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Abstract

this project: (i)(AZ, — Az =b z e K, and ) (A= M)z =b 2 K. We
obtain several equivalent conditions for the solvability of the first equation.
For the second equation we give an equivalent condition for its solvability in
case when X > P(A), and we also find 5 necessary condition when )\ — Ps(A)
and also when )\ < Ps(A), sufficiently close to (A), where p(A) denotes
the local spectral radius of A at b. Then we derive some new results about
local spectral radii and Collatz-Wielandt sets (or numbers) associated with
a cone-preserving map, and extend known characterization of M-matrices
among Z-matrices in terms of alternating sequences.

Key words: Cone, Perron-Frobenius theory, cone-preserving map; linear
equation, Collatz-Wielandt sets, Collatz-Wielandt number, local spectral ra-
dius, nonnegative matrix.
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1. Motivation and Aims

Since the end of 1980s, together with Professor Hans Schneider (and, at
the beginning, also with my master student S.F. Wu), I embarked on a study
of the spectral theory of positive linear operators on a finite-dimensional

Perron-Frobenius theory of a nonnegative matrix and its generalizations to
Cone-preserving maps. This is the sixth of a sequence of papers on this topic;
the first five papers in this Sequence are [T-W], [Tam 1], (T-S 1], [T-S 2]
and [Tam 2]. The main aim of this project is to study the solvability of the
following two linear equations over cones:

My~ Az =b zeK (1.1)

and
A=Az =8 z ¢ K, (1.2)

where KX, A, b and A are given, with K a proper cone, A € 7(K), be K
and A > 0. We also want to apply the results we obtain to study Collatz-
Wielandt numbers or sets, and other related problems. Here is a list of the
problems considered in this project:

Problem 1. Let A € T(K), let b be a nonzero vector of K, and let \ be 3
given positive real number. Find equivalent conditions for the solvability of
the linear equation (Mp—A)z=b zeK.

Problem 2. Let 4 ¢ 7(K), let & be a nonzero vector of K, and let A be a
given positive real number. Find nécessary and/or sufficient conditions for
the solvability of the linear equation (A — ML)z =b z € K.

Problem 3. Let 4 ¢ 7(K). Find a necessary and sufficient condition for
p(A) € ¥, where 2.1 Is the Collatz-Wielandt set defined by: 3, = {e>0:
Iz €int K oz >K Az}

Problem 4. Let A ¢ m(K) and let 0 # z € K. Determine when we have
(i) lim;_, o, ra(Alz) = pz(A); and (ii) lim,_, Ra(A'z) = pz(A).

Problem 5. Prove the following

Conjecture: Let A ¢ T(K), and let A be a given real number. Then )\ <
p(A) if and only if there exists a vector r € K such that (A— A1)z € K\{0}
for all positive integers ;.




Problem 6. Let A ¢ 7(K), and let A be a given real number. Are the
following two conditions equivalent?

(a) A > p(A4).

(b) For any z ¢ R, if (A, — 4)z >¥ 0 then there exist a vector y of
K and a generalized eigenvector v of A corresponding to p(A) such that
T=u-—uy,
If not, what about for a particular class of broper cones K, such as the clags
of polyhedral cones ?

Below is the historical background for the above problems.

Equation (1.1) arose in the study of nuclear physics. As early as 1963,
Carlson [Car] has studied equation (1.1) for the special case when K =R}
and A = p(A). Carlson’s work was followed by Nelson [Nel 1,2], Friedland
and Schneider [F-§], Victory [Vic 1,2}, and Jang and Victory [J-V 1,2].
Indeed, most of their works were done in the infinite-dimensional settings,
in particular, in the setting when 4 is an eventually compact positive linear

solvability of equation (1.1) and to give simpler proofs. ,

In [T-W], together with my student S.F. Wu, I have examined equation
(1.2) for the special case when A= p(A) and K = R%; at that time we
applied graph-theoretic arguments. As far as I know, no other people have
ever studied this equation,

Collatz-Wielandt numbers or sets are fundamental objects in the Perron-
Frobenius theory. In [T-W] we have already determined the supremum or
infimum of the Collatz-Wielandt sets 2,2 Qand Q. In particular, we
have inf§5, = p(A). However, when p(A) € 31 occurs is still an open
problem. This is Problem 3 of the present project.

For the nonnegative matrix case, Friedland and Schneider [F-S, Theorem
6.8] have answered the following question: if 4 ¢ m(K)and O # z € K, when
do we have lim,_, ra(diz) = p(A) = lim; ,oo R4(A'z). Forster and Nagy
[F-N 2, Theorem 6] extended the result to the case when p(A) is replaced by
pz(A). In [T-W, Theorem 5.2] we solved the problem for the case when K
is a general proper cone and A is K-irreducible. In Problem 4 we consider
the most general case.




In [H-R-S, Corollary 3.5 and Theorem 4.1] Hershkowitz, Rothblum and
Schneider gave two characterization of M-matrices among Z-matrices. In
Problems 5 and 6 we hope to extend their results.

2. Results and Discussions

Below is an answer to Problem 1:

THEOREM 1. Let A ¢ T(K), let 0 # b e K, and let A be o positive
real number. The Jollowing conditions gre equivalent :

(a) There ezists a vector ¢ € K such that (A, - A)z =b.
b) py(4) < A.

(
(c) lim 3> A~iA% exists.
m—}Oszo

(d) lim (A=1A)mp = g,

m—oo

(e) (2,0) = 0 for each generalized eigenvector » of AT corresponding to
an eigenvalue with modulys greater than or egual to ). ’

(f) (2,8 = 0 for each generalized eigenvector z of AT corresponding to a
distinguished ewgenvalue of A for K which s greater than or equal fo A.

When the equivalent conditions are satisfied, the vector z9 — 22520 AL A4
is @ solution of the equation (N, — Ar=bze K. Furthermore, if A is q
distinguished eigenvalue of A, then the solution set of the equation consists
of precisely all vectors of the form z° +u, where u is either the zero veclor or
15 a distinguished etgenvector of A corresponding to X; otherunse, z° is the
unique solution of the equation.

As a corollary, we have

COROLLARY 1. Let P pe an n Xn nonnegative matriz, let p ¢ RL,
and let X be a positive reql number. To the list of equivalent conditions of
Theorem 1 (but with A and K replaced respectively by P and R}) we can add
the following:

(g) For any class o of P having access to supp(b), p(P,.) < .
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(h) For each distinguished class o of P for which P(Pac) > A, we have
bg =0 whenever 3 is q class that has access from c.

(1) (Jz(,b) = 0 for each generalizeq eigenvector z of pPT corresponding to
an eigenvalue with modulys greater than or equal to ).

() {l2],8) = 0 for each generalized eigenvector » of PT corresponding to q
distinguished eigenvalue of P for R which is greater than or equal to ).

When the equivalent conditions are satisfied, the vector 70 — § A=I-1piy,
.

18 a solution for the given equation and is also the unigue solution with the
broperty that its support {s ncluded in (in fact, equal to) the union of all
classes of P having access to supp(b). In this case, if A is not g distinguished
eigenvalue of P, then 0 s the unigue solution, and if \ is q distinguished
ergenvalue, then the solutions of the equation are precisely all the vectors of
the form 2% + u, where u 4s the zero vector or is 4 distinguished eigenvector
of P corresponding fo ).

REMARK 1. Let 4 ¢ 7(K), and let A > 0 be given. The set (AL, —
AYK N K, which consists of all vectors b € K for which equation (1.1) has a
solution, is equal to the set {ye k. Py(A) < A}. The latter set 1s, in fact,
an A-invariant face of k.

In contrast with Problem 1, Problem 2 is more delicate. In general, the
set (A—AL)KNK » which consists of all vectors b € K for which equation
(1.2) has a solution, is an A-invariant subcone of K, but it need not be a
face of K. The answer to Problem 2 depends on whether A is greater than,
equal to, or less than Pe(A).

THEOREM 2. [et 4 ¢ T(K), let 0 # b ¢ K, and let ) be a given
positive real number such that ) > ps(A). Then the equation (1.2) is solvable
if and only if X is g distinguished ergenvalue of A for K and b € ON(AT, -
A)NK). In this case, for any solution z of (1.2) we have sPa(z) = (A, 1).

COROLLARY 2. It P be an nxn nonnegative matriz, let ) £ b ¢ R%,
and let A be a positive real numper such that A > py(P). Then the equation

(P—/\In):z,":b, z>0

is solvable if and onlyif Ais q distinguished eigenvalue of P such that for any
class o of P, f aNsupp(d) £ 0, then o has access to a distinguished class of
P associated with ).




THEOREM 3. et 4 € 7(K), and let 0 #b & K. If the lineqr equation
(A= p(A)L)z = b, zeK
s solvable, then b (A~ p;,(A)In)@(N((pb(A)In —AMNK).

COROLLARY 3. [et P be annxn nonnegative matriz, Let | denote
the union of all classes o of P such that o >_. B for some basic class B of P.
Then d((P - P(P)L)REN RY) is equal to the P-invariant face Fy of RY.

THEOREM 4. Let A ¢ 7(K). Let r denote the largest real eigenyalye
of A less than p(A). (If no such eigenvalyes ezist, take r = —00.) Then for
any A, r < A < p(A), we have

O((A = AL)KNK) = SV ((p(A)1, — AMNK).

COROLLARY 4. et Aen(K). If A has no distinguished generalized
etgenvectors, other than distinguished ergenvectors, corresponding to p(A),
and if A has no eigenvectors in SN ((p(A)I,, — AMINK) corresponding to
an eigenvalue other than p(A), then (A=p(AI)VKNK = {0}. The converse
also holds if the cone K 4s polyhedral.

COROLLARY 5. [et P beann xn nonnegative matriz. Let I denote
the union of all classes of P that have access to some basic class. Then
forany A, r < A < p(P), where r denotes the largest real eigenvalue of

P less than p(P) (and equals —oco if there is no such eigenvalue), we have
¢((P - ALJRINRYY = Fy.

As for Problem 3, we have the following solution:

THEOREM 5. [et 4 ¢ T(K) with p(A) > 0. Let ¢ denote the set
{z € K:p,(4) < p(A)}. Then P(A) € ¥, if and only if ®((M(p(A)I, -
AINK)UC) = K.

COROLLARY 6. Le¢t p be an nxn nonnegative matriz. A necessary
and sufficient condition for p(P} € ¥, is that every basic class of P is final.

By definition, p(A4) ¢ 221 if and only if there exists z € int K such that
p(A)z — Az € K. For z € int K, we always have P=(A) = p(A). So a related
question is the following: Given 4 & m(K)and 0 £ 1 ¢ K, when do we have
(pz(A) ~ A)z € K 7 For the latter question, we have the following answer:
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THEOREM 6. Let 4 ¢ m(K), and let 0 #z € K. The Jollowing

conditions are equivalent.
(8) Ra(z) = p,(A).
(b) (p(A)I, — A)z € K.
(¢) = can be written 45 I1 + Ty, where 21,2, € K sych that z; is an

eigenvector of A corresponding to P=(A) and z, satisfies p,, (4) < P=(A)
and Ry(z3) < p,(A).

As for Problem 3, we have the following result, from which we deduce a
positive answer to Problem 5.

THEOREM 7. Let A4 T(K), let0#z ¢ K, and let ¢ =Ty 4+,
be the representation of T as a sum of generalized eigenvectors of A, where
Aly.o., Ae are the corresponding distinet eigenvalues. Let T denote the set
{7 ek N = P(A) and ); + p=(A)}. Let m be o positive integer
and suppose that (A — p,(A)L,)"z € F and 0 # (A — p(A)LVz € K
forj=0,...,m~1. IfT' =0 then m < ordu(z). IfT # 0, then m <
ordA(:z:) - manep ordA(mJ-).

COROLLARY 7. Let A€ n(K), and let ) be a real numper. Then \ <
p(A) if and only if there exists avector r € K such that 0 # (A-ALYze K
for all positive integers 7.

3. Self-evaluation of Performance

Schneider [T-S 3], a long paper of 56 pages. The paper is being considered
for publication in Linear Algebra and Its Applications.
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