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ONE-SIDED RANGE TEST FOR TESTING AGAINST AN ORDERED ALTERNATIVE
UNDER HETEROSCEDASTICITY

Shun-Yi Chen
Department of Mathematics, Tamkang University, Tamsui, Taiwan 251
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ABSTRACT

In a one-way fixed effects analysis of variance
model, when normal variances are unknown and pos-
sibly unequal, a one-sided range test for testing the
null hypothesis Ho : g1 = ... = g, against an or-
dered alternative H, : u < ... < u4 by asingle-stage
and a two-stage procedure, respectively, is proposed.
The critical values under Hy and the power under a
specific alternative are calculated. Relation between
the one-stage and the two-stage test procedures is
discussed. A numerical example to illustrate these
procedures is giver.

1 Introduction

Suppose that k(> 2) independent populations
T1,..., 7 are available where observations taken
from population x; are normally distributed with
mean p; and variance o7{! < i < k). When vari-
ances, a;,...,07, are equal (known or unknown},
Hayter (1090) and Hayter and Liu {1996) proposed a
one-sided studentized range test for testing the equal-
ity of means, Hy : py = ... = pp, against an ordered
alternative, 5, : iy < ... < ug, with at least one
strict inequality. In this paper, we propose a new
range test for the same purpose under the situations
where the variances are unknown and possibly un-
equal using a general two-stage and a one-stage sam-
pling procedurs.

The procedures of testing the equality of means
in the conventional analysis of variance (ANQOVA)
are hased on the assumptions of normality, indepen-
dence, and equality of the crror variances. Studies
have shown that the distribution of Tukey’s studen-
tized range test depends heavily on the unknown vari-
ances and is not robust under the violation of equal
error variances, especially if the sample sizes are not
equal. (See Bishop, 1979). As pointed out by Bishop

and Dudewicz (1981) that “in practice the assump-
tion of equal error variances is often unjustified, and
at the same time there is no exact theory to handle
the case of heteroscedasticity. Historically transfor-
mations of the data, for example, logarithm or arc-
sine transformations, have been used ..., they are only
approximate in terms of equal variances, normality,
and model specification. These approximations, in-
herent in the transformation technique, lead to test
in the ANOVA setting, have only approximate level
and power. Finally, if the errors associated with the
original observations are normal, the errors associ-
ated with the transformed observations will not be
normal.” Furthermore, the transformed data may
lose its practical meaning, and sometimes, the ac-
ceptance of the equality of means using transformed
data does not automatically imply the acceptance of
the equality of means in the original scale. When
the variances are unknown and unequal, Bishop and
Dudewicz {1978) developed an exact analysis of vari-
ance for testing the equality of the means of k inde-
pendent normal populations by using a two-stage pro-
cedure. The two-stage procedure is a design-oriented
procedure which requires additional samples in order
to meet the power requirement, and the sample sizes
can be large at the second stage. It may not be prac-
tical in some real problems when the time and/or
budget are limited in an experiment. When work-
ing with statistical data analysis one often has only
one single sample available. Chen and Lam (1983),
Wen and Chen (1994) and Chen and Chen (1998)
developed a one-stage method for some statistical in-
ference problems. The one-stage procedure alsc has
an exact distribution for its test statistic and it is a
data analysis-oriented method. The one-stage proce-
dure provides a feasible alternative to the two-stage
procedure when the experiment is terminated ear-
lier and its required sample sizes are not met due
to budget shortage, time limitacion, or cost factors.
We first propose the two-stage procedure and then
the one-stage procedure. Finally, their relationship
is discussed. Statistical tables of the critical values
and the power-related design constants to implement



these procedures are given in Tables 1-2. A numeri-
cal example is also given to illustrate the use of the
range test.

2 Two-Stage Range Test

Consider the one-way fixed effects aﬁalysis of vari-
ance {ANOVA) model
1<i<k,

(1)

where the e; are independent and normally dis-
tributed random variables with mean zero and vari-
ance of, denoted by N(0,02), i =1,...,k, and p; is
the mean of the #th treatment. Both y; and o} are
unknown parameters. The considerable interest is to
test the null hypothesis of equality of means,

Xij = pi + €5, 1<j<ny,

Hy m=...=
against the ordered alternative hypothesis
Hyrp <000 gy

with at least one strict inequality.

The two-stage sampling procedure (Pg) (see
Bishop and Dudewicz (1978)) for testing H, against
H, by a new range statistic is given as follows:

Pg: Choose a number z > 0 (z is determined by
the power of the test), and take an initial sample
size ng (at least 2, but 10 or more will give better
results) from each of the k populations. For the ith
population let 52 be the usual unbiased estimate of
o} based on the initial ng observations, and define

52
N; = max {n[] +1, [j} + ]}

where [z] denotes the greatest integer less than or
equal to x. Then, take N; — ng additional observa-
tions from the ith population so we have a total of

(2)

N; observations denoted by Nitso -0 XNinga -+ o X,
For each 1, set the coefficients Qi s o ms Qingy- - oy Bid,,
so that
L= (N, ~ nglh,
Gip = ... Sy, = —————— = =y,
g

Ding+: = ... =

and then compute the weighted mean

2]} Nn
Xz' = 4 E X{j + EJ:' Z ‘Yi}
i=1 j=np+1

which is a lirear combination of the first-stage
data (Xu,...,Xi,) and the second-stage data
{Xing+1+- - -Xin;). The motivation of the choice of
N; in (2) is based on the following rationale: The
above coefficients ay;’s are so chosen in such a way
that . .

Ny
c = Qyng, (€)S7 Zafj = z.

=t

N;
(a) Z ai; =1, (bjan =
=1 ’
This is surely possible since

M
min ) ol = 1 < 2/57 by (2),
i=1
the minimum being taken subject to the conditions
{a) and (b). Furthermore, condition (a) is to ensure
the unbiasedness of X; for g, (b) guarantees that
the sample mean X; and sample variance S? based
on the first stage ny observations are independent,
and (¢} is the variance estimate of X; controlled at
a power-specified value » which guarantees that the
tv's T = (X — bz, i = 1, k, have iid. ¢
distributions with v = ng — 1 degrees of freedom (df},
free of the unknown variances. {See, e.g., Dudewicz
and Dalal, 1975).
A one-sided range test for testing the null hypothe-
sis Hy against the ordered alternative H, is proposed
below. Consider the test statistic

T= i’a);}l\/ga

which rejects the null hypothesis Hy iff

("EJ - (3)

max
1<igj<k

T > Cov b 1oy

where ¢4, is the critical value such that this test
has size exactly equal to & under Hp.
The test statistic T can be rewritten as

T =  max Xy X B b
1<i< <k vz Ve NE
= < (T, - T, = L ) 4
15??_%1:{ J +{py = pid/z) (4)
where 77, ..., Ty are iid. # rv’s with » df. Then
the critical values ¢, 4 . can be evaluated under H,
using the equation
PT{ max (TJ - T:) < Cor,k,r!} =1-a. (5)

L<i<i<k

The range test (3} can be inverted to produce the
following (1 — e)-level sitmultaneous one-sided confi-
dence intervals for the ordered pairwise differences of
the treatment means so; — p2,{1 <i < j < k):

Pr{p‘j—“i 2 XjAﬂ?E_VGCn'.k:u; l<i<j<k}=1-qa,



which are often of the most interest to an experi-
menter.

The critical values e, 4, of the null distribution of
T in (5) can be obtained from a short SAS {Version
6.12, 1990) computer simulation program given by
Chen and Chen (1999). The program can be run on
a Pentium II personal computer with a SAS PC sdft-
ware. For selected number of populations &£ and df v,
k independent t random variates, ¢,...,£; were gen-
erated by the formula t = Y/+/U/v, where ¥ is the
standard normal random variate generated from the
random number generator RANNOR and U is the in-
dependent chi-squared random variate with - degrees
of freedom generated by the gamma random number
generator RANGAM in SAS 6.12 (SAS Institute Inc.,
1990). Then the value of @ = max;<;cj<x(t; — t:)
was computed for each simulation run. After 10,000
simulation runs, all of the @ values were ranked in
ascending order. The 90th, 95th and 99th percentiles
were used to estimate the upper o percentage points
10%, 5% and 1%, respectively. This process was repli-
cated 16 times. The average values of the 16 critical
points and their corresponding standard errors (in the
parentheses) are reported in Table 1 for k = 3,4, 6,10,
and df » = 4,6,9, 14,19, 24,29, 59, oc. The extended
tables were given by Clen and Chen (1999).

The power is calculated by the expression

8=Pr{T > car.|fn)

for given values of &, a, v and the ratio §/+/z, where
B[] = (—5/2\/50.0,

8/2./z). {Since this is the least favorable configura-
tion of means for the power of the range test subject
to the restrictions pp — pp > 8 and gy < ... < pg for
norinal distribution, sce Hayter (1990), and hence the
asymptotically least favorable configuration of means
for the power of the range test for the t distribution.)
For each k&, v, e and the vatio 4//z, k& independent
t random variates t;...., ¢, were generated as de-
scribed above. The statistic of T was calculated as
in {4) at 8y. This process was repeated 20,000 times
and the power was estimated by

Na. of times {1 > cq )

8= 20,000

(6)

The values of the ratio d//z such that a size o
test has the power 3 are given in Table 2 for & =
3(L)B(2310,15,20. v = 4.0,14,24, & = .10, .05, .01,
and power=.801 .90, 95 An example of how to use
these Tables is illusrrated as follows: If one has & = 5
treatments in the experiment, and the initial sample
available is ng = 15 observations {df » = 14), at the

price of o = 10% risk; he/she would like to detect a
difference of at least § = 3.0 with a required power
of .95. From Table 2, the ratio §/./z = 5.58 can be
found corresponding to the required power .95, Then,
the design constant is found to be z = (6/5.58)% or
z = 280 which will be employed in (2) to determine
the total sample size N; in the experiment. Simu-
lation study shows that linear interpolation in é//Z
would give satisfactory results for values of power be-
ing not tabulated. The extended tables for the power
of the test were given by Chen and Chen (1999).

3 One-Stage Range Test

When the two-stage procedure cannot meet the re-
quired sample sizes in (2) due to some shortfalls, the
one-stage procedure provides a feasible solution by
recalculating the weighted sample means using new
weights. We now describe the general one-stage sam-
pling procedure (P;} in the context of the one-way
layout (1).

Py: Let Xi5(j = 1.....n,) be an independent ran-
dom sample of size n;{> 3) on hand where A;; have
normal population w7 = 1,..., k) with unknown
mean g; and unknown and unequal variance 7. Em-
play the first (or randomly chosen) ng(2 < 1y < ny)
observations to calculate the nsual sample mean and
sample variance, respecrively, by

Tl

X = ZXU/”U
i=1

and
ng

SF= 3Ny - X - 1),

i=1

Let the weights of the observations be

1 1, - .
Ui = —+ — /0T M ays2
ITRTTR
1 1 /[ n ; -
L; = / fo ‘:_”.‘;2"',"5:-3 - ].)

S e S
n;  ; \f’ T — i

where z* is the maximum of {57 /n ..., S} /ne}. Let
the final weighted sample mean using all observations
be defined by

%= 3w, )

J:: [
where

—_ L‘r‘i

=9\ 1

for 1 <3< ng
for np < 7 < ny

Wy (8)



and U; and V; satisfy the following conditions
ol + (m: —ng)V; =1,

[naU? + (n; — np}VAS? = 2,

When dealing with a statistical data, analysis where
the data’ are already available on hand, Chen and
Lam (1989) suggested taking ny to be n; — 1, be-
cause such a choice can push the weights U/; and 1;
to be as close to 1/n; as possible where 1 /n; in tra-
ditional way is a desirable coefficient for calculating
the sample estimate of population mean. Another
reason of choosing ng = n; ~ 1 is that it is optimal
in the sense that the Student’s t distribution has the
smallest critical value (among ng < n; — 1) for a fixed
level of probability. In situations where the one-stage
procedure is used to repair the two-stage procedure
when the later one cannot complete its required sam-
pling process (see Section 4), one may choosa g to be
between 10 and 15 as the two-stage procedure does
at the initial stage (Bishop and Dudewicz {1978}

Given the sample variances §2, i = 1,... k, the
weighted sample mean X; has a conditional normal
distribution with mean p; and variance L, Wg—af.
Furthermore, the transformation

Xi—
St Z:H:I ”5

T, =

has a conditional normal distribution with mean zera
and variance o7/57.

[t is easy to see that the conditional normal distri-
butions of T; given S7,i = 1,. .. &, are unconditional
and independent Student’s ¢ distributions cach with
¥ = ng — 1 df using a similar derivation by Chen and
Chen (1998). That is, the random variables

Ti:ﬂ, i=1,. ..k
vz

are distributed as independent Student’s ¢ with » JFf.

Assume that for ¢ = 1. . &, the one-stage sam-
pling procedure has been conducted and rhat the fi-
nal weighted sample means X; have heen compnuted
as in (7). A new range test statistic [or testing fy
against the ordered alternative H, is given by

- T
T= max (X; - X;)/vz.
L<i<i<k

(9]
The null hypothesis Hy is rejected in favar of H, iff

T Z Cex kv

where cq ¢ 4 is the critical value of size o satisfying
Pr(, max (X; = X}/Va* 2 capulHo) = (10)

with k£ treatments and v df. The critical value Co.ku
is the solution to

Pr{ max L{T} ~Ty) > eann} = a. (11)

12i<sig
which is the same as in Section 2.

The range (9) can be inverted to produce the fol-
lowing (1-a)-level simultaneous one-sided confidence
intervals for the ordered pairwise differences of the
treatment means j; — p;{1 <4 < j < k)

i — Efj_j{i_vz’ca‘k.mlgi<jfk

which are often of the most interest to an experi-
menter. The estimated power of the test (9) can be
found in Table 2 for a specified alternative hypothesis
with gz —py =46 .

4 Discussion on Two-Stage and
One-Stage

The two-stage test procedure can control both the
level and the power of the test without having the in-
fluence of the unequal and unknown variances. It is
an important design-oriented statistical method used
i an experiment. However, in situations where the
experiment is terminated earlier due to budget re-
striction, time limitation, or some other uncontrol-
lable facrors, the required sample size &; in {(2) in
the two-stage procedure cannot be reached. Then
the two-stage test procedure cannot work. One may
have to, in this situation, use the available sample
data hased on the sample size n;(> ng + 1) on hand
and recalculate weighted sample mean using the co-
efficients W; in (8) according to the one-stage sam-
pling procedure described in Section 3. Thus, given
the sample data, the estimated minimum power can
be determined by, letting z* = max; <<k (57 /1),

F }:r' —Jﬁz' VZCq ko :
T{151?<33'X5k( 57X > izt kol Ha)

(12]
The power so determined is a data-dependent power
which could be larger than, equat to, or smaller than
the originally specified one by the two-stage proce-
dure. This is elaborated as follows: If the sample size
> ng+1,4=1,...,k, were given by the one-stage
procedure and



Case 1. If §?/n; = 87 /n; for all 4, j, then the two-
stage and one-stage procedures have the same
power due to S7/n; = z, and z = z*. The power
can be calculated by (12) or approximated by
Table 2,

Case 2. If z* = max)<;j<k(S7/n;) < z, then the
one-stage test procedure has a power larger than
that of the two-stage test procedure. A smaller
z*-value results in a larger sample size n; than
the required one by the two-stage one.

Case 3. If mini<;<x(53/n;) > z, then the power of
the one-stage test procedure is smaller than that
of the two-stage test procedure.

Case 4. In all other situations, the one-stage test
procedure could have power larger than, smaller
than, or equal to the two-stage depending on
the actual samples and the true population vari-
ances,

5 A Numerical Example

Bishop and Dudewicz (1978) studied the data of
bacterial killing ability of four solvents (Tables 3 and
4) using the two-stage sampling procedure. There
were four types of solvents which can affect the ability
of the fungicide methyl-2-benzimidazole-carbamate
to destroy the fungus Penicillium expansum. For the
purpose of illustration, we assumed that an active
ingredient of the ascending levels were included in
solvents I, 11, I1IT and IV. The fungicide was diluted
in exactly the same manner in four different types af
solvents and sprayed on the fungus, The percentage
of fungus destroyed was measured and recorded. In
their first stage of experiment n; = 13 observations
were run with each solvent. Wen and Clen {1994)
have shown a significant difference amaong the vari-
ances by using Bartlett’s 2 test for equality of vari-
ance. Suppase the aim of the EeXperiment is to test
the hypothesis that the mean percentages of fungus
destroyed are all equal, Ho : g = 1 = o=
against a simple ordered alternative, H, : u; < Hr <
f24 < gy, where g, denotes the mean percentage of
fungus destroyed by solvent 7. If the experimenter
decides the level of the test to be 5% for testing
Hy with a power of at least B8 far a difference of
Mnax — fmin > \/27(: 8). From Tables 1 and 2, the
critical value ¢ = 3.63 and 6//Z = 4.97 can be found
corresponding to the power of .85, s0 z = .081. The
intermediate statistics S, ay,8;, and N; which are
necessary for the caleulation of the fnal weighted

means are given at the bottom of Table 3. The &-
nal sample sizes (¥;} required for each solvent were
40, 73, 16 and 27. The remaining N; — 15 obser-
vations taken at the second stage are given in Ta-
ble 4. The final weighted sample means are found
to be X, = 95.274, X, = 94.761, X; = 97.498, and
X, = 97.503. We found the test statistic T = 9.95,
which exceeds the eritical point of 3.63, so Hy is re-
Jected in favor of H, with a power of at least 85% ta
detect a difference of +/2 between the largest and the
smallest means.

If the experiment at the second stage is terminated
earlier due to some uncontrollable factors, and we can
only obtain smaller samples from each treatment, say,
Ny = 34Ny, = 64,N; = 16, and Ny = 23. We
can apply the one-stage procedure with those ob-
servations available from each population. For this
case we use the same number of observations used
by Bishop and Dudewicz (1978), ng = 15 for ini-
tial estimation and the remaining for use in the final
computation. The intermediate statisties S?, U;, V;,
and z* are given at the bottom of Table 4. The f-
nal weighted sample means are X, = 94.981,):’-3 =
94.957, X5 = 97.225, and X, = 97.311. We found the
test statistic T = 7.71, which exceeds the 5% critical
value ¢ = 3.63, so Hy is rejected in favor of H, sub-
18Tt t0 ftmax — ftmin > 2. Since the required sample
sizes by the two-stage procedure were not met, we
have obtained the estimated power being .80 accord-
ing to 2™ = .0933 by using Table 2 (6/v/2* = 4.63
corresponding to a power of .80). From this exam-
Ple we can clearly see that the mme-stage procedure
can both theoretically and practically provide a fea-
sible solution to handle the difficulty of the two-stage
procedure when an experiment is unexpectedly ter-
minated earlier.

6 Acknowledgements

The author wishes to express his sincere thanks
to his former major Profossor. Dr. Hubert J. Chen
at the University of Geargia, for bis sugmestions
and careful examination into the stacistical logic and
mathematical derivations. The anthor also wonld
like to thank an associate ediror, che ediror and ref-
erees far their valuable suggestions and comments
which improved the applicability and readahility of
the manuscript.

BIBLIOGRAPHY

Bishop, T. A. (1979). Some results on sitnultane-
ous inference for analysis of variance with unequal



variances. Technometrics, 21, 337-340.

Bishop, T. A. and Dudewicz, E. J. (1978). Exact
analysis of variance with unequal variances: test
procedures and tables. Technometrics, 20, 419-
430.

Bishop, T. A. and Dudewicz, E. J. (1981). Het- .

eroscedastic ANOVA. Sankhya, 43B, 40-57. Table 1, The Average of 16 Critical Values ¢4, of

Chen, S. Y. and Chen, H. J. {1998). Single- Q= ,<'?f-x<;c(t* — ;)
stage analysis of variance under heteroscedastic- and Their Standard JE‘rmrS in Parentheses.

ity. Communications tn Statistics - Simulation
and Computation, 27(3), 641-666.

Chen, H.J. and Chen, S. Y. {1999). One-sided range
test for testing against an ordered alternative un-
der heteroscedasticity. Technical Report 93-5, De-
partment of Statistics, University of Georgia.

Chen, H. J. and Lam, K. (1989]. Single-stage inter-
val estimation of the largest normal mean under

heteroscedasticity. Communications tn Stetistics
- Theory and Methods, 18(10), 3703-3718.

Dudewicz, E.J. and Dalal, S.K. (1975). Allocation
of abservations in ranking and selection with un-
equal variances. Sankhye, 378, 28-78.

Havter, A. J. (1990). A one-sided studentized range
test for testing against a simple ordered alterna-
tive. J. Ameri. Statist. Assoc., 83, T78-783.

Hayter, A. J. and Liu, W. {1996). Exact calculations
for the one-sided studentized range test for test-
ing against a simple ordered alternative. Compu-
tational Stotistics and Date Analysis, 22, 17-25.

Wen, M. 1. and Chen, H. J. {1994). Single-stage mul-
tiple comparison procedures under heteroscedas-
ticity. American Journal of Mathematical and

v 10% 5% 1%
4 3.32(.01) 4.19(.01]  6.45(.03)
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6 3.51(.01) 419001}  5.78(.02)
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24 3.00(01) 347001  4.43{.01)
20 2.98(.01) 3.44(.01)  4.36(.01)
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1 485(.01) 584(01} 8.56(.05)
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[o; W a-r R e r I = e - Wi B - I 1) (RSN SR N U < N R S N S B - I = B FL T i L L 2L
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N

Management Sciences, 14, 1-48, 6 oo 3.33(.01) 3.72(.01)  4.47(.01)
10 4 509(.0ly 7.12(02] 10.27(.06)
10 6 5.05(.01) 5.77(.01)  7.58(.03)
10 9 457001} 5.15(01)  6.42(.02)
10 14 427(01) 4.76(.01)  3.81{.02)
10 19 415(81) 4.39(01)  5.51{.01)
10 24 4.08(.01) 4.50{00)  5.36{.00)
10 29 4.04001) 4.45(.01)  5.300.01)
10 59 3.93(.01) 431(01)  5.080.01)
10 co  3.83(.01)  4.19(01)  4.90(01}




Table 2. The Power-Related Ratio 8/+/2 of thé One-Sided Range Test

v 4 9 14 24
o 10% 5% % J10% 5% 1% [10% 5% 1% |[10% 5% 1%
power k=3
.80 447 542 783 380 452 590 369 430 547 358 4.17 521
.90 3.32 6.29 870 459 522 660 441 493 617 4.24 483 587
95 6.00 7.07 948 519 583 T7.20 498 553 674 482 536 647
k=4
B0 5.04 6.07 867 422 492 627 404 463 587 388 448 553
80 3.85 6.84 948 488 563 700 475 532 650 457 515 6.23
45 6.54 7.9 1029 554 618 739 532 594 TI11 514 372 673
E=5
B0 548 659 9040 453 3.21 658 430 490 6.81 413 4.70 579
.80 6.30 742 1021 523 594 730 5.00 559 678 486 540 645
.95 7.04 820 1098 587 656 790 558 619 736 537 595 F.04
k=6
B0 591 7.01 993 472 547 685 449 514 632 435 491 35.95
.90 6.72 7.88 MLY6 348 621 7566 522 384 T.02 502 557 6.6l
A5 7.37 860 1157 609 G681 816 578 639 757 558 613 7.14
k=8
.80 6.a{) 770 1086 509 5381 7.24 478 544 665 464 519 6.24
a0 7.37 856 11.67 582 655 795 5562 612 T.28 534 588 6.88
.95 808 934 1251 645 7T.15 857 608 673 TBRE 590 642 742
k=10 |
B0 6.98 8.30 1164 5400 6.12 T.60 5.04 568 6.02 539 643
A0 780 910 1250 6.14 6.85 828 576 640 763 553 6.07 T.09
95 3.56 991 1331 679 T44 889 636 695 820 G608 6.67 T.64
k=15
B0 7.59 029 1286 3.90 .G3 814 549 610 7.30 519 578 6.84
A0 8.73  10.13 71 6.66 T332 888 622 682 798 593 646 7.49
A5 942 1005 1434 7.30 305 942 (6.8 738 859 H48 703 B8N
k=20
.80 858 10.03 1387 624 699 851 580 641 764 548 G604 T.05
Aa 946 1090 1473 7.00 F.69 923 6.56 T7.12 834 G20 6.73 T7.73
A5 10.20 11.60 1554 T7.60 830 983 7.14 7.67 892 @677 731 815




Table 3. Bacterial killing ability example
(first 15 observations) and summary statistics

Solvent I Solvent 11 Solvent 11 Solvent IV

93.63 93.58 97.18 96.44
93.99 93.02 97.42 96.87
94.61 93.86 97.65 97.24
91.69 92.90 95.90 95.41
93.00 91.43 96.35 95.29
94.17 92.68 97.13 95.61
92.62 91.57 96.06 95.28
93.41 92.87 96.33 94.63
94.67 92.65 96.71 95.58
95.28 95.31 08.11 98.20
95.13 95.33 98.38 98.29
95.68 95.17 98.35 98.30
97.52 98.59 98.05 98.65
97.52 98.00 98.25 98.43
97.37 98.79 98.12 98.41

Summary statistics of the two-stage

52 3.17085 5.88428 0.77969 2.10995
a 0.02023 0.01182 0.04937 0.03071
b, 0.02786 0.01419 0.25948 0.04493
N, 40 73 16 27
| X, 05.274 94.761 97.498 97.593

z = (L.O8] T =995




Table 4. Bacterial killing ability example
(second-stage observations)

Solvent I Solvent II Solvent III | Solvent IV
96.97 94.03 ;9636 9343 9815 9242 097.97 98.59
97.21 9243 | 9669 9272 96.73 92.38 98.20
97.44 9262 |96.8% 93.56 97.55 92.06 98.37
96.86 9447 | 9613 94.13 94.44 9250 98.57
97.26 (94.14) | 97.65 93.57 93.61 (92.54) 08.42
98.27 (93.09) | 97.81 96.27 93.61 (92.52} 88.29
97.57 (98.47) | 97.71 98.05 94.20 (91.80) 98.51
97.81 (98.06) | 97.48 97.67 94.20 (93.00) 98.89
68.20 (98.35) | 97.96 98.93 093.34 (91.69) {08.66)
93.92 (97.09) 94.30 97.23 93.33 (95.42) (97.39)
03.86 93.29 95.95 93.531 (92.29) (97.41)
092.57 94.21 97.79 9391 (92.37) (97.52)
93.32 92.90 9741 94.05 (94.96)

92.15 93.02 9694 93.76
92.09 93.43 97.08 93.76
Summary statistics of the one-stage !
Solvent I Solvent I Solvent 111 Solvent TV
52 3.17085 5.88428 0.77969 210095
L 0.02941 0.01901 0.07793 0.04757
% 0.02941 0.01459 -0.16889 0.03581 |
A, 34 64 16 23
AV 94,981 94.957 97.223 97.311
z* = 0.0933 T=771

t The data within parentheses are assumed not available in the

calculation of the one-stage procedure.



