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Abstract

In Tam [5], among other equivalent conditions, it is proved that a (square)
complex matrix A is permutationally similar to a block-shift matrix if and
only if for any complex matrix B with the same zero pattern as A, W{B), the
numerical range of 3, is a circular disk centered at the origin. In this project,
we add a long list of further new equivalent conditions, some under the ad-
ditional assumption that the matrix under consideration is a nonnegative
matrix with connected undirected graph. The corresponding result for weak
cireular symmetry of the numerical range (i.e., exp(2mi/m)W(A) = W(A)
for some positive integer m > 2) is also proved. Moreover, we also solve
the problem of when the numerical range of a nonnegative matrix is a reg-
ular convex polygon with center at the origin. Our investigation also leads
to many interesting by-products. In particular, on the numerical range of
a nonnegative matrix A, the following unexpected results are established:
(1) when the undirected graph of A is connected, if W(A) is a civeular disk
centered at the origin, then so is W(B5), for any complex matrix B with the
same zero pattern as A; (ii) when A is irreducible, if X is an eigenvalue in
the peripheral spectrum of A that lies on the boundary of W(A), then X is
a sharp point of W{A). We also obtain results on the munerical range of an
irreducible nonnegative matrix, which strengthen or clarify the work of Issos
(2] and Nylen and Tam [4] on this topic.

Key words: Numerical range, circular disk, weak circular symmetry, nonneg-
ative matrix, connected undirected graph, numerical radins, regular convex
polygon, sharp point, block-shift matrix, cyclic index, diagonal similarity.

i1



-

1. Motivation and Aims

The question of when the (classical) numerical range of a complex (square)
matrix is a circular disk has been studied by several people. In 1987 Marcus
and Pesce [3] first gave a necessary and sufficient condition for a 3 x 3 or
4 x 4 real strictly upper triangular matrix to have a circular disk centered at
the origin as its numerical range. In 1994 Mao-Ting Chien and this author
[1] extended the result to the setting of a 3 x 3 complex or 4 x 4 real upper
triangular matrix. In the same paper we alsc introduced graph-theoretic
ideas into the study of circularity of numerical ranges. The following natural
question was posed: Given a complex matrix A, when is it true that for
any complex matrix B with the same digraph as A, W{B) (the numerical
range of B) is a circular disk centered at the origin ? In the same year
in [5] this author proved several equivalent conditions for A to have this
property. One equivalent condition is that, A is permutationally similar
to a block-shift matrix. In early 1999, Professor Shangjun Yang of Anhui
University (Mainland China) told this author an interesting characterization
of a nonnegative matrix that has a circular disk centered at the origin as its
numerical range. His original result was formulated in terms of the digraph
of the matrix under consideration. The meanings of his conditions, however,
were rather obscure, and moreover his proofs were involved and contained
gaps. After a careful study, this anthor found that the proof could be saved
and simplified, if one applied Wielandt’s lemma and also used the concept of
closed chains. The following unexpected result was obtained: Suppose A is
a nonnegative matriz with connected undirected graph. If W(A) is a circular
disk centered al the origin, then so is every matriz B that has the same
digraph as A. On the other hand, in a recent study of matrices with cyclic
structure (see [6]), this author also obtained the following new equivalent
condition for A to be permutationally similar to a block-shift matrix: For
each nonzero complex number A, A is diagonally similar to AA. Moreaver,
this author also found that if A and €A are diagonally similar {(where 0
is a real number), then they must be unitarily diagonally similar, and as a
consequence we have e’W(A) = W (A}, and furthermore in this case we also
have, H(A) is unitarily diagonally similar to H{e' A), where H{A) denotes
the hermitian part of A, i.e, (A4 A*)/2. The above are concerned with
the circularity of numerical ranges; the weak circularity of numerical ranges
have not yet been studied. Also, there have been only scanty studies on the



‘numerical range of a nonnegative matrix. Even the simple question of when
the numerical range of a doubly stochastic matrix is a regular convex polygon
is still unresolved (see [4]). Concerning the circularity or weak circularity of
numerical ranges, it seems that there is much room for investigations. This
prompts the author to work on the present project.

Below is a list of problems considered in this project:

Problem 1. Let A € M,,. Investigate the logical relations between the
following conditions. What can be said if in addition A is nonnegative (or,
A is nonnegative and the undirected graph of A is connected) ?

(a) A is permutationally similar to a block-shift matrix.
(b) G(A) is linearly partite.
(c) All cycles of G(A) have zero signed length.

{d) W(A) is a circular disk centered at the origin for all B € M,, with the
same zero pattern (or ray pattern) as A.

) A is diagonally similar to @A for all nonzero complex scalars a.
) For any real number 8, H(e? A} is diagonally similar to H{A).
g) W(A) is a circular disk centered at the origin.
)

er{A} € W(A) for some real number ¢ which is an irrational multiple
of .

(1) Amax(H (9 A)) = dax(H(A)) for some real nunber ¢ which is an
irrational multiple of .

Problem 2. Let A € M, and let m be a given positive integer, 2 <
m. < n. Investigate the logical relations between the following conditions.
What can be said if A is nonnegative (and the undirected graph of A is
connected) 7

(a) A is m-cyclic.
{b) A is diagonally similar to e?/" 4,
(c) All cycles of G{A} are of signed length an integral multiple of m.

(d) For any B € M,, with the same zero pattern (or ray pattern) as A,
e2/my(B) = W(B).

(e) For any B € M,, with the same zero pattern (or ray pattern) as A,
H(B) is diagonally similar to H(e2"¥/™ ),

2



(f)

(g)

eri/mW(A) = W(A).
emr(A) € W(A).

(h) )‘maX(H(e%i/mA)) = Amax(H (A}).

Problem 3. Find a necessary and sufficient condition on a (irreducible)
nonnegative matrix A so that W(A) is a regular polygon with center at the
origin.

2.

Results and Discussions

Below is an answer to Problem 1:

THEOREM 1. Let AeM,,,n>2. The following conditions are equivalent

(a) A is permutationally similar to a block-shift matriz.

{b)
(c)
(d)
(e)

(f)

(g)

The digraph of A is linearly partite.
All cycles of the digraph of A have zero signed length.

W(B) is a circular disk centered at the origin for all BEM,, with the
same zero pettern (or ray pattern) as A,

W(B) is a circulor disk for oll BEM, with the same zero pattern (or
ray patiern) as A. .

There is a real number w which is an irrational multiple of © or is
a retional muliiple of the form 2mp/q, where p,q are relatively prime

integers with q¢ > n such that e¥W{(B) = W(B) for all B € M,, with
the same zero pattern (or ray pattern) as A.

A is diagonally similar to AA for all nonzero complex numbers .

A is diagonally similar to €A for some real number @ which is an
irrational multiple of m or 4s o rational multiple of the form 2mp/q,
where p, g are relatively prime integers with ¢ > n.

A is diagonally similar to AA for some nonzero complez number X which,
18 not a root of unity.

For any B € M, with the same zero pattern (or ray pattern) as A,
H(e B) is diagonally similar to H(B) for all real numbers 6.

3



(k) For any real number 8, H(e® A) is diagonally similar to H(A).
(1) For any BEM,, with the same zero patiern (or ray pattern) as A, H(e"’ B)
has the same characteristic polynomidal for all real numbers 8.
(m) For any B € M, with the same zero pattern (or ray pattern) as A,
e®U(BY = U(B) for all real numbers 8.

(n) For any BEM, with the seme zero paitern {or ray patiern) as A,
e Weo(B) = We(B) for all CEM,, and all real numbers 8.

(o) For any B € M, with the same zero pattern (or vay paitern) as A,
e?Wpy.(B) = Wg.(B) for all real numbers 6.

(p) For any B € M,, with the same zero pattern (or ray pattern) as A,
We(B) is symmetric about the real azis (or any azis passing through
the origin) on the complez plane for all C' € M,,.

When A is nonnegative, the following is another equivalent condition:

(q) The characteristic polynomial of H(e'? A} is the same for all veal num-
bers 0.

When A is nonnegative and the undirected graph of A is connected, to the
above list of equivalent conditions we can add the following:

(r) W(A) is a circular disk centered at the origin.

(s} e¥r(A) € W(A) for some real number @ which is an irrational multiple
of w or is a rational multiple of the form 2xp/q, where p, ¢ are relatively
prime integers with g > n.

(t) Amax(H{e¥A)) = Anax(H(A)) for some real number o which is an irra-
tional multiple of m or is a rational multiple of the form 2np/q, where
P, q are relatively prime integers with ¢ > n.

(u) p(H(ewA)) = p(H(A)) for some real number @ which is an irrational
maltiple of w or is a rational multiple of the form 2mwp/q, where p,q are
relatively prime integers with ¢ > n and q # 2 (mod 4).

As for Problem 2, we have the following answer:

THEOREM 2. Let m,n be positive integers, 2 < m < n. [or any
A € M, the following conditions are equivalent:

(a) A is diagonally similar to /™4,



(b) All cycles of the digraph of A are of signed length an integral multiple
of m.

(¢} For any BEM,, with the same ray pattern as A, e*™/™W(B) = W(B).

(d) For any B € M, with the same zevo pattern as A, H(B) is diagonally
similar to H(e?™™B).

(e) For any B € M, with the same zero pattern as A, H(B) and H(e*"/""B)
have the same characteristic polynomial.

When the digraph of A has at least one cycle with nonzero signed length, the
following are each an additional equivalent condifion.:

(f) For any B € M, with the same zero patiern as A, e*™/™U(B) = U(B).

(g) For any B € M, with the same zero pattern as A, e™/™Wg(B) =
We(B) for all C € M,,.

(k) For eny B € M, with the same zero pattern as A, 2™/ Wp. (B) =
Wg(B).
(1) A is m-cyclic: ,
When A is nonnegative and the undirected graph of A is connected, each of
the following is equisvalent to conditions (a)-(e):
() Ao (H(E™/MAY) = A (H(A)).
(k) MM (A) = W(A).
(1) e?™i/mr(A) € W(A).
(m) H(e*™/™A) is diagonally similar to H(A).
If, in addition, m 3£ 2 {mod 4), the following is another equivalent condition.:
(n) p(H(e*™/™A)) = p(H(A)).

The proofs of Theorems 1 and 2 depend on the following results which
have interest of their own.

We denote the numerical radius of A by r(A4), i.e,, r(A) = max{|w| : w e
W{A)}.

LEMMA 1. Let A be an n x n nonnegative matriz with connected undi-

rected graph. Let @ be a real number such that € # 1, and suppose ¢*r(A) €
W(A).




(i) If ¢ is an irrational multiple of , then A 1s permutationally similar
to a block-shift matriz.

(11) If  is a rational multiple of m, say v = 27p/q, where p, q are relatively
prime integers, q being positive, then all cycles of G{A) are of signed length
an integral multiple of q.

In any case, A is diagonally similar to P A.

LEMMA 2. Let A = (a,,) € M, and let ¢ be a given real number,
Suppose trste = 0 for all ;s € (n). If H(A) is diagonally similar to
H{e* A}, then A is diagonally similar to e A.

LEMMA 3. For a nonnegative matriz A and any given real number

@, we have Mua(H (€% A)) = Anax(H(A)) if end only if e~*r(A) € W(A) if
and only if €¥r(A) € W({A). When A is a nonnegative matriz with connected
undirected graph, each of the following is an additional equivalent condition. .

(a) A is diegonally similar to e A.

(b) e®*W(A) = W(A).
If, in addition, ¢ 1s an irrational multiple of = or is a rational maltiple of
the form 2np/q, where p, q are relatively prime integers, q being positive such
that ¢ # 2 (mod 4), then the following 7s another equivalent condition.:

(e) p{H(e¥A)) = p(H(A)).

LEMMA 4. Let p be a real number such that e # 1. For any A € M
n > 2, the following conditions are equivalent:

(a) A 1s diagonally similar to e A.

ny

(b) For any B € M, with the same zero pattern {or ray pattern) as A,
e*W(B) = W(B).

{c) For any B € M,, with the same zero paltern as A, H(B) s diagonally
similar to H(e'% B).

(d) For any B € M, with the same zevo pattern as A, H(B) and H (" B)

have the same characteristic polynomial,

By the index of imprimitivity of an trreducible nonnegative matrix A, we
mean the number of eigenvalues of A of maximal modulus. By Lemma 3 we
readily obtain, as a hy-product, the following related result which strengtliens
the work of Nylen and Tam {14, Corollaries 1.5 and 1.6} on the numerical
range of an irreducible doubly stochastic matrix.




COROLLARY 1. Let A be a nonnegative matric with connected unds-
rected graph. If the digraph of A has at least one cycle with nonzero signed
length, then the cyclic index of A is equal fo the largest positive integer m.
that satisfies 2" /™W (A) = W(A). If, in addition, A is irreducible, then this
common value is also equal to the index of imprimativity of A.

We also obtain the following reformulataed unpublished main result of .

Issos {2, Theorem 7).

COROLLARY 2. Let A € M, n > 2, be an srreducible nonnegative
matriz with index of mmprimitivity h. For any complex number A € W{A),
|\ = 7(A) if and only if X is one of the h numbers r(A), r(A)e™ /", .
r(A)e?mth=1i/h,

t

As for Problem 3, we have the following answer:

THEOREM 3. Let A ¢ M,, be a nonnegative matriz, n > 2. Let P he
a permutation matriz such that PTAP = A\ @ @ Ay, where Ay, ..., A,
aré square matrices each with a connected undirected graph. Then W({A) is
a regular convex polygon with center af the origin if and only if there exists

4, 1 £ 7 <k, such that W(A;) is a regular convex polygon with center at the
origin and W(A;) includes W{A;) for alll#4, 1 <1<k,

In view of Theorem 3, a relevant problem is when the numerical range of
a nonnegative matrix with connected undirected graph is a regular convex
polygon with center at the origin.

To answer this, we obtain first the following interesting Lemma 5 and
then Theorem 4.

LEMMA 5. Let A be an irreducible nonnegative matriz. If A is an
eigenvalue in the peripheral spectrum of A that lies on the boundary of W{A),
then A is a sharp point of W({A).

THEOREM 4. Let A € M, be a nonnegaiive matriz, n > 2. Let P he
a permutation matriz such that PTAP = A @ - @ A, where Ay,. .., A,
are square matrices each with a connected undirected graph. A necessary and



sufficient condition for v(A) to be a sharp point of W(A) is that, for any j,
1 <j <k, we haove

(D). If p(A;) = p(A), then A; is a maximal irreducible principal submatriz
of A and p(A;) = r(A;); and

(ii) If p(A;) < p(A), then r{A;) < p(A).

By Theorem 4 we have the following answer to the question we posed
above.

Remark 1. If A is a nonnegative matrix with connected undirected
graph such that W(A) is a regular convex polygon with center at the origin,
- then A is necessarily an irreducible matrix.

Now we have

THEOREM 5. Let A be an wrreducible nonnegative matriz with index
of imprimitivity m. In order that A is a regular convez polygon unth center

at the origin, it is necessary and sufficient that the following conditions are
both satisfied:

(a) p{A) = p(H(A)). |
(b) Fort=1,...,m, Amax(H (e~ @D/ ANy = p(A) cos(n/m).

Based on Theorem 3, Remark 1, Theorem 5 and the following Remark
2, one can veadily construct an algorithm to determine when the numerical
range of a nonnegative matrix is a regular convex polygon with center at the
origin.

Remark 2. Let A be a square matrix. Let p be positive real number
and let m > 2 be a positive integer. In order that

W(A) C conv {pe™™/™ . t =1,...,m},
it is necessary and sufficient that for t = 1,...,m, we have

A (H (&7 BFITIMAYY < pcos(m fm).



3.

Self-evaluation of Performance

The preject has been carried out with a great success. Not only are all

the problems solved, but also we have obtained many interesting unexpected
by-products. The solutions of Problems 1 and 3 have already appeared in
[7], a joint paper of this author with S. Yang. The solutions of Problem 3
and other related results will appear in a future paper.
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