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1. INTRODUCTION

The inequalities

a+ b 1 f(a) + f(b)
1557) < s freoas L2I0 g

which hold for all convex mappings f: la,b] ->R are known in the
literature as Hadamard inequalities [1]. We note that 1. Hadamard was not
the first to discover them. As is pointed out by Mitrinovic and Lackovic [2]
the inequalities (1) are due to Hermite, who obtained them in 1883, 10
years before J. Hadamud. In {3], Fejer proved that if g:la bl = R is

nonnegative integrable and symmetric to x = 242, and if f is convex on
[, &1, then

fla) + f()

a+by .4 b
f( - )Lg(x)dxsﬁf(x)g(x}dx [e(x)ax. )
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In [4], Brenner and Alzer asserted that if g: {a, b] - R* is integraie and

symmetric to x =4 = "f;—}f’i with positive numbers p and g, then

patgb\ a4y A+y
B s as [0 @

pf(a) + Qf(b) Aty
< T [T () dr, (3)
ptg A-y
where 0 <y < 272 min(p, ¢), and f is convex on [a, b].
In [5], Dragomir and in {6}, Yang and Hong found convex monotonically
reat functions H and F defined on {0, 1] by

a+b
HO) = == [+ (-0 @

Fu>=5@%:5L14(1§j“+(1;t%)

A T o

a+b 3 i b _
{552} = HO) <80y 5 1) = 5 ['1(x) de = FO0)

and

.

respectively, such that

fa) +1(p)

< F(1) < F(1) = 5

2. MAIN RESULTS

THEOREM 1. Let f: [a,b] = R be a convex function, 0 < e < 1,0 < g8
<1, 4 =aa+(1-a)b, uy=(b~- a)min{;2;,152), and let h be de-
fined by k(1) = (1 — BY(A — B1) + Bf(A + (1 — B)), 1 & {0, u,).

Then h is convex, increasing on [0, u,1 and for all t & {0, u,),
flaa + (1~ a)b} < k(1) s af(a) + (1 - a)f(b). (6)

Proof. We note that if f is convex and g is linear, then the composi-
tion feg is convex. Also we note that a positive constant multiple of a
convex function and a sum of two convex functions are convex, hence h is
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convex on [0, 1,]. Next, if ¢ € [0, ug], it follows from the convexity of f that

A(1) = (1 — BYf(A — Bt) + Bf(A + (1 - B)1)
> f{(3 - BY( A~ B1) + B(4 + (1 - B)1)]
=f(A) = flaa + (1 - a)b).

a - - - 4
Also,weobservethat0<asﬂb—5—)—4:—§-t—<l § g Goelpod <1
—a< 1, 0gse-y = 0-81lo g <1, and 0 <1~ «a

< boatoa fa-nl o 5o that
h(t) = (1 = B)flaa + (1~ a)b - Bi]
+ Bflaa+ (1 = a)b + (1 - B)t}

a(b —a) + Bt (1 - a)(b—a) - Bt
=(1‘ﬁ)f[ et T b]
+£f[a(b~a;:£1ﬁﬁ)ta
+(1‘“a)(b“"ﬂ)+(1—ﬁ)1b]
b—a
a(b — 1—alb—a) -
< (1) T By 4 L0 )
a(b—a) - (1~
NI

(1-a)(b-a)y+(1-B)
NEETS T e

= af(a) + (1 - a)f(b),

hence (6) haolds. Finally, for ¢;,7, such that 0 < ¢, <1, < ug, since A is
convex, it follows from (6) that

h(t) = h(t,)  A(4) —h(0)  h(1)} —flaa + (1 — a)b] .
Lot -0 4 -

hence h(t,) = h(t,). This shows that 4 is increasing on [0, ug] and the
proof is completed.
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Tueorem 2. Letf, a, 8, A, and uy be defined as in Theorem 1 and let
g: la, b} — R be nonnegative and integrable and

(A~ puw) =g(A+(1-Plu), weluml ()
Then
floaa +(1 - “)b]fA+(lhﬁ)ug(t) dr -
A-Bu
1~-8 4 B +{1- B
s =[] JWswyas [T g0 a
< far@) + A=) f N [ g0 a (®)

Proof. For every u € [0, u,], we have the identity

JUr Py a = [* g(nyars [Py a
A—fu A-Bu A

173

2(4~Btyd+ (1 — ﬁ)j:g(A - Bty dr

]

0
H

B
fog(A ~ Bt) dt. (9)

Since g is nonnegative, multiplying (6) by g(.4 — Bt), integrating the
resulting inequalities over [0, u}, and using (7) we have

flaa + (1~ a)b} [ 'g(4 ~ pr) at
0
< (1~ B) [ (A - Bryg(A - pr) de
+B[ A+ (1= B))(A + (1~ B)r) ds
1“",3 ﬁ +{1-8u
- TLA_ﬂuf(t)g(t) a+ =5 [T () @

< laf(a) + (1~ ) f(0)] | g(4 - pr) d,

thus, the inequalities (8) follow by using the identity (9.
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Remark 1. If we choose o = 3%, B= 3, and u = 2y in Theorem 2,
then the inequalities (8) reduce ta the inequalities (3).

Remark 2. Tf we choose o = 8 =1, and u = uy = b — a in Theorem
2, then the inequalities (8) reduce to the inequalities (2).

Remark 3. fwechoose a=g=3,u=u;=b—a,and glx)=1in
Theorem 2, then the inequalities (8) reduce to the inequalities (1),

THEOREM 3. Let f, A, and uy be defined as in Theorem 1,0 < @ < 1,
0<pB<l, a+ B<l, andlet H be defined by

1=8  ratb-a/-p)
H(f)=;(b—_;‘)'j; PRI - BYF(A - B

+Bf{A+ (1-B)x)fax, O<rx<1. (10)
Then, H is convex monotonically increasing on [0, 1], and
flaa + (1 — a)b] = H(0) < H{¢)
1-8
a(b—a)

x ("B - By f(A - px)
4]

+Bf(A+ (1~ B)x)] &
< af{a) + (1 ~ a)f(b). (1)

Proof. That H is copvex follows immediately from the convexity of f.
Next, the condition « + 8 < 1 implies that i, = %’ﬁl. It follows from
Theorem 1 that A(s) = (1 ~ B)f(A4 —~ B1) + Bf(4 + (1 — B)) is increas-
ing on [0, u,] and hence H(r) is increasing on [0, 1].

Finally, the least inequality of (11) follows from (6), and the proof is
completed.

<H(1)=

Similarly, we have the following theorem:
THEOREM 4. Let f, A, uy, o, B be defined as in Theorem 3. If

1_
o0~ g
xfua(bﬁa)/ﬂ“ﬁ)[(l . B)f(A — ﬁ(f-eié::r;-)- '--x(1 - f)))

a{b —a)
+Bfi4+(1-8) "—i*:";é“*x(l-t) dx,

0=xr<1, {12)
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then G is convex and monotonically increasing on {0, 1}, and

1-8) 4 B b

a(ﬁ(b lj)ﬂ) j;“a(b~a)/(1-—ﬁ)f(X) e afb — a) fAf(x) .
p 0T ) + B1(5)
1~ f

<eaf{a) + (1 —a)f(b), U=tsl, (13)
Remark 4. The identity (4) is a special case of (10) taking a = 8 =
Remark 5. The identity (5} is a special case of (12) taking a = B =

THEOREM 5. Let f, o, B, A, u, be defined as in Theorem 3 and let g be
defined as in Theorem 2. Let P be a function defined on [0, 1] by

P(ey = fo"{(l ~ BYF(A - Brr)g(4 ~ Bx)
+Bfl4+ (1 - pyalela+ (1 — BYxljde (14)

for some u € [0, uy). Then P is convex and maonotonically increasing on [0, 1]
and

=G(0) < G(1) = G(1) = (1 = B)f

LTI SIE

A+ -8

flaa + (3 ~ a)b]fA g(x) dx

1~-8 4
= P(0) 5 P(2) < P(1) = TLﬁﬂuf(x)g(x) dx

B ra+qa-pwm
e IO OL AN )
Proof. Since f is convex and g is nonnegative, we see that P is convex
on [0,1} Next, for each » € [0, u], where u €{0,4,}, it follows from
Theorem 1 that A{e) = (1 — BIf(4 ~ BaY + B4 + (1 ~ B)x) is in-
creasing for ¢ € {0, 1}. Using the identity (7} we see that P(t) is increasing
on [0, 1] Therefore the inequalities (15) follow immediately.

THEOREM 6. Letf, g, a, B, A, u, be defined as in Theorem 5 and let Q
be defined on [0,1] by

Q1) = fo“[m = BYf(A — Bu + Bx{1 — 1)) g( 4 ~ B(u —x))

+Bf(A+ (1~ B)u— (1~ B)1-1)x)
xg{A + (1 = B)(u —x))] dx (16)

e
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for some u & [0, uy). Then @ is monotonically z'ncréasing and convex on {0, 1],
and

B o avt-8N
5/, f(x)g(x) dx

1-8 4

R ARIOLOLE
= 0(0) = 0() = 2(1)
= [(1 = p)fCA = ) + (A + (1= By} [T g

< [af(a) + (1 - a)f(b)}j’”“ Ae(x) dr. (17)

Proaf That Q is convex follows immediately from the convexity of f.
Next, for each x & {0, u}, where u & [0, 1y}, it follows from Theorem 1 that
Bty = (1 — BIF(A ~ Bf) + Bf(4 + (1 — B)) and k(D) =u— (1 - 1)x
are increasing on [0, uy] and [0, 1}, respectively. Hence A(k(s)) = (1 —
B4 ~ Bu+ Bx(l — N+ BF(A + (1 — Bl — (1~ )1 ~1)x)is in-
creasing on [0, 1} Since g is nonnegative and satisfies (7), it follows that
(1) is monotonically increasing on {0, 1}. Finaily, the last inequalities of
(17} follow from (16) and (6).

Remark 6. Choose a = =3, u =u, =b ~a in Theorems 5 and 6.
Then the inequalities (15) and (17) reduce to

a & b
{2 [retn) de = P < P < P(3) = [F(0080) a
= 0(0) = 0(1) = Q(V
a b
OO

where P(¢) = [2floe + (1 — Y232 1e(x) dx and

o) = 2[[(1” 1-2~tx)g(x~¥2~a)

+(1+tb+1—-t x+ b
N 2 ")g( 2 )

dx

1

which is a refinement of (2).

Remark 7. Choose @« =B =3, u =u, = b ~ a,and g{x) = 1 in Theo-
rems 5 and 6. Then P(t) = (b — a)H(), Q(t) = (b — a)F(¢), where H(r)
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and F(¢) are defired in (4) and (5), respectively; hence (14) and (16)
generalize (4) and (5), respectively.

Remark 8. Choose o, B suchthat § <o <1, 0<A8<], a+B8=<1,
alh - g

and choose u = 1y = =g, 4 = oa + (1 ~ a)b, g(x) = 1 in Theorems

5 and 6. Then P(r) = {422 H(1) and Q() = #{2=52G(1) where H(1) and
G(t) are defined in Theorems 3 and 4, respectively; hence Thegrem 5
generalizes Theorem 3 and Theorem 6 generalizes Theorem 4.
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