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Abstract

We consider the use of local ¢ -divergence
measures benween posterior distributions under classes
of perturbations in order to investigate the inherent
robustness of certain classes. The smaller value of the
limiting local ¢ -divergence. implies more robustness
for the prior or the likelihood. In this paper. two kinds
of the perturbations (prior and likelihood) are
considered for the local sensitivity analysis. In
addition. we also consider the cases when the
likelihood comes from the class of weighted
distributions. Finally some numerical examples are
considered which provides measures of robustness.

Keywords: Local Sensitivity, Bayesian Robustness.
Perturbation. ¢ -Divergence, t-Distribution. Gamma
Distribution, Weibull Distribution. Weighted
Distribution.
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A Bayesian analysis depends strongly on the
modeling assumptions, which make use of both prior
and likelihood. Even after fitting a standard
statistical model to a given set of data, one does not
feel comfortable unless some sensitivity checks are
made for mode! adequacy. One way to measure the
sensitivity of the present model is to perturb the base
model to potentially conceivable directions to
determine the effect of such alterations on the
analysis. Often 1t is difficult to specify or elicit a
method that would yield a convincing prior. The
situation becomes more difficult for high
dimensional parameters. Thus. to perform a complete
Bayesian analysis, one must use some sensitivity
measures to check model adequacy. Notable
references are due to Berger (1984, 1985, 1986, 1990)
and the references contained therein, Thus, the
sensitivity analvsis or the robustness issues in
Bavesian inference can be classified into two broad
categories. global and local sensitivity. In global
analysis one considers a class of reasonable priors
and studies the wvariations of several posterior
features. Alternatively, in local analysis the effects of
minor perturbations around some elicited priors are
studied.

Recent papers involving global sensitivity
analysis are due to Berger(1990), Srinivasan and
Truszczynska (1990). Basu and Dasgupta {1992).
Sivaganesan (1993) and the references therein. In
contrast, a small but quickly growing literature on




Bayesian local sensitivity has developed lately; see
Basu, Jamalamadaka and Liu (1993). Gustafson and
Wasserman (1993). Gustafson (1994). Ruggeri and
Wasserman (1993) and Dey, Ghosh and Lou (1996}

The major advantage of local sensitivity analysis
is realized particularly in multivariate problems, where
the global analysis is too time consuming and often
analytically inractable, In Bayesian robustness
analysis. some researchers have used a general ¢ -
divergence measure (usually known as f-divergence)
as defined by Csiszar (1967) to measure the variation
between two posterior distributions. In Dey and
{1994). the posterior robustness
measured using ¢ -divergence where the variation of
posterior distribution was studied for fixed likelihood

when prior distribution varies within certain arithmatic

Birmiwal was

and gecmetric contamination classes. Delampady and
Dey (1994). considered the variation of the local
curvatures of the ¢ -divergence between posteriors
when the prior varies within mixtures of svmetric and
unimodal classes. Currently. there is an another
direction of Bayesian robustness studies are being
pursued, where the contamination of priors are
considered within the class of scale mixtures of normal
distributions. However, in these studies. robustness
studies are considered when posterior moments exist.
Notable results in this direction are due to Pericchi and
Smith (1992) and Chov (1996) and the references
contained therein.

There are many situations where the usual
random sample from a population of interest is not
available. due to data having unequal probabilities of
entering the sample. Even if a random sample can be
obtained. the experimenter may choose not to use it
since a carefully choosen bias sample may turn out to
be more informative. The method of weighted
distributions models this ascertainment bias by
adjusting the probabilities of actual occurrence of
events to arrive at a specification of the probabilities
of the events as observed and recorded.

Rao {1963) first unified the concept of weighted
distribution. Patil and Raoc{1977) discuss how
truncation models and damaged observations c¢an
give rise to weighted distributions. Patil (1981) and
and DeGroot (1992) several
of weighted distribution.

Bayarri suggest

applications Recently.
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and Dey (1996) studied weighted
distributions in the context of model selection in a
Bayesian framework whereas Bayarri and Berger
(1993) consider robustness issues for the weight
function. Here we will study the local sensitivity of
weighted distribution.

We consider the effect of perturbation of the
standard model within a parametric family. This type
of perturbations are natural when graphical or other
statistical procedures indicate the possibility that the
standard model may only be marginally adequate.
Following Geisser (1993). we consider three different
classes of perturbations. The class of t-distributions
with varying degrees of freedom which is useful for
the robustness study of the location parameter problem
whereas the class of Gamma distribution or Weibull
distribution with varying the shape parameter or
varying the scale parameter is useful for the robustness
study of the scale family or of the shape family. We
develop results using the limiting local divergence
between the posierior distributions under an elicited
prior and perturbation  under of
perturbations of distribution families to study the local
sensitivity of the posterior distribution.

its classes
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Suppose X denotes the observable random
variable (real valued) with density f (x|&) where
@ is an unknown parameter. Once a proper priot
7 (0 is specified, then the marginal density of X
corresponding to  f and 1 is defined as

m(x)=j f(xi@)x(6)d 6

and the posterior distribution of & given X
corresponding to  f and 7 is defined as

_f(x19)n(0)
m(x)
In weighted distribution problem, a realization
x of X under f(x!8) enters the investigators
record with probability proportional to a weight
function w(x). Clearly. the recorded X is not an
abservation on X . but on the r.v. X" . say, having

pdf

T(8|x)

W) f(x]6)

f(x16) RNUﬂ




where £, [w(x)]: Iw(x) f(x|{@)yx s the
normalizing constant. The rv. X "is called the
weighted version of X and its distribution in relation
to that of X is called the weighted distribution with

weight function w.

In addition. the marginal density of X"
correspondingto  f " and 7 is defined as

m"(x)= [f"(x16)7(8)d 6

and the posterior distribution of & given X

comespondingto /" and 7 is defined as

" (x| (8
* @y 0T

m*(x)

Following Csiszar (1967), we define the general
@ -divergences between two posterior distributions

r{@|x)and 7 ;(f|x)as

D

@

(0]
[E1d xkp(%%}dﬁ

where we assume ¢ is a convex function with a
bounded
7 4(8x) will be the general notation for a
posterior distribution.

=D  {7m;(B)x)x(fx)=

(1

third derivative. In our situation.

From (1) by Tavlor expansion on -
function. the general ¢ -divergences between two

posterior  distributions 7 s (&]x)  and
7r ;{8 )becomes
- j '3 (9 s (01%) 4o

7 (Fix)

=)+
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where ¢ is a perturbation of the likelihood or prior
which results to the posterior distribution 7, (8lx).
Oyis known. O({6—8,)") is the remainder term

w:th order 3 or higher. We further assume that the

W

differentiation with respect to & and integration with
respect 1o & of the posterior p.d.f. and its derivatives
are interchangeable.

From (2). let us now define the limiting local ¢ -
divergence which will play an important role in our
studies.

D, -pm]=

lim

1
53, (5~ 5,)}

o([)

lim ———— |7, a6 -o(l
532(5_50)- J 75, (6x)- 9| =—— 7, p(1)
_o'(1) EXERGAl
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where & and ¢, are positive and less than or equal 1.
Note that ¢"(1) is always positive.

Similarly. the limiting local ¢ -divergence for
weighted distribution problem between two posterior

distributions 774 (fjx) and 7w (Gx) is the
foilowing :
. 1 @"(1)
lim — D’ — (1) [=
St (5—50)‘[ o~ )] 2
B ) ()
g 0 [ )
a5 | ) (6lx)
W™~ ERAHS

1. Local sensitivity measures under a class of t-
distributions :
(1) Perturbation of the prior for fixed likelihood

Here. we fix the likelihood function f{x{@) from
any location family density functions with location
parameter @ . and perturb the prior distribution within
the class of t-distributions with varying degree of
freedom » which has the form

rel
z} E

r+l
re=-=) _
I+(9 ‘Lf)

1 2
(rpre)- O

r.(8)=




rzl
where /¢ and 0': are known location and scale
parameters respectively.

In this case. it is well known that when the degree
of freedom r goes to infinity. the prior goes to the
Normal distribution; and when the degree of freedom
r goes to 1, the prior goes to the Cauchy distribution.
Thus varving r from | to<0. we can generate a class
of priors within the t-family.

Result 1. Under a class of t-priors as above the

limiting local ¢ —~divergence is given as

1
———iD_ —-o)|=
60)3[ [ ("D( )]

= () Var ! ln[l + ©G-ur 50:}

16,6 1) 552 :
2 e 28, o

T

RS
=
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Special Case 1.1. When &, = 0. that is. the prior is

from normal distribution. Then the limiting local ¢ -

divergence reduces to
.1
lim—[D, -] -

o'}, r
A0 ST
...,,.,,!-4

where 7 ,.(8|x) is the posterior distribution under
the normal prior V(J. Gi) .

Special Case 1.2. When &, = 1. that is. the prior is a
Cauchy distribution. Then the limiting local ¢ -

divergence becomes

: ol e @,
{‘1511 (5_1)2 [DO Q(l)]_ 2 I/a]:,-(fi.\‘)
@—-p)’
%ln[lﬁ-(gnéu)-}— ;.; 3
2 o 14 -fl)
o’

1

where 7 (0)x) is the posterior distribution under

the Cauchy prior C(l,G.).

(2) Perturbation of the likelihood for fixed prior

Next. we fix the prior distribution 77(&). and perturb
the likelihood function within the class of t-

distributions of the form

r+1 r+l
I'(—) 1 TT
fidey=—2 " 1, (0=4)
(rz)2 (") e
2
rzl

where & is known.

In this case, it is well known that when the degree
of freedom r goes to infinity, the likelihood goes to the
Normatl distribution: and when the degree of freedom
r goes to 1, the likelihood goes to the Cauchy
distribution. Thus varying » from 1 to <0. we can
generate a class of likelihood functions.

Result 2. Under a class of t-distributions as above the

limiting local @ -divergence is given as

I, ~e]=

lim
=0 (8 = 6,)’

p"(1) 1 (0~x)
5 Var_, o‘.,ne-zl{zgz ln{:1+ . 0,

a
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Special Case 1.3, When J; = 0. that is, for the

normal likelihood. the limiting local ¢ -divergence

reduces to

1 _—
Lo, -o00)-

lim
a—=0

e, 1 8-x l_‘I_ d-x_|.
——-2 lar:‘w”{_‘( . ) 2( - )

where 7, (9\.\:) is the posterior distribution under

the normal likelihood N(8.57).




Special Casel.d. When O, =1. that is, the
likelihood is from a Cauchy distribution. Then the
limiting local @ -divergence becomes

1
Iim———|D_ —o)|=
(D (1) Varz-{&xl ~1—1n 1+(9h?‘)_
2 ‘ 2 o’

(@ —x)°

- AR

1+———(9—',r)-
o

where 7. (f|x) is the posterior distribution
under the Cauchy likelihood C(8.07).

(3) An lllustrative Example

In Berger(1985), he considered X ~/NV (0.1). and
subjectively specified two reasonable priors C (0.1)
and &N (0.2.19). In order to measure the inherent
robustmess of the Cauchy prior, he used posterior
means. posterior probabilities of certain sets, Bayes
risks criteria. and marginal densities. Here we provide
our alernative approaches based on limiting local
divergence.

In our example. we divide the problem into two
parts. First, we assume that the likelihood is fixed and
the prior varies within a class of t-priors. Next. we
assume that the prior is fixed and the likelihood varies
within a class of t-distributions.

In this part. we observe the likelihood
X ~ N (6.1). and subjectively specify a prior median
of 0 and quartiles of X 1. Now, we have four
reasonable priors to be considered within the class of
t-priors which are Cauchy prior C (0.1). two t-priors
T;(0.1.89361).T 4 (0.2.04198). and Normal prior N

{0.2.19804). Table 1 presents values of the limiting

local @ -divergence measure without the constant
@"(1)/2 for various X under different priors using

the method of numerical integration.

For each X, the values of the limiting local
divergence measures are decreasing, when the degrees
of freedom go down. For small x (ie, x <2) it
appears that those values are small . indicating some
degree of robustness with respect to the choice of the
prior. For moderate to large Xx (ie., Xx =4.5),
however, there can be a substantial difference among
those values. indicating that the answer is then not
robust to reasonable variation in the prior. For all x,
it appears that the values of the limiting local
divergence are not varied too much, when the posterior
distribution comes from Cauchy prior. Note the
dependence of robustness on the actual value of X .

For the next part. we suppose that there are four
plausible candidates of likelihood from the class of 1-
which Ny, T,6.1,
7,(6.1) and C(@,1). It is assumed for simplicity

distributions are

that the prior ts Normal N (0,1). Table 2 presents
values of the limiting local ¢ -divergence measure
without the constant ¢"(1)/2 for various X under
different modeis. Here the calculations are performed
using the method of numerical integration.

The interpretation of the above table is same as in

the previous case.

2. Local sensitivity measures under a class of
Gamma distributions :
{1} Perturbation of the Prior for fixed likelihood

Here. we fix the likelihood function f(x|&)
where & is a scale parameter from arbitrary
distribution on (0.0 ), and perturb the prior within the
class of Gamma distributions with varying shape
parameter ¥ which has the form

7.(0)= —E—Q""e'ﬁa 21, >0,
I'(r)
where the scale parameter [ is assumed to be

known.
In this case, it is well known that when the shape

parameter r goes to 1. the ptior reduces to the




Exponential distribution with known scale parameter
/. Thus varying r from | to o0, we can generate a
class of priors.

Result 3. Under a class of Gamma priors as above,

the limiting local ¢ -divergence is given as

. 1
hm —————|D_ -¢)|=
e
g'(1) 1
p) E-TV T 5..(9-,:;[ln ]
Special Case 2.1. When & =1, that is. the prior has

Exponential distribution. the limiting focal

qo_

divergence becomes

o, - o)) =21, 18]

lim

o> (8 -1)°
where 7 (9|x) is the posterior distribution under

the Exponential prior Exp( ).

Remark: Similar results are obtained. if we fix the
likelihood function f(t‘@) and perturb the prior

within the class of Gamma distributions with varying

scale parameter » which has the form

ra

T(a)

where the shape parameter ¢ is known.

7,{8)= e r21a>0.

(2) Perturbation of the likelihood for fixed prior

Next. we fix the prior distribution 7{&). and perturb
the likelihood function within the class of Gamma
distributions of the form
6."
I(a)

In this case. it is well known that when the shape

xle® r21.6%0.

f(x8)=

parameter r goes to | . the likelihood goes to the

Exponential  distribution  with unknown scale

parameter £ . Thus varying r from 1 to o, we can

generate a class of likelihood functions.

(3) An [lustrative Example

[n this example, we again divide the problem into
two parts in order to see the effect of the data on the
scale parameter. First, we assume that the likelihood is
fixed and the prior varies within a class of Gamma-

priors. Next. we assume that the prior is fixed and the

likelihood varies within a class of Gamma-
distributions.
In this part. we observe the likelihood

X ~Exp(@), and subjectively specify a prior 95
percentile of 2.9557. Now. we have four reasonable
priors to be considered within the class of Gamma-
priors with matching 95th percentile, which are
Exponential prior Exp(l), three Gamma-priors
Gamma (5.3.05555), Gamma (10.5.24258), and
Gamma (20. 9.30624). Table 3 presents values of
the limiting local @ -divergence measure without the
constant ¢@"(1)/2 for various X under different
priors using the method of numerical integration.

For each X, the values of the limiting local
divergence measures are increasing rapidly, when the
shape parameters go up. For all x. it appears that
these values do not change too much for each choice
of prior. It seems that the actual X for each prior does
not effect to much to the value of the limiting local
divergence. In other word. the scale parameter does
not effect too much for the observed value X.
However for each Xx. there can be a substantial
difference among those values, indicating that the
answer is then not robust to reasonable variation in the
prior, Note again the dependence of robustness on the
actual value of X.

In the other part. we consider four plausible
candidates of likelihood from the class of Gamma-
distributions which are Exp(€).Gamma (1.5.8),
Gamma (2.8) and Gamma (2.5.8). Let us
for @
Exp(1) Table 5 presents values of the limiting local

assume that the prior is ~Exponential




(@ -divergence measure  without the constant
@"(1)/2 for various X under different models using
the method of numerical integration.

The interpretation of the above table is the same
as in the previous case.

In addition, the values of the limiting local ¢ -
divergence for each likelihood are much smaller. when

the values of the shape parameters go down,

3. Local sensitivity measures under a class of
Weibull distributions :
{1) Perturbation of the Prior for fixed likelihood

Here. we fix the likelihood function f(x|@}.
where & is a shape parameter from arbitrary
distribution on (0.00) and perturb the prior
distribution within the class of Weibull distributions
with varving shape parameter $r$ which has the form

7 {8)= bro e r21.b>0.

where the scale parameter b is assumed 10 be known.

In this case, it is well known that when the shape
parameter ¥ goes to 1. the prior reduces to the
Exponential distribution with known scale parameter
b . Thus varving r from 1 to co, we can generate a
class of priars.

Result 4. Under a class of Weibull priors as above.

the limiting local ¢ ~divergence is given as

tm e 2e o0
40_2(120714—1/’0,.:[ ENEEY [(1 - ng ; )IHB]'

[¢]

Special Case 3.1 When &, =1. that is. the prior is

an Exponential distribution. the limiting local @-

divergence becomes

ﬂll(o_ -[p, —pru]=

472(% ar, ., l(1-56 )ind]

where 7, (9] y) is the posterior distribution under

the Exponential prior Exp(b).

Remark: Similar results are obtained, if we fix the

likelihood function f (xl@), and perturb the prior

distribution within the class of Weibuil distributicns

with varying scale parameter 7 which has the form

7.(8)= ar8@ e r>1a>0.

where the shape parameter @ is known.

In this situation. the values of limiting local
divergence at an observed data X do not always
increase , when the scale parameter r increases. This
is due to the fact that the shape parameter a goes
down, when the scale parameter r increases. while

preserving the fixed percentile.
(2) Perturbation of the likelihood for fixed prior

Next, we fix the prior distribution 7(8). and perturb
the likelihood function within the class of Wetbull

distributions of the form

f @y =re®e r21.

In this case. when the scale parameter » varies
from 1 to oc. we can generate a class of likelihood
functions.

Result 5. Under a class of Weibull distributions as

above, the limiting local @ -diverzence /s given as

-[D, - em]=

1
lim ————
=0 (§ ~ 5,)

e'() 1
__2_ .5‘..-.‘_. Var.‘:l!d..(&‘.t) [x9 ]

£

(3) An Ilustrative Example

In this example, we again consider two parts. First.
we assume that the likelihood is fixed and the prior
varies within a class of Weibull distributions. Next, we
assume that the prior is fixed and the likelihood varies

within a class of Weibull-distributions.




In this part. suppose we consider the likelihood
X ~Weibull(6,1) . and subjectively specify a prior
with 95th percentile as 2.9957. Now. suppose we
consider four reasonable priors with matching 95th
percentile within the class of Weibull distributions,
which are Exponential prior £Xxp(l). three Weibull-
priors Weibull (5.0.012418). Weibull (10.0.0000514

82) and Weibull (20,107°). Table 5 presents values
of the limiting local ¢ ~divergence measures without

the constant @ (1)/2 for various x under different
priors using the method of numerical integration.

For each Xx. the values of the limiting local
divergence measures are increasing rapidly. when the
shape parameters go up. For small x (ie.x<2)
there can be a substantial difference among those
values, indicating that the answer is then not robust to
reasonable variation in the prior. For large X (ie.,
x=3).

indicating some degree of robustness with respect to

it appears that those values are small .,

the choice of the prior. For all Xx excepr l. it appears
that the values of the limiting local divergence are not
varied too much. when the posterior distribution

COMmES Note again the

from Exponential prior.
dependence of robustmess on the actual value of x.

Next. we suppose that there are four plausible
candidates of likelihood from the class of Weibull-
distributions which are Weibull(8.1)
Weibull(6.1.5) and Weibull(£.2.5) . 1t is assumed
that the prior is Exponential Exp(l}. Table 6
presents values of the limiting local ¢ -divergence
measure without the constant @"(1)/2 for various
x under different models using the method of
numerical integration.

The interpretation of the above table is the same
as in the previous case.
local

In addition. the values of the limiting

divergence for each likelihood are much smaller. when

the values of the scale parameters go down.

S

4. Local sensitivity measures under weighted
distribution families:

We consider a fixed prior 7(&), and perturb the
weighted likelihood within a distribution family of the
form
w(x)

£1 0 = ¢ AT

ﬂwdm

where w{(x) is the fixed weight function, fr(‘clﬁ)

is the unweighted distributions which could be t-
distribution, Gamma distribution, and Weibull
distribution before respectively.

Result 6. Under a class of t-distributions. the limiting
local ¢ -divergence between two posterior weighted
distributions is given as

Eﬁ@:;;;h%—¢ﬂﬂ=

(1) {V
{ " [w(r)f\.b.( 3,)

E . [w{.\')]

) lrg(é‘ )]+ Var

8 x)

1 S

E, o [oxi,06,)]

@"(1)Cov.

T a8 X/

& ? (%) E 3 B {W(x ) ]

where 0, =1/r,. r,isknown. ﬂ’"'(ﬁ’lx) is

posterior weighted distribution, and

(8-x;°

1 2
. (5,,)-——!11{14-(9 (5”]_1[].;__]___0;,_1_
)b d- 2 5<| (9—){)-
1+ ———§6,

=

O_l
Result 7. Under a class of Gamma distributions the

limiting local ¢ -divergence between two posterior

weighted distributions is given as

i
e [, -]
o' E, s [w(x)n x|
2 5; EERCEY E_fl s, ['W(JC)]




Result 8. Under a class of Weibull distributions the

limiting local ¢ -divergence between two posterior

weighted distributions is given as

. 1
tim ————[D, - ()] =
Jl'rg' (5"50)- [ ¢)( )]
- £, [xga)(x)
00 Ly (o) xt - )
2 8 h E, fw(x)]

‘i’)/‘
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From the previous section, it follows that there is
a duality relationship berween perturbation of the
likelihood and the prior. Similar phenomenon was also
observed in Pericchi and Smith (1992).

Suppose we observe the likelihood function with
scale parameter and suppose there are several
reasonable priors within different
distributions. then it is uncomparable in different
classes of distributions using the limiting local
divergence measures. Similar results hold for the
likelihood with shape parameter.

classes of

In this paper we have considered the local
robustriess for the prior or the likelihood using ¢ -
divergence measures under t-family. Gamma family
and Weibull family. Similar studies can be performed
to other classes of perturbations. Several other
measures can be inttoduced to explore the sensitivity
analysis.

In this research. we have reached the goals in my
proposal.

After the report is completed, the empirical
results will be submitted to the related conferences and
journals.
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Table 1: Local sensitivity under different priors of t-distributions

Normal prior T,, prior T, prior Cauchy priorj
x=0 0.0145276 0.0100620 0.00788721 0.00320824
x=1 0.0719450 0.0380081 0.0238755 0.00464302
x=2 0.652840 0.302226 0.167166 0.0155271
x=3 4.10058 1.67824 0.827474 0.0425573
x=4 18.0456 6.01343 2.42554 0.0526621
x=4.5 34.1138 9.86071 3.47360 0.0478026
Xx=5 60.9925 14,8642 4 49378 (.0410030
X=6 170,142 27.0991 5.91405 (.0291381
x=10 3292.86 50.0911 4.74467 0.0102072
x=15 36307.0 34.2500 2.48926 0.00450993
x=20 201606 21.6289 1.48682 0.00255203

Table 2: Local sensitivity under different likelihoods of t-distributions

N, 1) 1,6, 1) T.(6,1) C(6, 1)
X=0 0.125000_ | 0.0512764 | 0.0259029 | 0.00320823
X=1 0.546869 | 0.216579 | 0.101257 _ | 0.00464300
X=2 3.49995 1.39501 0.628775 | 0.0155271
X=3 16.8595 | 6.58580 2.68657 0.0425572
X=4 63.1247 _ | 22.1104 7.04881 0.0526615
X=4.5 112.973 35.5024 9.40704 0.0478026
X=5 193.484 | 52.0776 11.1553 0.0410036
X=6 507.494 | 85.9700 12.0078 0.0291370
X=10 8859.34 | 84.8572 5.98584 0.0102072
X=15 94208.2 | 42.3906 2.75952 0.00451469
X =20 516375 24.4609 1.57178 _ | 0.00254250

Table 3: Local sensitivity under different priors of Gamma distributions

Exp.(1) prior | G(5, @) prior | G(10, e) prior | G(20, ) prior
x=0 0.645134 113.343 952.073 7808.17
x=1 0.644534 113.320 951.562 7811.05
Xx=2 0.644850 113.333 951.848 7810.29
x=3 0.644653 113.310 951.591 7804.62
x=4 0.644625 113.327 951.595 7806.33
x=5 .644916 113.327 951.632 7803.54
x=6 0.644868 113.326 951.612 7805.18
x=10 (.644444 113.334 951.645 7802.54
x=15 0.643314 113.376 951.686 7802.73
x =20 .640590 113.254 951.842 7805.20
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Table 4: Local sensitivity under different likelihoods of Gamma distributions

Exp.(6) Gamma(l.5,6) | Gamma(2, §) |Gamma(2.5, §)
x=0 0.644964 2.48232 6.31704 12.9041
x=1 0.646395 2.49814 6.39199 13.0634
x=2 0.644894 2.48210 6.32136 12.9176
x=3 0.643987 2.48081 6.35796 13.1533
Xx=4 0.644566 2.47991 6.31531 12.9180
x=35 0.644796 2.48251 6.31661 12.8950
X=6 0.643051 2.48404 6.32135 12.5041
x=10 0.643355 2.48318 6.30170 12.7904
x=15 0.645365 2.49251 6.34140 12.9506
x=20 0.645592 2.48556 6.35551 12.9777

Table 5: Local sensitivity under different priors of Weibull distributions

Exp.(1) prior | W(5, ) prior W(10, &) prior | W(20, e) prior
x=0.1 0.344941 121.036 4678.61 124656
x=0.5 0.945236 543.628 9937.48 172214
x =1 499187 814.287 12159.1 189754
x=2 0.219165 69.3167 2413.04 81851.8
Xx=3 0.290409 33.0278 261.355 1920.46
x=4 0.346536 42.2777 323.555 2365.03
x=5 0.380084 44.5102 328.808 235743
x=6 0.400533 45.2019 329.684 2354.32
x=10 0.436962 45.6615 330.131 2351.50
x=15 0.452139 45.7056 329.846 2344.67
x =20 0.459259 45.7114 330.338 2347.03

Table 6: Local sensitivity under different likelihoods of Wetbull distributions.

Weibull{ 8,1) | Weibull(@,1.5) | Weibull(§,2) [Weibull(8,2.5)
x=0.1 0.0466785 0.216641 0.622116 1.37578
x=0.5 0.0478122 0.235932 0.720015 1.68323
x=15 0.479050 1.35632 2.79434 4.92591
x=2 0.78413 2.03600 3.99965 6.70304
x=3 1,01392 2.52011 4.80441 7.88651
x=4 1.11075 2.71492 5.12518 8.38768
x=5 1.16384 2.82381 5.30244 8.64919
x=6 1.19841 2.89476 543117 8.81746
x=10 1.26848 3.04228 5.66566 9.15535
x=15 1.30651 3.12050 5.79160 9.33692
x=20 1,.32860 3.16354 5.86118 9.45449




