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Abstract: For squared error loss plus linear cost, the problem of Bayes sequential
estimation of the mean is considered. A two-stage procedure, not depending on
the prior distribution, for the scale exponential family is proposed in this paper.
It is shown that the proposed two-stage procedure shares the first order efficiency

properties with the fully sequential procedures for a large class of prior distributions.

AMS 1991 subject classification: 62L12.

Key words and phrases: Asymptotically Bayes, asymptotically pointwise optimal,

Bayes sequential estimation, two-stage procedure.




1. Introduction

The Bayes sequential estimation problem is to seek an optimal sequential pro-
cedure which includes an optimal stopping rule and a Ba,yes' estimate. The Bayes
estimate is always obtained in the prob‘lem. Hence the Bayes sequential estimation

problem is reduced to finding an optimal stopping rule.

It follows from Theorems 4.4 and 4.5 of Chow, Robbins and Siegmund (1971} that
an optimal stopping rule exists, but the exact determination of the optimal stopping
rule appears to be a formidable task, in practice. Bickel and Yahav (1967, 1968)
describe methods for finding a family of stopping rules which is asymptotically point-
wise optimal (A.P.O.) and they have shown that the A.P.O. rule is asymptotically
Bayes, that is, the ratio of the Bayes risk of the A.P.O. rule and the Bayes risk of the
optimal stopping rule goes to one as the cost per unit sample approaches zero. Later,
the second order efficiency of the A.P.O. rule is discussed in Woodroofe (1981) and
Rehailia (1984), etc.

When the prior distribution is a conjugate prior with unknown parameters and
when some previously observed auxiliary data are available, parametric empirical
Bayes procedures have been proposed by Martinsek (1987) for the exponential and
normal cases, and similar parametric empirical Bayes procedures are studied by
Hwang (1992) for the Bernoulli and Poisson cases. Ghosh and Hoekstra (1989}
consider the estimation of the multivariate normal mean using two-stage priors and
squared error loss. A.P.O. rules are developed under certain hierarchical Bayes (H.B.)
models. Ghosh and Hoekstra (1995) extend the results of Ghosh and Hoekstra (1989)
to a multivariate regression setting. In one-parameter exponential family, Karuna-
muni (1996) constructs a parametric empirical Bayes procedure by means of the
A .P.O. procedure and shows that the parametric empirical Bayes procedure achieves

the most string envelope risk-the Bayes risk of the optimal sequential procedure as
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the number of components increases to infinity for each the cost per unit sample,

under some restrictive conditions.

When the prior is completely unknown, Bickel and Yahav (1968) propose a se-
quential procedure without using any auxiliary data. The procedure is asymptotically
Bayes for a large class of prior distributions. Two sequential procedures of the type
of Bickel and Yahav (1968), for the scale exponential and location normal families
respectively, are A.P.O. and the second order approximation of the Bayes risk is es-

tablished for a large class of prior distributions in Hwang (1997).

The procedures proposed in all the references are fully sequential procedures. In
this paper, a two-stage procedure instead of fully sequential procedures for the scale
exponential family is proposed. The proposed two-stage procedure does not depend
on the prior and does not use any a.uiniary data, and it is shown to be A.P.O. and

asymptotically Bayes for a large class of prior distributions.
2. Formulation and main results

Let Xj, X2,--- be a sequence of independent and identically distributed (i.i.d.)

random variables with density function
1 T
fo(z) = Eexp(—a), z>0,0>0.

Suppose that § has a continuous bounded density with respect to Lebesgue measure
such that E(0%) < oo. It is desired to estimate the conditional mean of Xy, Es(X,) =

f, subject to the loss function
(6n(X1, -, Xn) =0 +cn, ¢>0,

if one stops with first n observations and estimates & by §,(X;,--+, X.,.). The goal is

to minimize the Bayes risk over all stopping rules and over all estimators.

"1t is well known that for any stopping rule ¢, the Bayes risk is minimized by
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the posterior mean of 0, that is 6, = E(8|F), where F, = (X, -+, X,) for each
n 2 1. Therefore the Bayes risk of a sequential procedure (¢, E(8|F;)) is equal to
E(Var(8|F;) + ct). Hence, finding an optimal sequential procedure for this problem
is equivalent to constructing an optimal stopping rule for the sequence {Z,,n > 1},

where
Zy =Var(0|F,) + cn.

It follows from Theorems 2.1 and 3.1 of Bickel and Yahav (1967) that the A.P.O.
rale is U = inf{n 2 1 : Var(8|F,) < nc}, ¢ > 0. It means that, for any stopping
rules {s.,¢ > 0}, we have

Zy,

Iim <1 a.s.
c— se

In view of E(Var(8|F,)) < E(6*)/n, we know from Theorem 3.1 of Bickel and
Yahav (1968) that the A.P.O. rule U, is asymptotically Bayes, that is,

E(Var(8|Fu.) + cle) = inf E(Var(0|F,) + cs) + o(\/c)
= 2\/cE(#) + o(v/c) as c— 0,
where the infimum extends over all F, -stopping rules s.

The A.P.O. procedure (U,, E(0|Fu.)) depends on the prior distribution of 8, which

is sometimes unknown or misspecified. Hwang (1997) suggests the stopping rule
T.=inf{n >3: X} < cn?}, ¢>0,

where X, = % ™1 Xi, and estimate 8 by Xr.. The stopping rule T; and the se-
quential procedure (T, Xr1,) are respectively shown to be A.P.O. with respect to
{Z.,n > 1} and
‘ E{(X1, = 0)* +cT.} = 2/cE(0)+ 3c+ o(c)
= inf E(Var(0|F,) + cs) + o(/c) as ¢ — 0.
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Here it is shown that the first order efficiency may be obtained by procedures that
take observations in two stages. The procedure studied, by means of the definition
of T., takes an initial sample of size ny = ng(c) = [6c™*] + 1 for some § > @ and for

some ) < a < %, then a second sample to bring the total sample size to
N, = max{ny, [C_-;_Xno} + 1},

where [z] denotes the integer part of z. So we propose the two-stage procedure
(M., Xn.) instead of the sequential procedure (7., X7.). The proposed two-stage pro-
cedure is simnilar to those introduced by Ghosh and Mukhopadhyay (1981) and Hall
(1981) for sequential point and interval estimation and sequential interval estimation,

respectively, within the classical non-Bayesian framework.

Since /¢cN, — 0 a.s. and /cT, — 8 a.s., we have %}‘: — 1 a.s.. From this fact,
N, is also A.P.O. with respect to {Z,,n > 1}. On the other hand, the following
theorem tells us that the two-stage procedure (N, Xy.) is also asymptotically Bayes

for a large class of prior distributions.
Theorem If E(X}) < o0, then E{(Xn, — 8)® + cN.} = 2\/cE(8) + o(,/c) as ¢ — 0.
3. Proofs

We will now develop some auxiliary results on uniform integrability and apply

these results to prove the main theorem.

Lemma 1 If E(X7) < oo for some p > 1, then {(y/cN,)?,c > 0} is dominated by an

integrable random variable.

Proof: Using the definition of N, we have

(VN

il

(\/ENc)Pl{N;=[c"%Xnol+1} + (VeNe) 1 (N =np)
(Xno + Veno) + (Veno)?
: < M{sup(X.) +1}

n>1

A




for some finite constant M > 0, where 14 denotes the indicator function of A.
By noting that {X,,o(Xi, k > n);n > 1} is a reverse martingale and using Doob’s

inequality,

B{sup(X.)?} < (=25)E(X]) < oo.
n>i r—1

This completes the proof of the lemma.

Lemma 2 If E(Xlg) < o0 for some p > 2, then {|ct Y — 1), ¢ > 0} is uni-
formly integrable.

Proof: We first note that Lemma 5 of Chow and Yu (1981) also holds if the filtration
F. =a(Yy, --,Y,) is replaced by a filtration G, such that F, C G, for each n > 0,

and G, and o(Y,4,) are independent. {The setting in Lemma & of Chow and Yu
(1981) is used here.)

QObserve that 0, %L, %1, .-+ are independent, and the %i are exponentially dis-
tributed with mean 1. The assertion thus follows from o(X;,- -+, X,,) C (9, —)%l, -, Zay

and the fact that N, are o( X, -+, X, )-stopping times.

Lemma 3 Assume that E(X}) < oo for some p > 0, then {(ﬁ%&)“”,c > 0} is

uniformly integrable.

Proof: Let random variables # and X, X;,--- be defined on a probability space
(Q,F,P). Let P, : B x 2 — [0,1] be a regular conditional distribution for
X = (X1, Xy, ++) given o(8) such that for each w € Q the coordinate random vari-
ables {£,,n > 1} of probability space (R®,B%, Py(:,w)) are i.i.d. and for almost all
w € §) the £, are exponentially distributed with mean 6(w).

Let ¢ = (w1,s,---) and we define s, = max{no,[c"7&,] + 1}, ¢ > 0, where

£ng = nlj; Yoro, & Note that
E(X1|0)(w) = fR _ a1 Py(de,w) = B¥E = 0(w) as.
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Var(X:10)(w) = ij x?Py(dz,w) — (./Rm z, Py (dz, w))? = Var“g, = 0*(w) as.,

where E™ and Var" denote respectively the expectation and variance with respect

to Px(-, w). i

e
Let 0 < v < 1. Using Markov’s inequality, for almost all w € Q

Py({Ves. <7E“£1},w)
Py({Vellem8a,) +1) < YE“6),w)
Py({ezp(—t&) > exp(—tvE6)},w)
exp(tyE ¢} E” (exp(~t&n,))
cop{-nafln(1 + - B6) - —yE*4))

FANRE VARSI P

i

for all £ > 0. Then, by minimizing ezp{—no(In(1+ ;};E‘”{l) - ;fo—F}rE‘”fl)} with respect
tot >0,

Py({Vese < vE¥6,},w) < exp(-no(y — 1 = Iny)) < ezp(—ke™), (1)
where k = §(v -1 - lnvy) > 0.

It follows from the properties of regular conditional distributions and (1) that

veN.

E{( 0 )—pl{\/ENCOrB}} < EEW{(Ew&)pcﬂgl{ﬁxc‘(?E‘”él}}_
< ¢ Feap(—ke ) E(07) = of1), (2)
and
Ne. _ w
P21 oy > €) < BPy({Gse < 75762), 0)
< exp(—ke™?) = o(1) ' (3)

for all € > 0. Combining (2), (3) and E{(%’Yﬁ)‘(p‘“)l{ﬁmzw}} < {«"‘”*’”, we obtain

that {(@-‘3)"’, ¢ > 0} is uniformly integrable. The lemma thus follows.
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Proof of theorem:

The random variables £;, the probability measures Px(-,w) and the stopping times
s. are the same as those described in the proof of Lemma 3. Using the properties of
regular conditional distributions, Anscombe’s theorem and the bounded convergence

theorem, for any y € R
limeoP{c"1(Xyn, — 0)* < v}

= lim.oEPy({c"3(é,. — E*6)? < y},w)

= l c—+ 3
151 oEP,zg({( \/W,T—E ) \/Esc __?}} w)

where Fyz denotes the chi-squared distribution function with one degree of freedom.

Therefore

Xy~ 0 P F, (4)
where —2+ means weak convergence and F' is the limiting distribution defined by
Fly) = EFa(}) for ally € R.

In view of

Ne y.
H(Rn, = 07 = (e LA~ D

i=1

VeN. ., '
T) 3 (5)

one obtains the uniform integrability of {¢"7(Xn, —~0)?, ¢ > 0} by Lemmas 2 and 3.
Combining (4) and the uniform integrability of (5), we have
E(Xn, — 0)' = eE(0) + o(/c). (6)

It is easy to see that \/cN, — 0 a.s.. Together with the uniform integrability of

{+/€N,,c > 0} assured by Lemma 1, one obtains
E(eN.) = VEE(0) + o{/2). ")
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Combining (6) and (7), we have
E{(Xw, — 0)* + cN,} = 2V/GE(0) + o{v/2).
The proof is thus complete.
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