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=~ 3k & (Abstract):

Let E/F,be an elliptic curve defined over a finite field of odd
characteristic, and let S and 7 be points in E(F,). The Elliptic Curve Discrete
Logarithm Problem (ECDLP) is the problem to find an integer m satisfying
T=mS. In this report, we give a method to solve ECDLP by lifting E over F,
to an elliptic curve E' over the function field F,(2} with Mordell-Weil rank
less than or equal to 3. It has the advantage of working well for small values
of prime p.

i 423 (Key Words): elliptic curves, finite field, discrete logarithms, function field,
Mordell-Weit rank.

Z-HE4ghane:

The discrete logarithm problem(DLP) for the multiplicative group F," has been
studied extensively and it can be solved in subexponential time using the Index
Calculus method ([AdI1]). This suggests that the public key system using the DLP for
the multiplicative group F,” maybe not secure enough. Thus one is lead to the Elliptic
Curve Cryptosystem, proposed independently by Miller and Koblitz in 1980's ([Mil1],
[Kob1]). This ECDLP can be described as follows:

ECDLP: Let E/F, be an elliptic curve over the finite field F,, and let § and 7 be
points on E(F,). To find an integer m(if exists) satisfying 7=msS.

It seems very unlikely that there is an  index calculus method for ECDLP
(IMill], [S113]). So far, there is no subexponential algorithm for ECDLP in practice
except for particular cases of curves having the Frobenius trace -2,0 and 1 ([Frel],
[Menl], [Seml]). In 1998, Silverman proposed a new method, dubbed the Xedni
Calculus ([Sil4]). Unfortunately, it has been proved that this Xedni Calculus is not
practical ([Jac1]). In this project, we give yet anothermethod to solve ECDLP by
lifting E over F, to an elliptic curve E' over the function field F, (t). All the curves E'
which we use are elliptic curves with Birch-Swinnerton-Dyer conjecture already
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proved ([Artl], [Mil2]).
EREE T E LY

In section 1, we describe how we lift an elliptic curve E over IFq together
with three points to the projective plane over the function field Fq(t). In
section 2, we show that the rank of the lifted curve in section 1 is always less

than or equal to 3. In section 3, we estimate the canonical heights of the

lifted points.

- —

§1. Lifting curves over a finite field to curves over a function field

Let p be an odd rational prime (for the case p = 2, it can treated sepa-
rately) and g a p-power, I the function field F (t}, and It the polynomial ring
Fqlt]. Let E/F, : y? = 23 + ax® + bz be an elliptic curve over the finite field
Fy, and let S,7" € E(F,). Choose three pairs of integers (m,n:),4 € {1,2, 3}
and let Py = m S +mT, Py = maS v naeT, P3s = m3S + ngT. Assume
that zymexg(a; —mg) (w2 — a13)(23 — 211) 7# 0(otherwise the ECDLP is almost
solved). Observe that (1,a,b) is the only solution of the following linear

systemn over F,:

y 2

u.’r:‘} + unzf +wrp =y
.3 .2 e a2
urh vy + Wiy =Yg

: 2
'u..’azg + Umé + wry = Y3

. 2,2 _ .2 .2 _ .2
Choose u1, 1y and ug € F so that w? = 2%, v = x4, u§ = 2%, And then we

define d € Fy, f,9,h € I as follows:

3 m% T
d=det | ©3 a3 25 | = myaozz(z) — 29) (22 — a3)(w3 — ) #£ 0
3 ai xp



a3 (ut+y)?
) =det [ 23 (uat +y2)? =y
w5 (ust+y3)> mg
wf a (ut+y)?
g{t) =det | 23 a3 (ugt + yp)?
vy 2} (ust+ys)

(it +y)? 2l
)

h{(t) = det | {19t + 32)2 Ty

a3
(ugt +y3)% 23 3 -

Let E1/K @ y® = 523 + a2 4 89 and let P| = (21, it + 1), P2 =
(w2, upt 4+ y2), Py = (w3,13t + y3) € £(K). Then the reduction map mod-
ulo &1 £1/K — E/F, will map Py, Py, P3 ta Py, Py, Py respectively. Let
EJK :y* = ad + dfa? + d’gha and let Q) = (dhay, d*h(ut +y1)), @y =
(dhzy, d*h(ugt +yo)) and Q3 = (dhas, d*hinst+13)) € £(JC). Note that the

map
p &£

(z,y) — (dha, d*hy)
is an 1somorphism over I which maps P; to Q; for every 4 € {1,2,3}. Then
it is clear that deg(f) = 2,¢(f) = d,deg(g) < 1 and deg(h) < 1. Note that g
and h won’t be constant at the same time, that is deg(gh) > 1{since d # 0
implied that the three vectors {(z1,w9,23), (2%,23,23), (z3,23 23) are F-

linearly independent). By routine computation, we have A(£) = 1645?22 (f2—

dgh).

§2. Bounding the Mordell-Weil rank

Consider an elliptic curve £ defined over the rational function feld K. Its
conductor Ng can be regarded as a divisor

NE: Z qu

veEMg

where f, are nonnegative integers(see [Sil5, Chapter 4, §10]), called the ex-

ponent of the conductor at v. Denote ng to be the sum Doven Jv deg(v).
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Then the Mordell-Weil rank of £(K') is bounded above by ng — 4(see [Brul,
Appendix]). By routine computation, we can show that for our lifted curves

the inequality ng < 7 holds always. Therefore the following proposition

follows immediately.

Proposition 2.1.  The rank of our lifted curve (K ) is less than or equal

to 3.

In order to solve the ECDLP, one had better lower the rank of the lifted”

curve to 2. Therefore we would like to study the 2-descent via 2-isogenies on
clliptic curves over rational function fields which may help us to lower the
rank. Now suppose that B and 4% — 4B are nonzero elements in R. Let
EJ/K 1 y* = a3 + A2? + Bz, EVK y* = 2% — 2427 + (A® — 48)2 and let

b:E — & $:E — & be the dual isogenies of degree 2 defined as follows:

22’ 22
2 2 9
- v y(A°—4B — 2%
(Ib((:!:ly)) = (4701 82?2 )

Notations:

A(E) := the discriminant of an elliptic curve .
£(h) := the leading coefficient of h, for any h € R.
MI(£/K) = the Shafarevich-Tate group of £/K.
SONEJK) = the ¢-Selmer group of £/K.
S@N(E'/K) = the ¢-Selmer group of E'VK.

My = the set of all places in K.

S = { finite places associated to prime divisors of B(A?—4B)}u{the infinite place}.

K(S,2) ={de K*/K™ :ord,(d) = 0(mod 2) for every place in S}.
« is a generator of G, (Fg).

7 18 the rank of the Mordell-Weil group £(K).

s = dimp, SN E/K).

s’ = dimg, S (& /K).



Fact. (a) S(E/K) — K(S,2) and given any d € K(S,2), the corre-

sponding homogeneous space Cy can be given hy
Cyq i dw?* = d* — 2dA2% + (A% - 4B)2*.

Similarly, S(‘f’)(ﬁ’/lx’) = K(5,2) and given any d € K(S,2), the correspond-

ing homogeneons space C!;, can be given hy

-—

dw? = 42+ dAZ? + B2,

(b) There is an exact sequence

S E(?E(ér_\)jj — S(/K) — TIE/K)[¢) — 0.
Oi— 1
(0,0) — A® — 4B

() — a2 ifz£0

(Sce [Sill, Chapter 10, Theorem 4.2 and Proposition 4.9].) .

Lemma 2.2,

s <#{prime divisors of (A% — 4B)} +1,

s' <#{prime divisors of B} + 1.

Observe the following commutative diagram of exact sequence of Fy-vector
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spaces:

0 0
| |
E'(K) ] 0.
semopy A ’
| l !
— & — gl#) ) o —
0 i) SNEJKY = IE[K)[¢] — O
{ ! i
E(K) .
() SPNEJKY - I(EJK)[2) — 0
| ! i
E(K) ; .
0— ——— = SWEYRY o NI(E /K) g — 0
EI) (&'/K) (& K)[¢]
|
0

where £ = dimy, £(K}[2]. From the diagram, one can obtain
r4e <dimp, SPE/K) < s+ —(2—¢)
and thus one has the inequality
r<s+s -2 (2.3)

The following proposition follows immediately from Lemma 2.2 and (2.3).

Proposition 2.4,

< #{prime divisors of BY + #{prime divisors of (A* — 4B)}.

Proposition 2.5. Suppose B and A* — 4B are not perfect square in R

with deg(A4) < 2,deg(B) < 2. Then eitherr =s+s§ —2o0rr <s+s — 4.

Proof. Trom (2.3), we have that r # s+s'~3 if and only if either r = s4+5'—2

orr < s+ s —4. Suppose that r = s + s’ - 3. Taking F3-dimension to each
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term in the above big diagram:

0 0

l |

1 1 0

l l |
00— s = s - 0 — 0

l { l

0 - 545 -2 - s+ -2 = 0 = 0

! ! !

0 - -1 — s - I — 0
!
0

(Recall that the Shafarevich-Tate groups of our curves £/K and £'/K are
both finite and thus the Fa-dimension of their 2-parts are even(See [Mil2]).)

Now consider the dual diagram of the previous one, we have

0 0

! §

1 1 0

! 1 1
0 - -1 - & = I — 0

| l l

0 — 5458 -2 = s+s-2 5 0 = O

i 1 1

0 - s = s = 0 — 0
!
0



Observe that there is a contradiction which oceurs at the last vertical exact

sequence of the last diagram. Therefore r £ s 4§ - 3. O

The following theorem will help us to compute the difference of s and '.

Theorem 2.6. (Duality Theorem) Let ¢ : E/K — £'/K and ¢ : £'JK —
E/K be dual isogenies of elliptic curves over K. For any place v € Mg, let
cu, ¢, be the nnmbers of components of the fiber of the Neron model over v
of B, £ respectively. Then

[SUNE/I)_ (Erors (K) <
|SOEK) (Elors (K2

Cy

My

(See [Casl].)

Lemma 2.7. LetE/K y? = a3+ Ax?+ Brand £'/K : y? = 2% — 2422 +
(A2 —4BY. TLet ¢ : E/K — E£'JK and ¢ : E'JK — EJK be dual isogenies
of degree 2. Suppose that deg(A) = 2,1 < deg(B) < 2 and ¢(A) € ]F;Z.

Suppose further that both B and A®* — 4B are squarefree in A. Then

s — s' = #{prime divisors of B* — 44} — #{prime divisors of B} — 1.

Proposition 2.8.  The rank of our lifted curve is strictly léss than 3 except
9, h are associated to different finite places in My and either f? —dgh factors
as g1 where g1, po are irreducible, quadratic, and associated to different
finite places in My or f* —4gh factors as py papaps where 1, 2, 3, 4 are

irreducible, linear, and associated to different finite places in My .
Now we give two lemmas which will be used to prove Proposition 2.8.

Lemma A. (a) Cy & S(D(E/K).

(b) If f2 — 4gh has a linear factor, then C", & S(‘z’(E’/I().




Lemma B. If p is a linear factor f2 — 4gh, then Cp & SNE/K).

In those two exceptional case, we will show that either their rank is equal

to 3 or <1, the latter one is extremely impossible to happen according to

our lifting experience,

Proposition 2.9.  Suppose that g, h are associated to different finite places
in My and f% — 4gh factors as P12 where gy, po are irreducible, quadratic,-

and associated to different finite places in My. Then either r = 3 or r < 1.

Proposition 2.10. Suppose g, h are associated to different finite places in
My and f* — 4gh factors as PL23ps where oy, oo, 3, 4 are irreducible,
linear, and associated to different finite places in M. Then either r = 3 or

r <1

£3. Computing The Canonical Heights

Let K be the function field Fy(t) and let £/K be an elliptic curve over K.
Recall that the canonical height on £/K is a function h : £(K) —» Q which

- can be decomposed into sum of local heights

WPYy= Y A(P) ) (3.1)

ve My

wlere 5\,, 15 the local height function at the place v,

Theorem 3.2. (Local height at nonarchimedean valuations) Let £/K be

an elliptic curve given by a Weierstrass eqnation
E/K - y* =23+ A2” + Ba

which is minimal at the place v, and let P = (2,y) € E(K,).

a=322 4242+ B, b= 2y, ¢ = 32t + 4423 + 6Bz — B2,
¢4 = 16(A* — 3B), A(E) = 16 B*(A® — 4B),

1 .
N = ord, (A(E)}, n = min{ord, (b}, 5NV}, d = deg(v).
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(a) If ord, (a) < 0 or ord, (b) < 0, then A(P) = maz{0, —sord, (z)d} + 7 Vd.
(b) Otherwise, if ord,(cq) = 0, then A(P) = Hl”—(g};—"‘)d + 5 Nd.

(c) Otherwise, if ord,(c) > 3ord, (b), then A(P) = —3ord, (b)d + 15 Vd.

(d) Otherwise, A(P) = —}ord,(c)d + L Nd.

(See [Sil2).)

Now we turn back to consider our tifted curve € : y? = 23 4+ df 22 + dgha
over the function field I{. Recall that 1 < deg{g) + deg(h) < 2 and degff) =

2. By routine computation, we have
cq = 16d>(f% — 3gh), A(E) = 16d%g2h2(F? - 4gh)

and deg(A(£)) = 6or 8, then it is clear that the Weierstrass equation
given as above is minimal at every finite place in K(See [Sill, Chapter 7,
Remark 1.1]). The following proposition gives bounds for the heights of

Q.‘,?, €\{1,2,3}-

Proposition 3.3. Forevery i e {1,2,3}, —%—2- < ﬁ.(Qi) < g.
. - Z
Corollary 3.4. Foreveryi€ {1,2,3}, h(Q;) € 810"

Proposition 3.5. Given any P, Py, Ps € E(F,), the compntation of the
canoniacl height of the three lifted points Qy, Oy, Q3 can be done in a prob-

- abilistic algorithm with O(log q) operations in Fq.

B g AR

Proposition 2.8 tells that the rank of the lifted curve is less than or equal to the

number of lifted points. Proposition 3.3 gives explicit bounds of the canonical heights

of the lifted points. So we can life the given curve to a curve defined aver a global

field with small rank and hence it is highly possible that the lifted points are linearly
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depedent. Once they are depedent, one can obtain a relation and solve the ECDLP.
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