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Abstract

We use an algorithm which is capable of com-
puting exact expressions for the distribution
of the maximum or minimum of an arbi-
trary finite collection of linear combinations
of spacings or exponential random variables
with rational coefficients to obtain the dis-
tributions of the Kolmogorov-Smirnov statis-
tic.

Keywords: Kolmogorov-Smirnov statistic,
symbolic computations.

1 Introduction

Let 8™ denote the vector of spacings be-
tween n random points on the interval (0, 1).
More precisely, suppose that X;, X,,..., X,

PATRAB R BT 0L Bt K BHE A
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are i.i.d. from a uniform distribution on the
interval (0, 1), and let Xy <Xy <0 <
X(ny be the corresponding order statistics.
We define the spacings Sy, 55, .. ., Snt1 to be
the successive differences between the order
statistics 5; = Xy — X(i-1), where we take
X(()) = 0 and X(n+1) = 1. Finally, we de-
fine S™ = (81,52,...,8,41)- This report
is concerned with the application of the eval-
uation of probabilities involving linear com-
binations of spacings with arbitrary rational
coefficients. We use an algorithm which is
able to evaluate

P(AS™ > tb) (1)

where A is any matrix of rational values, &
is any vector of rational values, and ¢ > 0
is a real-valued scalar. (Note that, for vec-
tors ® = (z;) and y = (y;), we define 2> y
to mean that z; > g; for all ¢.) The algo-
rithm produces an exact expression for the
probability in (1) which is a piecewise poly-
nomial in the argument ¢. With the derived
expression, we can use symbolic math pack-
ages such as MAPLE to evaluate (1) to any
required degree of precision.



2 Example

Before proceeding, we establish one nota-
tional convention. It is convenient to regard
the probability in (1) as being defined even
when the number of columns in A is less than
7+ 1, the number of entries in $™. Let k be
the number of columns in A. If k < n + 1,
then in computing AS™ we simply discard
the extra entries of ™, or equivalently, we

pad the matrix 4 with extra columns of zeros
and define

AS™ = (Al0)S§™ (2)

Our expressions for (1) are written in terms
of a function R(j, A) defined for integers j > 0
and real values A > 0 by

()P -2 for <1,
R(j, A) =
0 for At >1.
(3)
The dependence of R on n and ¢ can be left
implicit because these values are fixed in any
given application of our methods. If we re-
place 8™ in (1) by a vector Z of i.i.d. expo-
nential random variables with mean 1, then
our expressions remain valid so long as we
redefine R to be
i
RGN = e, (1)
We use the algorithm to compute the dis-
tribution of the Kolmogorov-Smirnov (K-S)
statistic D, = sup, |F,(z) — F(z)| where F,
is the empirical cdf of n ii.d. observations
from a continuous distribution £. The dis-
tribution of D,, does not depend on F, so we
can assume that F' is the uniform distribution
on (0,1).
We may express D, in terms of the spacings
as D, = max(D/}, D) where

D}t = sup (Fa(z) — z) (5)

1<k<n
and
D =sup(z — F,(z))

k-1
Thus, for any integer ¢ from 1 to 1 —~ 1, we
have

{Dn <ifn} = {D} <ifn}n{D; <i/n}
where

{Df <ifn} = (6)
ﬂ {Sl+---+5'k>(k—i)/n}
i+15k<n
and
{D; <i/n} =
ﬂ {Sl+----|—5'k<(k'+i—1)/n}.

1<k<n—i

Now, we obtain a problem in the form (1)
which can be solved by the algorithm. Note
that for this problem we do not need the vari-
able t in equation (1), that is, we set £ = 1.

Here are some numerical results obtained
using the algorithm.

14831925552873
PlDu <3/14) = o a1
~  52320815383388
2661531270146463
P{Diu <5/14) = o

~ .95807402278582 (7)

In this example, these expressions have no
useful interpretations as functions of ¢, so we
have simply evaluated them at t = 1.

It is, of course, well known how to compute
the exact distribution of D,, at least when
n is not too large. For instance, the origi-
nal approach of Kolmogorov (see Birnbaum
(1952)) can also be used to obtain the re-
sults in (7). The algorithm has no advantage



over Kolmogorov’s approach in this particu-
lar problem. The advantage of our method is
its flexibility. For example, a popular variant
of the K-S statistic uses &/(n+ 1} in place of
k/n and (k — 1)/n in (6). Our method can
handle this statistic by making the obvious
minor changes to the setup above. As an-
other example, if the larger values of X; are
censored, then one may wish to define a K-S
type statistic based only on the lower order
statistics X1y, ..., X(m) where m < n. Such
statistics are also easily handled by our ap-
proach.
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A Simulation Study on the Adaptive Assignment versus
Randomization in Clinical Trials

Chien-Tai Lin
Department of Mathematics
Tamkang University
Taiwan

Ahbstract

Consider a clinical trial to compare two treatments where response is dichotomous
and patients enter the trial sequentially. We investigate the conduct of such a trial where
four adaptive procedures and three randomizations are used to assign patients to the
different therapies. Qur goal of this study is to find a suitable policy that we can cure
at least certain percent of patients with high probability.

Key words: Play-the-winner/switch-from-a-loser; Robust Bayes.

1 Introduction

Suppose that two treatments are available for use in a clinical trial. Further suppose that
the response to treatment is either positive (a success) or negative (a failure) and that the
patients arrive sequentially, with each patient’s response available before the next patient is
to be treated. The number of patients in the trial is fixed at n. Our goal is to maximize
the probability of getting at least k£ successes out of n patients (treatments). Is there any
satisfactory procedure to achieve this goal?

To answer this question, one may first consider to use the randomized designs. Random-
ization is usually used to provide insurance against the possibility of systematic diflerences he-
tween the units, which might affect inferences about the treatments under investigation. Other
compatibte methods that have received considerable recent attention are adaptive procedures.
The aim of these methods is to treat patients in the trial effectively, which is accomplished by
allowing treatment allocation to depend on accumulating information. See Thompson (1933),
Feldman (1962), Zelen (1969), Sobel and Weiss (1971), Berry (1978), Bather (1981), and Berry
and Fristedt (1985) for more details on the application of the adaptive methods in clinical
trials.

More recently, Berry and Eick {1995) have given some discussion and comparison among
randomization and the adaptive atlocation of patients to treatments by maximizing the ex-
pected number of successes over all present and future patients. In this work we extend their
study on a different aspect which may provide a substantial information on medical practice.
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We now give a formal statement of the optimization problem. Suppose that each of n
patients is to be treated with one of two treatments, A and B. Treatment allocation is
sequential and the responses are dichotomous and immediate. The probability of a success
with treatment A is o, and with treatment B is 3 (we can assume (&, 8) uniformly distributed
over (0,1) x (0,1)). We are interested in searching an appropriate procedure that maximizes
the probability of getting at least k successes out of n patients (treatments). It is not difficult
to study the asympotic behavior of this problem.” Now the main objective to this research ig
to study the case with finite n.

In order to formulate it, we need some notation. Let Z;, 7 = 1,2, ..., n, denote the response
of patient j. The value of Z; is 1 or 0 if the response is positive or negative respectively. Let
D be the class of all treatment allocation procedures. Given any n and k (1 < & < n), the
conditional probability of reaching the goal (given e and ) of procedure 7 € P is

P,k mlo ) = P> Z: > klaw B), 1)
i=1

where the distribution of the Z;’s is determined by 7. It is easy to see that the probability in
(1) can not be greater than

P(k,nla, f) = Y- ( i ) F=

i=k

where v = max(a, 3). Let
Lr(k,nle, ) = P(k,nley, B) — Pr(k,n|a, B)

be the conditional probability lost (CPL) under the procedure 7. From these numerical results
we can then find our suitable procedure.

2 Procedures

There are 7 possible procedures used in this kind of bandit problems. For convenience we
shall assume that n is an even positive integer. A complete account of these procedures can
be found in the paper of Berry and Eick (1995) and the references contained therein.

¢ Procedure ER (Equal Randomized): Half of the n patients are randomly assigned to
treatment A and the other half to B.

¢ Procedure RR (Repeatedly Randomized): Randomized every time, but with equal prob-
ability.

¢ Procedure SR (Single Randomized): Randomized only the first time, then use that
treatment all the time.

e Procedure JB: Randomized each time with the following adaptive procedure. Treatments
A and B are randomly assigned to first two patients so that each patient receives a different
therapy. Suppose that during the trial ¢ (2 < ¢t < n) patients have been treated, and successes



and failures on the treatments A and B, Sz, fz, 8y, and f, have been observed respectively
(85 -+ fz + sy + fy = t). Define

44 vk
AME) = .
(%) 15%
Let
/\z = A(3::: + fx)a Ay = /\(Sy -+ fy)!
and

_ S &y
Sy '{_ fx Sy+fy

Under this procedure the next patient (patient ¢ + 1) receives treatment A with probability

q F2(A — Ay).

Az
<
Y expl{q/A;) Cfor g <0,

A
1- ", _;_’ » exp{q/A,) for g > 0.

e Procedure PW (Play-the-winner/Switch—from-a-loser): The first patient will either
receive treatment A or B, each with probability 0.5. For patients 2 to n the treatment given
to the previous patient is used again if it was successful: otherwise the other treatment is used.

¢ Procedure RB (Robust Bayes): The randomization of this policy is based on a uniform
prior density

m(c, B) =1 on (0,1) x {0, 1).

Because of the symmetry property of the uniform prior distribution, the treatments for the
first patient are initially equivalent and hence can be chosen at random. If the first patient has
a success, then the second patient receives the same treatment. On the contrary, if the first
patient has a failure, then the second patient receives the other treatment, That is, procedure
RB imitates procedure PW for the first two treatment assignments. The same treatment is
used as long as it is successful. However, after a failure, switching to the other treatment may
or may not, be optimal. If the data sufficiently strongly favor the treatment that has just failed,
then that treatment will be used again. In other words, if the current probability of success
of treatment. A (which is the current posterior expected value of «, (54 + 1)/(s4 + fa + 2),
is greater than that of treatment B, then treatment A is used. Also, if both treatments are
judged equally effective at any stage, then the next treatment, assignment will be randomized.

s Procedure PR (Posterior Probability Ratio): A new proposed procedure which uses the
posterior probability to select treatment A or B. Like procedure JB, for patients 1 to n this
procedure randomizes between treatment A and 5. Randomization is based on the current
expected values of @ and 8 assuming a uniforim prior density on (o, 8). The next patient
receives treatment A with probability equal to

Bla) _ {sa+1}/(sa+ fa+2)

El)+ E(B)  (sa+1)/(sa+fa+2)+(sp+1)/(spg+ fa+2)




3 Probabilities

For the procedures ER, SR, RR and PW we can derive the necessary formula for computing

the probabilities of gettig at least k successes out of n trials , P.(k,nla, B), for varions ¢ and
B. Since n is even, we let n = 2m.

For procedures ER, SR, and RR we can easily write the explicit formula as the followings:

Pgr(k,2m|a, ) = }ﬂi(m)aj(l—a)"‘“j[i (ﬂﬁ’(hﬁ)“‘ﬂ,

=0 \J s 4
2m .
Pop(k, 2m)o, B) = %Z (2;:1) ({1 = a)m=i 4 i1 — gy},
j=k

Prr(k,2mla, B) = %5 (Qm) (a+ﬁ)j (1 ) a—’rﬁ)?m‘?‘

e\ J 2 2

For procedure PW and the number of successes k in 2m trials is even, we may terminate
with a success on treatment A and an equal number of failures, (2m—k&}/2 on both treatments
if we start with treatment A4 (probability 1/2). If we start with treatment B (probability 1/2)
and make a success termination with treatment A, then k is odd and the number of failures
for treatment A, B is (2m—k—1)/2, (2m —~ k4 1)/2, repectively. The same argument implies
to the case if the process terminates with a success on treatment B. Then, for k is even,

2m
Pew (Z g = k(a,ﬁ)
i=]

2m—k 2m—k

TR E-1 O A A R m

(T e (T e
2

(27“2“‘_}.35_.

2m—k

2

+

T I

O] — B3|

and, for k is odd,

Zmek-] g 1 m—k— M - m—k41
- %Z ( 22m‘:—1 )af(]_ _ Q)2 2!: 1 ( 5 k +£k g)ﬁkkg(l _ ﬁ)z 2.kj
e=1 2 -
1 k  /2m—k—1 - gy [ 2m=k=1 k—¢ ek
0 s LR el (e I EINEE S
=1 Tz -
Thus,
Py (k, 2m|a, B)
2 2m 2m
= Z [Ppw (Z Z; =7 and j is even |a,ﬁ) + Ppw (Z Z; =7 and j is odd [cx,ﬁ”
i=k i=] i=1

Remark. The fundamental dynamic program equations for this problem under the proce-
dures RB, JB, and PR have not been developed.

4



4 Numerical Studies

The recursive formula to calculate the probability that of gettig at least & successes out of
7 trials for these procedures can be developed, however, the formula can be very difficult to
compute. Therefore, we conduct a simulation study to estimate these probabilities obtained
from 10000 iterations. For selected values of k, o, 3, and n = 100, we evaluate these procedures
on the basis of the conditional probability lost (CPL) discussed in Section 2.

Among three randomizations procedures ER and RR perform most likely to each other
and

» for & = 0.25 and &k = 40, 50, 60, 70, 80, procedure SR does better than procedures ER
and RR when 8 < k/n + 0.1. However, SR is the worse if 8 > 0.55 with k& = 40, and
> 0.75 with k& = 50. ~

o for o = 0.5, procedure SR is the best when & = 80. It also does better in the cases in
which # < 0.3 with k¥ =40, 8 < 0.5 with £ = 50, 8 < 0.7 with £ = 60, 8 < 0.85 with
k = 70, however, it performs badly for other values of 8 in each k.

o for o = 0.75, procedure SR is the worse when k = 40. It does better again in the cases
in which 8 < 0.3 with £ = 50, § < 0.45 with & = 60, § < 0.7 with £ = 70, § < 0.8 with
k = 80, but performs poorly for other values of 8 in each k.

Among four adaptive procedures, procedures PW and PR are very compatible, but not as
good as procedures JB and RB. Procedure PW daes better than PR when & = 40 and 50,
and procedure PR performs better than PW when k = 60, 70,80. Also, the best procedure
among three randomizations only performs better than PW or PR in some particular cases.

The comparison of procedures JB and RB can be summarized as follows:

e [or o = 0.25, procedure RB is the best if 8 < k/n + 0.1 and procedure JB is the hest
in other values of 3 with k£ = 40, 50,60, and 70. Procedure RB is the best with k¥ = 80.

o When o = 0.5, procedure RB is the best in the cases in which 8 < 0.2 with &£ = 40,
8 < k/n with k = 50,60,70, 8 < 0.85 with & = 80, and procedure JB performs better
in other values of § in each k.

e When a = 0.75, procedure JB is as good as other procedures or the best with & =
40,50, 60. Also, procedure BB is the best whenever 8 < 0.5 with & = 70, and 3 < 0.75
with & = 80, and procedure JB is the best for the rest values of § for & = 70, 80.

On the whole, three randomizations are not doing as good as four adaptive procedures.
Procedure RB is superior when ¢ = 0.25,0.5 with 8 < k/n + 0.1, and JB is as good or better
than any other procedures when ¢ = 0.75. To conclude the current study, I would like to
make some recommendation for using these procedures in maximizing the proportion of the
successes in the trial. For small or intermediate value of @ with 8 < k/n + 0.1 I recommend
using RB, and using JB for other values of 3. Ior large value of o I recommend using JB for

B <k/n.
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Figure 1: These lines show the conditional probability lost for the indicated procedures with

o = 0.25 and n = 100.
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