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Abstract

We develop a new algorithm which can solve the
problems inveolving linear combinations of spacings
with the coefficients are rational.

Keywords: Order statistics; spacings.

1 Introduction

Let X, X2,..., X, be n points independently
drawn from a uniform distribution on the intey-
val {0, 1) and let Xy < Xy < < Xy
be the associated order siatistics. The spac-
ings Si,8,...,5,1 are defined to be the suc-
cessive differences between the order statistics
Si = Xy — X-y), where we take X = 0 and
Xm+1) = 1. Let S denote the vector of spacings;

S = (SI; S?) B Sr!-{—l)l-
Foraset A C {1,2,...,n+ 1} define
S(A) = Z S
€A
Many important sitnations involve the joint distri-

bution of overlapping suins of spacings, so that we

we often required to calculate probabilities of the

form

P (h{S(AE) > d}) or P (h{S(Ai) < d})
i=1 i=1 )
where the sets Ay, Ag, ..., A, overlap. Probabil-
ities of this type arise in many problems as de-
scribed by Huffer and Lin (1997). Lin (1993) pro-
pose a general algorithm that attemps to calculate

the probabilities involving spacings. Although this

algorithm can deal with many cases of our inter-

‘est, it will sometimes fail in others. Thus, a spe-

cialized algorithm is introduced. Huffer and Lin
{1997) present a method for evaluating the distri-
bution of the minimum or the maximum of linear
combinations of spacings in (1). This algorithm
is guaranteed to solve the problems mmuch more
quickly than is possible using the move general ap-
proach described in Lin (1993). However, there is
still a need to develop a new methodology in order
to handle more general configurations of the sets
A;, and can also solve some problems involving
linear combinations of the spacings more compli-
cated than simple sums like S(A).

In this report we present a method for comput-

ing probabilities which involve linear combinations




of spacings. The approach we use depending on
repeated use of the procedure of triangularization
and the recursion given in equations (2) and (3)
below. This recursion is used to re-express a prob-
ability like that in (2) by decomposing it into a
suin of similar, but simpler components. The same
recursion is then applied to each of these compo-
nents and so on. The process is continued until
we obtain componenis which ave simple and easily

expressed in closed form.

2 Basic Properties and Defi-
nitions

Let ' be a r x (n + 1) real matvix. Let § =
{S1,5:, ...
ings. Let P(T') denote the probability measure of
I'S so that P(T'S € B) = (P(T))(B). For any
£ € R¥, define T;¢ to be the » x (n + 1) matrix

, 9ne1) be the random vector of spac-

obtained by replacing the i** colwmn of I' by €.

The basic recursion is the following,

Theorem 1 Suppose ¢ = (¢q, ¢, ..

fies "t ;= 1. Let &€ = Tc. Then

’ .
S g1} salis-

n+1

P(F) = Z (['P(I‘,‘E) (2)

Notation

For integer i > 0 and real values A > 0 and d > 0,

define
P(A,b,\,n,d) = PNy = 0, AT > bd),

vhere A be any matrix having at most n + 1

:olumns with rational entires, b be any r x 1 vector

with rational entires. Here 12 is the nuinber of ran-
(n)

dom points placed in (0,1), Ny is the number

of points {from n randowm points) in the interval
(0, Ad), and T is a ramdom vector of spacings
(from n random points) in the interval (Ad, 1). By
rescaling rows of A by positive values, we may as-

stine the entries in b are +1 or 0. Also, we define

ni

QA b1 = {n—a)

d'P(A,b, A n—1d)

for integers ¢ > 0.
It can be shown that if a matrix A = (a;;) satis-

fies (for some k > 1) the following four conditions:
(C1) ay; =0 for j > &,

(C2) ay

columns of A are identical (note that (C2) is

= qay = a; for j < &, ie., the first k

vacuous when k = 1),

(C3) a, > 0, and (C4) b > 0,

then

(AJ b: A':p)

(3)
where A" is a matrix obtained by deleting the first
row of A, A{_, Is a matrix obtained by deleting
the first € columns of A*, b® is a vector obtained
by deleting the first entry of b, and a* is a vec-
tor obtained by taking the first columun of 4 and
deleting the first entry.

When specialized to the problem using the oper-

ator 7, the basic recursion (2} becomes the follow-

ing: 1f ¢ = (¢),¢9,...,Caqr) satisfies T2 ¢; = 1
and £ = Ac. Then
' . n+1 '
Q(A1 b\ )'sp) = Z CEQ(A!',Ebe/\)Ip)' (4)
i=1



Useful Properties

For any permutation matrix G,

(E1) Q(A,b,X,p) = Q(AG, b, A, p),
(E2) Q(A,b, A\ p) =Q(GA,Gb, A, p).

For any diagonal matrix D with strictly positive

entries on the diagonal
(E3) Q(A,b,A,p) = Q(DA, Db, A p).

These properties ensure us that we can always
make the entries in & to be +1 or (.

The value of @ remains the same when we
delete redundant inequalities from (A,b). If
any inequalities in (A, b) are contradictory, then
Q(A,b, A, p) = 0. In particular, the value of Q

remains the same when

(S1) the i** row of A dominates (is component-
wise greater than ot equal to) the j** row, and
the 7% entry of b is greater than or equal to

the i*" entry;

(S2) the minimum entry of the i row of A is
greater than or equal to 0 and the i entry of

b is less thaﬁ (1

(S3) if the i entry of b is cqual to 0 and the
miniimun entry of the i row of A is greater
than 0;

'S4} if the ' entry of b and the minimum entry

of the "

row of A are both equal to 0, but
the maximum entry of the same row is not

equal to 0;

and the value of @ is 0 when

(55) il the " vow of A is dominated by (is com-
ponentwise less than or equal to) the j** row
with all negative-signed euntries, and the #*t
entry of b is greater than or equal to the neg-

ative 1" entry;

(S6) if the maxiimum entry of the i** row of A4 is
less than or equal to O and the i*" entry of b

is greater than or equal to 0;

(87) if the i*" entry of b is greater than 0 and

the maximum entry of the i** row of A4 is less.

than 0

(S8) if the /" entry of b and the maximum entry

of the ith

row of A are both equal to 0, but the
mintmuin entry of the same row is not equal

to 0.

For explicit calculations, we rely on the follow-
ing formula. Let ¢ be an empty set. Then it can
verify that for integers j > 0 and real values A > Q,

Qld,d, A, p)

e !
= (l — /\(f)+ p(ipmf(?l _>_ p) = p!R(p, }\),

(5)

where
R(j,A) = (;L) (L= M) Tforrd < 1

To evaluate (, we continue decomposing mabri-
ces using the procedure of triangularization (pre-
sented in Section 3) and the recursion (3) until we
reach “simiple” terms which can be evaluated us-
ing {5). Writing our answers in terms of i allows
us to obtain very compact expressions for Q by

suppressing the dependence on n and d.



3 Algorithm for Triangular-

1zation

Let A be an arbitrary matrix with rational en-
tries. We shall now describe a general approach
for reducing A to a triangular form with zeros en-
tries in the right upper region of the matrix. Our
approach makes us always to increase the region
of zeros in 4. We start with an matrix in the

following form:

6 6 0 0 0
0 0 6 G 0
2/5 12/5] 0 0 |12/5 | (©)
0 0 l12/5 12/5]19/5
3/2 3/21 0 372 39
0 3/2 {32 3/2] 32

‘This example illustrates an matrix with three
zones, including three frontier blocks and three iu-
terior blocks. The organization is the followings.
(i) Boundary marks last nonzero entry in each row.
(if) The rows are grouped into zones, ie., rows
with the identical positions of the last nonzero en-
try form a zone. (iii) Matrix is broken into hlocks.
Each zone has two kinds of blocks, interior blocks
and frontier block (lie along the boundary). (iv)
Blocks are broken into chunks, with each chunk
lying entirely within one block.

We shall now describe the procedure of trian-
gularization. We search the blocks in order. The

orderiug follows the picture below.

1

215
3618
4171910

In such a way that a block is never searched until
all the blocks lying directly above it have already
been searched. For each block we find the first
chunk which contains two distinct values. Mdye
the row containing this chunk to the top of ;1ts
zone. If block containing chunk is a froutier block,
use ¢ with 2 nonzero coefticients at the positions of
the two distinet values in chunk. 1f block contain-
ing chunk is an iuterior block, use € with 3 nonzero
coeflicients at the position of the two distinct val-

ues and the last nonzero entry in that row.
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