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ABSTRACT

In this paper we use a general single-stage proce-

dure described by Chen and Chen (1998) for teéting
the equality of normal means against ordered alterna-
tives in one-way layout when variances are unknown
and unequal. A table of percentage points needed for
implementation is given. I

1. INTRODUCTION E

Suppose that I (> 2) independent populatlions
Myy..., 7y are available where observations taken
from population m; are normally distributed with
. mean ;i and variance of (1 € § < N is as-
sumed that these variances are unknown and|un-
“equal, and the means are monotonically ordered with
K1 2 fi2 > -+ > pr. It is also assumed that no plrior
knowledge about pu; and o? is available. The bur—
pose of this paper is to apply a-general single-stage
sampling procedure for testing the null hypot}'lesis
Hy iy = gy = -+ = 11 "against the a.Iterna{tive
Ho oy 2 pp > --0 > B with at least one strict
imequality under heteroscedasticity. '

‘The problem of testing ordered normal means with
cqual variances has been considerad by several|au-
thors. Williams (1971) derived a test procedure for
identifying the lowest dose in which J41 corresponds
to a control and pa,..., s to increasing doses pf &
drug. Marcus (1976) compared the powers of sev-
eral tests of the equality of normal means against the
ordered aiternative. Williams {(1977) gave a limit-
ing distribution of the test for hypotheses concerning
monotonically ordered normal means. When the vari-
ances are unknown and unequal, Marcus (1980) ¢on-
structed a test procedure for testing homogeneit'y of
means against ordered alternatives in analysis of vari-
ance model by using a two-stage procedure as de:vel—
oped by Bishop and Dudewicz (1978). The two-stage
procedure requires additional samples, which can be

large at the second stage may not be practicable in
some real problems because the time and/or budget
are limited in an experiment. When working with
statistical data analysis one often has only one single
sample available. Chen and Lam (1989) developed
a single-stage method for interval estimation of the
largest normal mean. A single-stage sampling proce-
dure to test the null hypotheses in ANOVA models
under heteroscedasticity was developed by Chen and
Chen (1998). The single-stage procedure provides an
exact distribution for its test statistic under the null
hypothesis and it is a data analysis-oriented proce-
dure.

In Section 2 we present a general single-stage sam-
pling procedure for testing the equality of means
against ordered alternatives in the analysis of vari-
ance problem. Section 3 presents a table of critical
values for the null distribution of the test statistic. In
Section 4, we can see that the general one-stage pro-
cedure provides a feasible solution to the two-stage
procedure when its required sample sizes are not met
due to budget shortage, time limitation, or cost fac-
tors in an experiment. Statistical tables of the power-
related design constants to implement our new pro-
cedures are given in Tables 2-4.

2. THE GENERAL SINGLE-STAGE
SAMPLING PROCEDURE

We now describe the general single-stage sampling
procedure (P;) as follows:

Pyir Let Xy (7 = 1,...,7n;) be an independent
random sample of size n; {> 3) from the normal pop-
ulation 7; (i = 1,..., I} with unknown mean i and
unknown and unequal variance a?. Employ the first
(or randomly chosen) ng (2 < ng < 1;} observations
to calculate the usual sample mean and sample vari-
ance, respectively, by

Ny

X = in;ﬁ/ﬂo

j=t




and
g |

SP =3 (X - X )(no - 1),
j=1

Then, calenlate the coefficients

o 1 1 fnij—ng .7
u; = o + o e (nyz* /82 - 1)
1 1 Mo 2
vo= = - — (niz* /5 -1) | (1)

n; iy ni—np

where 27 is the maximum of {$2/n,,.. ., S}’/n;}!. Let
the final weighted sample mean using all observations
be defined by

N
Xi =) w;Xy (2)
j=1

where
e = 4 W for1<j<ng
VT v formp<i<my

and wy; satisfy the following conditions

n; n;

Zwu =l wy=-=

j=1 i=1

It is well known (Chen and Chen, 1998) that given
* the sample variances 7, i ='1,...,1, the weighted
sample mean X; has a conditional normal distribu-
‘tion with mean y; and variance > ;wio}. Further-

more, the transformations u

PR (el " Bl 7} i=1,...1
vz

2 T 9
S Ej:lwt'j

have i.i.d. ¢ distributions each with ny — 1 degrees of
freedom.

The model we are considering for the one-way lay-
out is the following:

Xij = ot o ey, i:l,...,I,j:l,...,n,-

where the e;’s are independent random variables
with e;; ~ N(0,0}), and assuming Ele a; = 0.[We
may denote mean pu; by p; = u+ ey The hypothesis
we want to test is that the population means ;s are
all equal sgainst the ordered alternative, i.e

Hytpy =g =00 = py,
Vs, Hpim 2 pp > >y

(3)

with at least one strict inequality. Assume that for
i = 1,...,7, the one-stage sampling procedure’has

j

been conducted and that the final welghted sample
means X; have been computed as in {2}). Define

U

i

1 X
1.

max_ — E
<r<ly NI
1<r<I =1 z

[ ~
. 1 ;. :
LTl ®

A test statistic for testing Hy against H, is proposed
as follows:

fa o

=U-V, (5)

then we have

Hi
—=1. (5
7)o
Under the null hypothesis Hyp, it follows that the null
distribution of B becomes

) I
, 1
ST 1 Z (t‘+

i=r

The null hypothesis is rejected iff
R > o, i v

where go,1, is the upper o percentage point of the
distribution of Q. For I = 2, the null distribution Q)
can be rewritten as ‘

Pr{Q > )
Pr{@ >0)

Pr{t1 -tz > .’L‘} forz > 0,
1/2,

the upper a percentage points of this distribution are
given by Ghosh (1975). Marcus (1976) has shown
that under Hy the null distribution Qfor I =3is
given by

PT{@)Q?} = PT{tl“t3>$,t3 >t2>t3}
+ Pllti+t2)/2—t3> 2,6 < t3)
-+ P{tl—(t2+t3)/2>ﬁ:,t2 < ta}.

The percentage points of do g, computed by numer~
ical integration are given by Marcus (1980) for af
v = 4,6,8 and 10 only. As pointed by Marcus
(1980}, computation of the exact percentage points
of ga,1,, requires I-variate numerical intergration and
becomes prohibitive for I > 3. In Section 3, we pro-
vide a simulation method to obtain the percentage
Points ga,7,, of the null distribution in (7).

.



3. THE CRITICAL VALUES OF Q?

The critical values of the null distribution § IIII N
can be obtained from a very short SAS computer Elm-
ulation program provided in the Appendix. The pro~
gram can be run on a Pentium personal computer
with a SAS PC software. The critical values qI v
in Table 1 were obtained by Monte Carlo snmula.-
tion for various combinations of I = 3,4,5,6,|and
degrees of freedom (v = 2,3,4,5,7,9, 14, 19,29/39).
In each simulation run, a Student’s ¢t = Y/ \/U/v
variate was calculated where Y is the random van—
ate of the standard normal distribution generlated
from the random number generator RANNOR [and

U is the chi-squared random variate with v degrees-

of freedom generated by the gamma random num-
ber generator, RANGAM respectively, in SAS 6.12
(SAS Institute Inc., 1990). Then the @ value!was
compitaed according to (7) for each run. Afier 10,000
simulation runs, all of the § values were ranked i!}l as-
cending order. The 75th, 90th, 95th, 97.5th, and 99tk
percentiles were used to estimate the upper a ’per—
centage points of the 25%,10%,5%,2.5%, and 1%,
respectively. This process was replicated 16 I:i:mes.
The average values of the 16 critical points and their
corresponding standard errors (in the parenthéses)
are listed in Table 1. The simulation errors of the
. percentage points mostly occur in the second deCl-
mal when a is large and in the 'first decimal when o
"is 'small, This is due to the long tail of the ¢ distdibu-
tion when the df are small.

4. RELATION TO TWO-STAGE
PROCEDURE

The two-stage sampling procedure (P3) proposed
by Bishop and Dudewicz (1978) for test of equl&lity
of meaus is given as follows: {

P, : Choose a number z > 0 (z is determmed by
the power of the test), and take an initial sa.mple of
size ng (at least 2, but 10 or more will give better
results) from each of the I populations. For thé ith
population let S? be the usual unbiased estimate of
o? based on the first nf observations, and define

2
N,-:max{nf,-l-l [S ] +1}

where [x] denotes the greatest integer less than or
equal to z. Then, take N; — nf additional obs?rva—
tions fromn the ith population so we have a total of

N; observations denoted by Xj;,... X”"B ,X,N.

I

(8)

|
i

For each 1, set the coefficients ayy,..., Qing s -+ BiNG,
so that
1 — (Ni —ng)b;
[ AT =a,-nn = _—”:6_"_"“ = aq,
1 nH(Niz — 57)
Qipt 4y = T OGN, ==l 4y oo——L | = by,
;,no+l IN. N‘[ (1\(l - ﬂ,:))siz £3

and then compute the weighted mean

,ua;ZX,J-i»b Z Xij (9)

—n0+1

which is a linear combination of the first-stage
data (Xi,...,X;) and the second-stage data
(Xing+1---) Xinv). It was proved that the random
variables ; = (X;, - u;)/vZ i = 1,...,1, have i.i.d.
i distribution with ng—1 d.f. {e.g., see Dudewicz and
Dalal, 1975).

Assume that fori = 1,...,7 , the two-stage sam-

pling procedure has been conducted and that the final .

weighted sample means X; have been computed as
in (9). The test statistic proposed by Marcus (19380)
for testing Hg against the ordeved alternative H, is
given by

R 1<r<1rz\/" 1<r<11-r +1Z\/_

(10)
The null hypothesis Hp is rejected in favor of H,
iff :
RZ‘ > T, i,
where ga,7, is the critical value of size o which is
discussed in Section 2.
The poveer is calculated by the expression

B = Pr{Rs > qar.ln*}

for given values of I, a,v and the ratio §/,/z. The
configuration of the means p* = (u,...,p3) is given
by

Bl ==l =T /m(Il = m) 6,

Hmpr = =p;=0 (11)
where m = I/2if I'is even and m = (I +1}/2if I
is odd. This is the conjectured least favorable con-

figuration of the means for the power of the R, test
subject to the restrictions ¥ (u; ~ )2 = 482, where

B o= 21—1%/! and the power of the R, test was

considered as a function of 8° = Y .(u; — )2, (See
Marcus (1976) and Marcus (1980))



‘Hence we use p* in (12) as the asymptotically least
favorable configuration of the means for the pow'er of
the R; test for the ¢ distribution.

For cach I,v,a and the ratio 6//z, I indepen-
dent ¢ random variates ¢;,...,t; were generated as
described in Section 3. The statistic of Ry was c&‘xlcu-
lated at p*. This process was repeated 20,000 times
and the power was estimated by

No. of times (R, > Qo) (12)
20,000 )
The values of the ratio §/,/Z such that a size altest

has the power 8 are given in Tables 2 ~ 4 for|J =
3,4,5,v = 4,9,14,24, and o = .10, .05 and .01, where

IR

A

the values of g are the critical values Qg 1, fOr varlous-

combinations of I, v and @. An example of how to use
these Tables is illustrated as follows: If one has [j= 5
treatmeunts in the experiment, and the initial sa.mple
available is ng = 15 observations (df v = 14), at the
price of a = 10% risk; he/she would like to detect a
difference of at least § = 3.0 with a required power of
.90. From Table 4, the ratio §/+/Z = 3.36 can be found
corrésponding to the required power .90. Then,i the
design constant is found to be z = (§/3.36)? or|z =
-7972 which will be employed in (8) to determine the

total sample size N; in the experiment. Simul tion

study shows that linear interpolation in §//z would
give salisfactory results for va.lues of power being not
tabulated.

The two-stage procedure can control both the level

and the power of the test without having the influence
N . |

of the unequal and unknown variances. It is a useful
design-oriented statistical method used in an exper-
iment. However, in situations where the experlrlnent
is terminated earlier due to budget restriction, time
limitation, or some other uncontrollable faci'.ors,I the
required bample size N; in {8) in the two-stage pro—
cedure cannot be reached. Then the two-stage proce-
dure cannot work. One may have to, in this su:uat,mn
use the available sample data on hand based on the
sample size n; {> nj + 1) and recalculate the co'efﬁ—
cients a;; {now w;; in (2)) according to the one-stage
samplmg procedure described in Section 2. Thus
given the sample data, the minimum power can be
determined by letting z* = Joax, (Sz/nJ) and

' 1
1 > . 1 .
rrlug XX - mn e X
t=r
> \/Efqa,,,.,m,,}. (13)

The power so determined is a data-dependent power
which can be larger than, equal to, or smaller than

the originally specified one.
follows:

This is elaborated as

Case 1. If S}/n; = S%/n; for all 4,7, then the two-
stage and one-stage procedures have the same
power. The power can be calculated by (14) us-
ing Tables 2-9.

Case 2. If z* = max (5?/n;} < 2, then the one-
1<t

stage procedure has a power larger thar that of
the two-stage procedure.

Ta 3 . , N
Case 3. If lglgr(Sj /nj) > z, then the power of the

one-stage procedure is smaller than that of the
two-stage procedure.

Case 4. In all other situations, the one-stage prace-
dure could be better than, worse than, or equal
to the two-stage depending on the actual sam-
ples and the true population variances.
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Table 1. The Average of 16 Critical Values Qa1 Of 0

and Their Stanldard Errors in Parent

heses

10%

5%

2.5%

1%

2.95(.04)
2.50(.03)
2.27(.02)
2.19(.02)
2.15(.02)
2.13(.02)
2.12(.02)
2,09(,02)
2.05{.03)

3.93(.06)

3.21(.04)
| 2.83(.03)
2.71(.03)
2.66(.03)
2.63(.03)
2.60{.03)
2.56(.03)
2.52{.02)

5.04(.10)
3.91(.09)
3.36(.04)
3.19(.04)
3.10(.04)
3.07(.04)
3.04(,04)
2.98(.03)
2.92(.03)

6.79(.20)
4.87(.13)
4.05(.07)
3.79(.07)
3.66(.05)
3.60{.05)
3.55(.05)
3.47(.05)
3.41(.05)

3.14(.03)
2.63(.03)
2.38(.03)
2.28(.02)
2.24(.02)
2.21(.02)
2.20(.02)
2.16(.02)
2.13(.02)

4.11(.06)
3.30(.04)
2.92(.03)
2.79(.03)
2.72(.03)
2.69(.03)
2.67(.03)
12.61({.03)
2.57(.02)

5.32(.11)
4.00(.07)
3.46(.05)
3.25(.04)
3.16(.04)
3.14(.03)
3.08(.03)
3.02(.04)
2.96(.03)

6.89{.24)
4.95(.10)
4.11(.06)
3.82(.06)
3.70(.06)
3.65(.06)
3.59(.06)
3.51(.03)
3.41(.04)

3.30(.04)
2.73(.02)
2.45(.02)
2.34(.02)
2.31(.02)
2.28(.02)
2.25(.02)
2.23(.02)

£ 2.20(.02)

4.27(.06)
3.39(.03)
2.97(.03)
2.83(.03)
2.77(.03)
2.73(.03)
2.71(.03)
2.67{.02)
12.61(.03)

5.36(.10)
4.06(.05)
3.48(.03)
3.28(.03)
3.20{.03)
3.14(.03)
3.13(.03)
3.05(.03)
2.99(.03)

13.83(.06

7.19(.20) |
5.01(.08)
4.14(.08

)
)
3.74(.06)
3.66(.05)
3.64(.05)
3.53(.04)
3.45(.04)

10

3.40{.03)
2.79{.03)
2.49(.02)
2.39(.02)
2.33(.02)
2.31(.02)
2.30(.02)
2.26(.02)
2.23(.02)

'4.37(.06)
?3.44(.04)
3.01(.03)
2.87(.08)

2.78(.03)
2.74(.03)
2.73(.03)
2.68(.03)

2.64(.02)

5.50(.10)
4.09(.05)
3.51(.05)
3.32(.04)
3.20(.04)
3.16(.03)
3.14(.03)
3.05(.04)
3.01(.04)

7.26(.20)
5.05(.00)
4.15(.07)
3.85(.06)
3.71(.05)
3.67(.05)
3.62(.05)
3.52(.04)
3.46(.04) |

|
|
|



|

i
!
|
!

Table 2. The Power-Related Ratio 6//Z of R, I = 3.

v q E 4 24
a 10% 5% 1% [10% 5% 1% | 10% 5% 1% | 10% 5% 1%
Gouguv | 2.66 343 548 (227 283 4.05 | 2.19 271 3.70 ] 2.13 2.63 3.60
power '
10 0 0.68 2.43 0 0.51 1.55 0 048 139 0 0.45 1.29
20 | 0.75 142 3.11 1 0.58 1.07 209|056 102 190(055 100 1.78
30 119 1.87 3.53| 097 ]F..45 246 [ 0.95 138 228 (092 134 2.14
40 157 219 3891130 L76 279 1 125 169 257 )1.20 164 245
80 1.89 253 4.20 | 1.59 207 3.07 | 154 198 286|150 1.91 2.7t
60 220 284 4527196 235 3.36 | 1.83 225 3.4 | 1.77 219 298
70 256 318 4.87 | 220 266 3.66) 211 255 343207 248 328
.80 296 3.59 527 2.56 3.03- 402 | 247 290 3.78 {243 282 3.63
90 3.57 420 585/ 3.08 3.54 4531297 337 4282981 330 4.00
95 412 475 642353 396 496339 3.82 470 328 370 450
Table 3. The Power-Related Ratio 6/./z of Ry, I = 4.
v 1 ElE 14 24
a 18% 5% 1% 110% 5% 1% | 10% 5% 1% | 10% 5% 1%
Qutv | 2.81 358 556|238 2.92 411228 279 3.82 (221 260 565
power
.10 0 0.83 2.87 0 0.58 1.80 0 0.55 1.60 0 0.52 1.51
.20 0.84 1.66 '3.66 [ 0.67 122 245 | 0.61 1.16 220 0.60 1.09 2.08
.30 137 217 4161 1.10 1.66 2.86 | 1.05 1.58 261 1.00 150 247
40 {180 258 456|148 202 3.20 (139 1.91 295|134 183 280
50 1217 294 493178 . 233 353)171 222 326|164 213 3.10
.60 251 3.28 5.284 210 265 3.851200 252 356|195 244 3.40
70 | 290 365 5.64 | 2.44 299 418234 284 3.80 |22 275 3.71
80 1331 4.08 '6.071 283 3.37 456 1272 3.23 425 262 3.12 4.08
90 1393 4.70;6.70 | 3.34 391 508|323 372 478|313 362 458
95 | 448 5.25° 7.24 | 3.83 4.33 553 | 3.65 4.16 590 | 3.55 4.03 5.00
Table 4. The Power;Related Ratio d/v/Z of R, I = 5.
v 4 ) 14 24 ]
a 10% 5% 1% [10% 5% 1% | 10% 5% 1% | 10% 5% 1%
Ga,re | 287 3.64 5.63 [ 243 296 4.12 | 2.32 2.81 3.85 | 2.25 2.79 3.64
power | '
10 ] o 0.90 3.14 0 0.62 1.94 0 0.58 1.75 0 0.56 1.57
20 0.91 180 3.98)0.72 132 263066 122 239063 117 2.19
.30 148 236 4.53 | 1.17 180 307 1.13 167 280|106 160 2.62
40 1.91 278 496 | 1.57 215 343|147 203 317143 196 295
.50 231 3.17 5.351 190 249 397 ) 182 234 348175 226 3.28
.60 2.66 3.53 5.72 ] 223 283 410|213 264 3.82| 207 260 3.60
.70 306 380 6.09] 258 316 444 | 247 298 4.14 | 238 2.88 3.91
.80 349 435 6.55)298 356 482|283 3390 452275 330 4.28
90 412 499 7.16] 352 4.11 5381336 391 505|331 381 4.79
95 4.66 554 7.68 ( 3.96 41:.55 5.81 | 3.80 435 5481373 424 521
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ABSTRACT

In this paper we use a general single-stage proce-
dure described by Chen and Chen (1998) for testing
the equality of normal means against ordered alterna-
tives in one-way layout when variances are unknown
and unequal. A table of percentage points needed for
implementation is given.

1. INTRODUCTION

Suppose that I (> 2) independent populations
Mi,...,m; are available where observations taken
from population 7; are normally distributed with
mean y; and variance o7 (1 < {1 < I). It is as-
sumed that these variances are unknown and un-
equal, and the means are monotonically ordered with
i1 > pg > -0 2 pp It is also assumed that no prior
knowledge about p; and o? is available. The pur-
pose of this paper is to apply a general single-stage
sampling procedure for testing the null hypothesis
Ho : pa = po = -++ = pu; against the alternative
Hy iy 2 po > -+ > ur with at least one strict
inequality under heteroscedasticity.

The problem of testing ordered normal means with
equal variances has been considered by several au-
thors. Williams (1971} derived a test procedure for
identifying the lowest dose in which ) corresponds
to a control and pa,..., s to increasing doses of a
drug. Marcus (1976) compared the powers of sev-
eral tests of the equality of normal means against the
ordered alternative. Williams {1977) gave a limit-
ing distribution of the test for hypotheses concerning
monotonically ordered normal means. When the vari-
ances are ynknown and unequal, Marcus (1980} con-
structed a test procedure for testing homogeneity of
means against ordered alternatives in analysis of vari-
ance model by using a two-stage procedure as devel-
oped by Bishop and Dudewicz (1978). The two-stage
procedure requires additional samples, which can be

large at the second stage may not be practicable in
some real problems because the time and/or budget
are limited in an experiment. When working with
statistical data analysis one often has only one single
sample available. Chen and Lam (1989) developed
a single-stage method for interval estimation of the
largest normal mean. A single-stage sampling proce-
dure to test the null hypotheses in ANOVA models
under heteroscedasticity was developed by Chen and
Chen (1998). The single-stage procedure provides an
exact distribution for its test statistic under the nuil
hypothesis and it is a data analysis-oriented proce-
dure.

In Section 2 we present a general single-stage sam-
pling procedure for testing the equality of means
against ordered alternatives in the analysis of vari-
ance problem. Section 3 presents a table of critical
values for the null distribution of the test statistic. In
Section 4, we can see that the general one-stage pro-
cedure provides a feasible solution to the two-stage
procedure when its required sample sizes are not met,
due to budget shortage, time limitation, or cost fac-
tors in an experiment. Statistical tables of the power-
related design constants to implement our new pro-
cedures are given in Tables 2-4.

2. THE GENERAL SINGLE-STAGE
SAMPLING PROCEDURE

We now describe the general single-stage sampling
procedure (Py) as follows:

P Let X;; (j = 1,...,n;) be an independent
random sample of size n; (> 3) from the normal pop-
ulation 7; (¢ = 1,...,I} with unknown mean g, and
unknown and unequal variance o?. Employ the first
(or randomly chosen) ng (2 € ng < n;) observations
to calculate the usual sample mean and sample vari-
ance, respectively, by

ny
X;= ZXij/ﬂo

=1



o

and

np

8= (X = X)*/{no — 1).

j=t

Then, calcuiate the coefficients

o 1 1 n;y —ng . 9
U, = ni+ni\/ o~ (niz* /87 1)
. L 1 7o * f 2
wow e e /S ()

where 2* is the maximum of {5%/n;,...,5%/n;}. Let
the final weighted sample mean using all observations
be defined by

= Z wi; Xy (2)
j=1

— Uq
wi; = ;

and wy; satisfy the following conditions

n; n;

— — — 2 2 _
E wij = 1, Wi = = Wing, 9 E Wi =%
j=1 i=1

It is well known {Chen and Chen, 1598} that given
«the sample variances S7, i = 1,...,I, the weighted
sample mean X; has a conditional normal distribu-
tion with mean y; and variance ) ; w?jaf. Further-
more, the transformations

where
for1 <j<ng
formg <7< ny

X'—,ui _)fi.“ﬂi
S 3N w

Vzr
have i.i.d. ¢ distributions each with ng — 1 degrees of
freedom.
The model we are considering for the one-way lay-
out is the following:

t; =

i=1,...,1

Xij=p+a;+ey, i=1,...

where the e;;’s are independent random variables
with e;; ~ N(0,0}), and assuming Zle o; = 0. We
may denote mean p; by p; = 2+ ;. The hypothesis
we want to test is that the population means u;’s are
all equal against the ordered alternative, i.e.

Ho:pp=pa=---
vs. Hg:pg > pe >

= 5,
S22 HI

(3)

with at least one strict inequality. Assume that for
i = 1,...,1, the one-stage sampling procedure has

been conducted and that the final weighted sample
means X; have been computed as in (2). Define

1

il

1921 7 Z \/‘

. 1 i
1%‘J21I—r+1§\/z7' )
A test statistic for testing Hp against H, is propased
as follows:

R=U-V, (5)
then we have

1 ™
max - (ti +
1<r<I T 4
- i=1
' I

: 1 i }
lgn,&g,—*—*f_Hl;(“\/z—*)- ©

Under the null hypothesis Hy, it follows that the nuil
distribution of R becomes

T

- R 1
Qplrg?é(r;ztt 12«[—1‘ +1Zt (7)

The null hypothesis is rejected iff

R > Qo dw

where ¢q 7, is the upper o« percentage point of the
distribution of Q. For [ = 2, the null dlStI‘lbUthn Q
can be rewritten as

Pr{Q >z} =
PriQ >0) =

Pr{t; —t; > z} for z > 0,
1/2,

the upper o percentage points of this distribution are
given by Ghosh (1975). Marcus (1976) has shown
that under Hy the null distribution @ for I = 3 is
given by

Pr{Q >z} = Pri{ti—ts>z,ty >ty > ta}
+ P{(t; +12)/2 —t3 > a,t: <12}
+ P{tlm(t2+t3)/2>.’£,tg <t3}.

The percentage points of g, 3, computed by numer-
ical integration are given by Marcus (1980) for df
v = 4,6,8 and 10 only. As pointed by Marcus
{1980), computation of the exact percentage points
of gq 1, requires f-variate numerical intergration and
becomes prohibitive for I > 3. In Section 3, we pro-
vide a simulation method to obtain the percentage
points g, 7, of the null distribution in (7).



3. THE CRITICAL VALUES OF §

The critical values of the null distribution { in (7)
can be gbtained from a very short SAS computer sim-
ulation program provided in the Appendix. The pro-
gram can be run on a Pentium personal computer
with a SAS PC software. The critical values ¢4 /.
in Table 1 were obtained by Monte Carlo simula-
tion for various combinations of I = 3,4,5,6, and
degrees of freedom (v = 2,3,4,5,7,9,14,19,29,39).
In each simulation run, a Student’s t = Y/ /U/v
variate was calculated where V is the random vari-
ate of the standard normal distribution penerated
from the random number generator RANNOR and
U7 i8 the chi-squared random variate with v degrees
of freedom generated by the gamma random num-
ber generator, RANGAM respectively, in SAS 6.12
(SAS Institute Inc., 1990). Then the Q value was
computed according to (7) for each run. After 10,000
simulation runs, all of the Q values were ranked in as-
cending order. The 75th, 30th, 95th, 97.5¢th, and 99tk
percentiles were used to estimate the upper a per-
centage points of the 25%, 10%,5%,2.5%, and 1%,
respectively. This process was replicated 16 times.
The average values of the 16 critical points and their
corresponding standard errors (in the parentheses)
are lisied in Table 1. The simulation errors of the
percentage points mostly occur in the second deci-
mal when ¢ is large and in the first decimal when o
is small. This is due to the long tail of the t distribu-
tion when the df are small.

4. RELATION TO TWO-STAGE
PROCEDURE

The two-stage sampling procedure {P2) proposed
by Bishop and Dudewicz {1978) for test of equality
of means is given as follows:

P, : Choose a number z > 0 (z is determined by
the power of the test), and take an initial sample of
size nf (at least 2, but 10 or more will give better
results) from each of the I populations. For the ith
population let $7 be the usual unbiased estimate of
o’ based on the first nf) observations, and define

52
N; = max {n{, +1, [—j] + 1} {8)

where [z] denotes the greatest integer less than or
equal to z. Then, take N; — n}, additional observa-
tions from the ith population so we have a total of
N; observations denoted by Xi1,..., X, .., Xin;.

For each i, set the coefficients a;q, ..

'!aiﬂ::])"‘:laiNii
s0 that
1— (N; —nf)b;
a“:...:ain,ﬂz_(;_fp}_az%
0
1 nh{N;z - S2)
Giprg1 = = aiN, =—11 O EE il ),
inf+1 iN; Ni{ + (Ng—n’g)S? ,

and then compute the weighted mean

,—atZXUi-b Z Xij (9)

_;r—*n +1

which is a linear combination of the first-stage
data (Xi,...,Xiny) and the second-stage data
(Xing41,--+, Xin;). It was proved that the random
variables t; = (X;, — w;)/V/z, i = 1,..., I, have i.i.d.
t distribution with nj—1 d.f. (e.g., see Dudewicz and
Dalal, 1975).

Assume that for ¢ = 1,...,[, the two-stage sam-
pling procedure has been conducted and that the final
weighted sample means X: have been computed as
in (9). The test statistic proposed by Marcus (1980)
for testing Ho against the ordered alternative H, is
given by

1<r<I7‘Z\/_ 1<r<II—'1" —l—lz
(10)
The null hypothesis Hy is rejected in favor of H,
iff :
RZ > Qa,Iv
where ¢q,r. is the critical value of size @ which is
discussed in Section 2.
The power is calculated by the expression

B=Pr{Ry> qarslps}

for given values of I, a,» and the ratio /,/z. The

configuration of the means p* = (p},..., p3) is given
by

py == p = I /m(l —m)§,

g1 = =py =0 (11)

where m = I/2if Tiseven and m = (I +1)/2if I
is odd. This is the conjectured least favorable con-
figuration of the means for the power of the Ry test
subject to the restrictions 3 (u; — )* = 42, where
g = Z:=1 pi/I, and the power of the R, test was
considered as a function of §% = 3 {j; — )% (See
Marcus (1976) and Marcus (1980))




-y

Hence we use p* in (12) as the asymptotically least
favorable configuration of the means for the power of
the R; test for the ¢ distribution.

For each I,v,a and the ratio §//z, I indepen-
dent t random variates t;,...,t; were generated as
described in Section 3. The statistic of R, was calcu-
lated at p*. This process was repeated 20,000 times
and the power was estimated by

Nb. of times (Ry > Qo1 v)
20,000

The values of the ratio §/1/z such that a size o test
has the power 3 are given in Tables 2 — 4 for | =
3,4,5,r =4,9,14,24, and o = .10, .05 and .01, where
the values of ¢ are the critical values aq, 1, for various
combinations of I, » and o. An example of how to use
these Tables is illustrated as follows: Ifone has I = 5
treatments in the experiment, and the initial sample
available is ng = 15 observations (df » = 14), at the
price of o = 10% risk; he/she would like to detect a
difference of at least § = 3.0 with a required power of
.90. From Table 4, the ratio 6//z = 3.36 can be found
correspouding to the required power .90. Then, the
design constant is found to be z = (§/3.36)% or z =
.7972 which will be employed in (8) to determine the
total sample size N; in the experiment. Simulation
study shows that linear interpolation in 4/+/Z would
give satisfactory results for values of power being not
tabulated.

The two-stage procedure can control both the level
and the power of the test without having the influence
of the unequal and unknown variances. It is a useful
design-oriented statistical method used in an exper-
iment. However, in sttuations where the experiment
is terminated earlier due to budget restriction, time
limitation, or some other uncontrollable factors, the
required sample size NV; in (8) in the two-stage pro-
cedure cannot be reached. Then the two-stage proce-
dure cannot work. One may have to, in this situation,
use the available sample data on hand based on the
sample size n; (> ng + 1) and recalculate the coeffi-
cients a;; (now wy; in (2)) according to the one-stage
sampling procedure deseribed in Seciion 2. Thus,
given the sample data, the minimum power can be
determined by letting z* = max (S /n;) and

tgg<l

b=

(12}

r

. . 1

Pr{ max — Xi; — min —4—4M—
1Srgdr 1€l [ —p' 41 -

= 1

> V& gasn | Ha }. (13)

I
X
=1

The power so determined is a data-dependent power
which can be larger than, equal to, or smaller than

the originally specified one. This is elaborated as
follows:

Case L. If S} /n; = 5%/n; for all 4,7, then the two-
stage and one-stage procedures have the same
power. The power can be calculated by (14) us-
ing Tables 2-9.

Case 2. If z* = max (S?/ﬂj) < z, then the one-
1<i<r

stage procedure has a power larger than that of
the two-stage procedure.

Case 3. If min (S?/n,') > z, then the power of the
1<5<1

one-stage procedure is smaller than that of the
two-stage procedure.

Case 4. In all other situations, the one-stage proce-
dure could be better than, worse than, or equal
to the two-stage depending on the actual sam-
ples and the true population variances.
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Table 1. The Average of 16 Critical Values g4 5, of Q

and Their Standard Errors in Parentheses

1

10%

5%

2.5%

1%

3

v
3
5

w

14
19
24
29
89
oo

2.95(.04)
2.50(.03)
2.27(.02)
2.19(.02)
2.15(.02)
2.13(.02)
2.12(.02)
2.09(.02)
2.05(.03)

3.93(.06)
3.21(.04)
2.83(.03)
2.71(.03)
2.66(.03)
2.63(.03)
2.60{.03)
2.56(.03)
2.52(.02)

5.04(.10)
3.91(.09)
3.36(.04)
3.19(.04)
3.10{.04)
3.07(.04)
3.04(.04)
2.98(.03)
2.92(.03)

6.79(.20)
4.87(.13)
4.05(.07)
3.79(.07)
3.66(.05)
3.60(.05)
3.55({.05)
3.47(.05)
3.41(.05)

3
5
9
14
19
24
29
59

o

3.14(.03)
2.63(.03)
2.38(.03)
2.28(.02)
2.24(.02)
2.21(.02)
2.20(.02)
2.16(.02)
2.13(.02)

411(.06)
3.30(.04)
2.92(.03)
2.79(.03)
2.72(.03)
2.69(.03)
2.67(.03)
2.61(.03)
2.57(.02)

5.22(11)
4.00(.07)
3.46(.05)
3.25(.04)
3.16(.04)
3.14(.03)
3.08(.03)
3.02(.04)
2.96(. 03)

5.89(.24)
4.95(.10)
4.11(.06)
3.82(.06)
3.70(.06
3.65(.06
3.59(.06

3.41{.04

3
il
9
14
19
24
29

. 59

00

3.30(.09)
2.73(.02)
2.45(.02)
2.34{.02)
2.31(.02)
2.28(.02

2.25(.02

2.20(.02

3.39(.03)
2.97(.03)
2.83(.03)
2.77{.03)
2.73(.03)
2.71(.03)
2.67(.02

2.61(.03

(.0

(.0
4.27(.06)

(-

(-

5.36(.10

4.06(. 05)
3.48(.03)
3.28(.03)
3.20(.03)
3.14(.03)
3.13(.03)
3.05(.03)
2.99(.03)

)

)

)
3.51(.03)

)
7.19(.20)
5.01(.08)
4.14(.08)
3.83(.06)
3.74(.06)
3.66(.05)
3.64{.05)
3.53(.04)
3.45(.04)

10

3
5
9
14
19
24
29
39
00

3.40(.
2. 79( 03
2.49(.02)
2.39(.02)
2.33(.02)
2.31(.02)
2.30{.02)
2.26(.02)
2.23(.02)

)
)
2.23(.02)
)
03)
)

)
)
4.37(.06)
3.44(.04)
3.01(.03)
2.87(.03)
2.79(.03)
2.74(.03)
2.73(.03)
2.68(.03)
2.64(.02)

5.50(.10)
4.09(.05)

3.51(.05)
3.32(.04)
3.20(.04)
3.16(.03)
3.14(.03)
3.05(.04)
3.01(.04)

7.26(.20)
5.05(.09)
4.15(.07)
3.85(.06)
3.71(.05)
3.67(.05)
3.62(.05)
3.52(.04)
3.46(.04)




! }ru-;‘b‘ '

Table 2. The Power-Related Ratio §/4/z of Ry, I = 3.

v 4 9 14 24
a [10% 5% 1% [10% 5% 1% |[10% 5% 1% | 10% 5% 1%
Qutv | 2066 343 548 | 227 283 405 | 219 2.71 3.79 | 213 263 3.60
. power
, 10 0 068 243] 0 051 1a55| 0 048 139| 0 045 1.20
20 075 142 311058 107 209|056 1.02 190|055 100 1.78
B30 1119 187 353|097 145 246 | 095 1.38 228092 1.34 2.14
40 | 157 219 383|130 176 2791125 1.69 257 1.20 1.64 245
50 1 1.89 253 420159 207 3.07 154 198 286|150 181 271
60 | 220 284 452|196 235 336183 225 314 1.77 219 298
70 | 255 318 487|220 266 3.66] 211 255 3431207 248 328
80 296 359 527|256 3.03 402247 290 3.78) 243 282 3.63
90 | 357 420 585|308 354 453297 337 428|291 330 4.09
95 | 412 475 642|353 396 496|339 3.82 470328 3.70 4.50
Table 3. The Power-Related Ratio 8//Z of R, I = 4.
v 4 9 14 24
a [10% 5% 1% [10% 5% 1% |[10% 5% 1% |[10% 5% 1%
Qady | 281 358 556 | 238 202 411228 279 3.82[221 260 365
power
10 0 083 287 0 058 18] 0 055 160| 0 052 1.51
20 | 084 166 366|067 122 245|061 116 220060 1.09 208
30 | 137 217 416 | 110 166 286 1.05 1.58 261 | 1.00 1.50 247
40 1180 258 456 1.48 202 3.20(1.39 191 295|134 1.83 280
500 | 217 294 4931178 233 353|171 222 326|164 213 3.10
60 [ 251 328 528210 265 385|200 252 356|195 244 3.40
70 | 290 365 564)244 299 418|234 284 38922 275 3.71
80 331 408 607|283 337 456|272 3.23 425|262 312 4.08
90 {393 470 6.70]334 391 508|323 3.72 478|313 362 458
95 | 448 525 7241383 433 553|365 416 520|355 4.03 5.00
Table 4. The Power-Related Ratio 8/v/z of Ry, I = 5.
v 4 9 14 24 ]
a [10% 5% 1% [10% 5% 1% [10% 5% 1% | 10% 5% 1%
qudw | 287 364 5631243 206 412232 281 385( 2325 272 3.64
power
10 0 090 314| 0 062 194 | 0 058 1.75| 0 056 157
20 1091 180 398|072 132 263}066 1.22 239|063 117 219
30 | 148 236 453|117 180 3071113 167 280106 1.60 2.62
40 | 1.91 2.78 4.96 | 1.57 215 343|147 203 317|143 196 295
50| 231 317 535|190 249 3.77 { 1.82 234 348 1.75 226 3.28
60 [ 266 353 5721223 283 410|213 264 3.82] 207 ‘260 3.60
70 | 3.06 3.90 609|258 3.16 444247 298 414|238 288 3.01
80 | 349 435 655|298 3.56 482 283 3390 452275 330 428
90 | 412 499 7.16| 352 411 538|336 351 505|331 381 4.79
95 | 466 554 768396 455 581|380 435 549 |3.73 424 521 |




