

the response of the system can never be settled.

The effect of time delay on the phase plane is to rotate the switching

line into the first and third quadrants, the results is growing oscillations
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In other words the transportation lag will result in a terminal limit

cycle which may or may not be acceptably small.

The plot of time delay versus oscillation amplitude came out to be a

straight line; the delay time multiplied by a constant of .6 gives the

magnitude of the oscillation amplitude.

The time delay versus steady state oscillation frequency when plotted

on log log coordinates came out to be a straight line in such a relation

.57
that a constant of .135 divided by t , gives the oscillation frequency.

>

The steady state error and the velocity are proportional to the time

delay.

These effects caused by the transportation lag can be compensated to

some extent. The method used in this investigation to eliminate steady

state oscillation and to optimise the transient response by employing tacho-

meter feedback. It was seen that a system with a delay time below .5 second

can be compensated to an acceptable small oscillation amplitude (5 percent).

But for time delay above .8 second it cannot be compensated to such a small

amount; the only effect of increasing tachometer gain is to shift the whole

response curve downward with the same amount of steady state over- and under-

shoot .

The system with a time delay below .5 second can be compensated to reach

an acceptable optimum operation. For delay time below .5 second its relation

with tachometer gain is approximately a straight line, therefore, it can be

expressed by an equation.

When a time delay is present the relay type control can continuously

oscillate, and with a magnitude of oscillation depending on the time delay.

The relay type control can never be unstable in the sense that the amplitude

of oscillation will continue to increase without limit. This is one advan-

tage of the relay servo system.
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