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Bayes Sequential Interval Estimation
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Abstract

The problem of Bayes sequential interval estimation of the mean of a normal distri-
bution with known variance is considered. An interval estimation procedure, which does
not depend on the prior distribution, with deterministic stopping rule is proposed in this
paper. It is shown that the proposed procedure is asymptotically pointwise optimal and
asymptotically Bayes in the sense of Bickel and Yahav (1967, 1968) for a large class of
prior distributions.

Keywords: Asymptotically Bayes, asymptotically pointwise optimal, Bayes sequential
interval estimation, stopping rule.
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1. Introduction

Let X1, X5, - be a sequence of independent observations from a normal population
N(8, o2) with the unknown parameter § € @ and the known variance o > 0, where
@ is a known subinterval of R!. Here we treat @ as a realization of a random variable,
and assume that @ has a continuous, positive and bounded prior density ¢(¢) on © with
respect to Lebesgue measure.

Suppose that we are interested in finding an interval estimate of # subject to # € ©.
Having recorded n observations X, --,X,, we assume that the loss incurred in the
interval estimate of 8 by I € I, where Z denotes the class of all subintervals (including
point sets and the empty set) of ©, is

L(0,I,n) = al(I) -+ b(1 — 6;(8)) + cn.

Here a, b, ¢ are finite positive constants, {(7) is the length of I, and 6;(f#) denotes the
indicator function of I.

The Bayes sequential interval estimation problem is to seek an optimal sequential
interval estimation procedure which includes an optimal stopping rule and an optimal
interval estimate. It follows from Arrow, Blackwell and Girshick (1949} that the optimal
interval estimate for any given stopping rule is the fixed-sample optimal interval estimate




based on n observations when the given stopping rule equals to n. Thus the main problem
is to find an optimal stopping rule.

Optimal stopping rules usually exist under mild regularity conditions (c¢.f. Theorems
4.4 and 4.5 of Chow, Robbins and Siegmund (1971)), but the exact determination of the
optimal stopping rules appears to be a formidable task, in practice. Bickel and Yahav
(1967, 1968) provided an attractive large sample approximation to the optimal stopping
rules which they called asymptotically pointwise optimal (A.P.O.) rules in the general
setting. They also gave the A.P.O. rules in many point estimation and hypothesis testing
problems, and showed that the A.P.O. rules are asymptotically Bayes (or asymptotically
optimal). For sequential interval estimation of the positive mean of a normal distribution
with known variance under a folded normal prior, an A.P.O. rule is given by Blumenthal
(1970) and the A.P.O. rule is asymptotically Bayes. Gleser and Kunte (1976) extended
the results of Bickel and Yahav (1967, 1968) to cover the problem of Bayes sequential
interval estimation.

The A.P.O. rules proposed in Blumenthal (1970) and Gleser and Kunte (1976) depend
on the prior distributions. An interval estimation procedure with deterministic stopping
rule is proposed in this paper. The proposed interval estimation procedure does not
depend on the prior, and it is shown to be A.P.O. and asymptotically Bayes for a large
class of prior distributions.

2. The interval estimation procedure

For convenience, let X, = (X1, Xz, -+, Xyu), Xp = (21,22, -+, 25), ¢(0 | X,,) be the
posterior density of 8 given X, and G,(x,) be the marginal distribution function of X,,.
For an interval estimate /{X,) € Z, a simple application of Fubini’s theorem yields the
corresponding Bayes risk

R(6.1(X,)) = E L(8,1(X,),n)
= [ (o, 1(x)) + en) dGa(rxa),

where

P& 10) = alllGen) +b(1= [ 90| x,) db)
- b(l-{-/](xn)(ab“ — 6(6 | xu)) db).

Hence in the remainder of this paper we make the assumption as follows.

Condition (A). The closure in © of the set {#: ¢(0 | x,) > ab '} is a closed subinterval
I'(x,) = [0, (x,), 04,(xn)] of © for almost all x,, with respect to the probability measure
corresponding to G,.

One notes that I*(x,) may be empty or a one-point set. In general,

o}, (x,) = inf{f:¢(0|x,) > ab'}
o}, (%) = sup{f: (0] x,) >ab”'}.

The Condition (A) holds if ¢{(#) is a normal or folded normal density function (see the
example on page 688 in Gleser and Kunte (1976)), and the following example is to show
that the Condition (A) does not restrictive.

Example. Let the prior density of € be of the form
k
H(8) = exp{z Ci(w)Ty(8) + D(w)}, 6€0,
i=1
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where w is a constant in R¥, and the functions T;(f) are continuous on ©. Then we get
the posterior density

. k
n nin
O(0]xn) = k(Xn,0,W) EXP{—EB2 +—5 0+ > Ciw)Ti(8)}, 6€8,

i=1

for some positive function k(x,,o, w), where Z, = %Zf’f:l x;. The Condition (A) holds
if for almost all x,,, the function F(6) = —7%6* + 220 + Y&, Ci(w)Ty(0) is either
unimodal on © or increasing or decreasing on © with finite right endpoint or left endpoint,
respectively. Hence it is not difficult to obtain that the Condition {A) satisfies for the prior
distributions of § = a;n + a3, where a; # 0, a; € R! and 7 has the gamma distribution
with shape parameter w; > 1 and scale parameter wy > 0 or the beta distribution with
parameters wy > 1 and we > 1.

Because the Condition (A) is assumed to be held, the I*(X,) is an optimal interval
estimate against ¢ based on the observations X,. Let

Yo = p(¢,1"(Xn))

= afa3,(Xa) — ol (Xa)) +b(1 = [a * (xn;) $(0 | X,) db),

aj (X

which denotes the posterior Bayes risk of I*(X,).

One notes that the result in Theorem 5.1 of Gleser and Kunte (1976) also holds for the
one-parameter exponential family, corresponding to Theorems 3.1 and 3.2 for sequential
point estimation in Bickel and Yahav (1967). Hence we get that the A.P.O. rule with
respect to {Y, +cn; n > 1} is

) f(n
tczlnf{nz 3 (1-— ﬁ)l’n < c},

)2 for n > 3, and f(1)and f(2) are any positive constants. It means

where f(n) = (
logn
that the class of stopping rules {t.;c > 0} satisfies

Y, c
p{limﬂt_ — 1} =1,
-0 inf (Y; + ¢s)

where the infimum extends over all o(X,)-stopping rules s.

In view of the condition sup, f(n)E(Y,) < co assured by Lemma 1 of Section 3, we
know from Theorem 6.1 or Theorem 4.1 of Gleser and Kunte (1976) that the sequential
interval estimation procedure (I"(X; ), f.) is asymptotically Bayes, that is

lim B +cto) _
=0 inf, B(Y, + ¢s)

In fact, we see from (4.33) in the proof of Theorem 4.1 of Gleser and Kunte (1976) that

[ LS

. 3
EI_I'% flre) B(Y,, + cte) = 5(2‘10) :
where 7, = inf{n > 1:nf(n) > 5.}.
The sequential interval estimation procedure (/*(X,, )}, t.) depends on the prior density

#(8). Here we would like to find a procedure without using the prior information, but
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at the same time it can be used to replace the sequential interval estimation procedure
(I"(Xe.), te)-
Motivated by that f(n)a{c3, (X,)— a3, (X)) and f(n)Y, converge to 2a0 with proba-
bility 1, we propose that the interval estimate based on X,, is I°(X,,} = [X, — %, X+
i
o
——| and the stopping rule is
7w
2a
fn) ) 7 < ),
fln+1)/ f(n)
where X, denotes the sample mean of X,,. The statements involving a.s. or with proba-
bility 1 refer to the overall probability measure P unless otherwise stated in this paper.
Note that the stopping rule u, is a constant depending on ¢, and thus the interval
estimation procedure (I°(X,,), u.) is not sequential. Denote the posterior Bayes risk of
I°(X,) by

uc:inf{n23: (1—

Yy = plé I°(Xn))
2a0 Xnt785
WH(I_L{R-% 4(60 X.,) db).

Il

The class of stopping rules {u.; ¢ > 0} and the interval estimation procedure (I°(X,,), uc)
are shown to be A.P.O. and asymptotically Bayes in the following Theorem 1 and Theorem
2, respectively.

Theorem 1. If ¢(f) has continuous second derivatives in the interior of ©, then
(i) {ue; ¢ > 0} is an A.P.O. with respect to {Y, +cn; n > 1} and {Y + cn; n > 1}
(i) Y, +cue

———— i bability 1.
Wt (Y, + 05) — 1 with probability 1

3
Theorem 2. We have lim F(ve) E(Y, +cue) = 5(2ao‘)§.
c—
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