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Abstract

An accurate scheme is developed to show that
the numerical computation of homoclinic or-
bits for flows will generate transverse homo-
clinic points . .
|
Keywords:  invariant manifold, homo—
- clinic orit, transversal intersection, numerlcal
scheme.

Summary |
Consider a system of ordinary dlfferentlal
equations in R%:

7 = f(z, ) (1)

where z € R? f : RB? x R* — R? is smooth
and A is a real parameter. Let ® be its kth
order discretization with step size b > 0 :

=®(h,A\zn), n=0,1,2,---. (2)
Suppose that equation (1) has a homoclinic
orbit to the origin £ = 0. As one applies
a numerical scheme (2) to obtain the graph
of the homoclinic orbit, one often observes
a smooth homoclinic orbit in the plane as
predicted by the theory. However, since a
numerical scheme is used , we are actually
working with maps rather than flows. As a
map, the origin is a hyperbolic fixed point of
® and the homoclinic orbit one observes is an
aproximation of the stable and unstable man-
ifolds. Hence, generically, one should observe
a transverse homoclinic point, i.e., the sta-
ble and unstable manifolds of z = 0 should
intersect transversally. Thus, we do not ex-
pect to observe a smooth homoclinic orbit in
the plane. This inconsistency was resolved
numerically in Fiedler & Scheurle [1996] by
a successive enlargements by a factor of 10°
in which the homoclinic orbit goes from &
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smooth curve to ones with transversal inter-
sections of stable and unstable manifolds.

For a theoretical explanation of thls phe-
nomenon, it was shown in I'iedler & Scheurle
[1996] and Scheurle [1995] that the k™ order
discretization ® is equivalent to the time A
map of a nonautonomous equation with h-
periodic perturbation:

o' = flz, Ny + WPglh, N t/h,z)  (3)

where g(h, A, t/h,z) = g(h, A, 7,z) has period
L'in 7. They also showed that when the ex-
plicit Buler’s method of step size h is used
, the Duffing’s equation with damping pe-

rameter A, the transversal intersection was
~ observed when the step size b = 0.2 and
A =2 (.090164. However , the graph had to
be magnified 10%! time in order to see -the
pheromena.

In this project, we are interested in ﬁndmg
a numerical scheme to observe the tlansver-
sal intersection phenomena descrlbedrabove
without these successive enlargements. Our
procedure is based on the work in You et al,
(1991} in which an algorithm for the comput-
ing the stable and unstable manifolds was in-
troduced. The idea is as follows.

Let T be a diffeormorphism from R? to R2
with a hyperbolic fixed point p € R?.. Let ~
be & small line segment along an eigenvector v
of the unstable eigenvalue of DT, the deriva-
tive of T at the hyperbolic fixed point p. Let
the curve be parametrized by s € [0,1] and
7(k) be a partition of  with v(k) = ~(s(k))
where

0 = s(0) <s(1) <

<s(k+1)<

. < s(k)
. < s(m) =1

Thus 7(s(0)) is one endpoint of the line seg-
ment and y(s(m)) is the other endpoint of
the linre segment . Then one iterates the se-
quence y(k) using T. To produce a rigorous

picture, at each stage n, one needs to deter-
mine a partition d(k) so that the computed
points at two consecutive values of s(k) and
s{k) + é(k) = s(k + 1) of the nth iteration
of T is a ¢ — plot of the image. However,
the determination of (k) requires the knowl-
edge of the magnitude of the derivative of T
at each stage and at each partition points. In
many cases such a requirement can not be ful-
filled. Therefore a much simpler version was
used. Instead of choosing different values of
d, at each stage, the choice of the length of
the partition § is simply to adjust the initial
d by a factor of 2 until the image points are
approximately ¢ distance apart.

Finally, we will show by an example that
the transversal intersection does occure when
a differential equation is discretized by a cer-
tain numerical method. We will use two
different methods to simulate the following
damped Sine-Golden equation

' + Az’ + sin(z) = 0 (4)

Method (1) is to use 4** order Runge-Kutter
schems and Method (2) is to combine the use
of 4" order Runge-Kutter scheme and the al-
gorithm described above. Our numerical ex-
periments showed that although both meth-
ods do produce clear picture of the transver-
sal intersection of the stabe and unstable
manifold for certain parameter vlaues. Nev-
ertheless the graph produced by method (1)
is more loose as shown at Fig. 1 a) . While
the graph produced by method (2) is more
smooth than the one produced by method
(1), as shown at Fig. 1 b) The parameters
that we used on Fig. 1. is step size h = 0.4
and A =0.190 .
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