行政院國家科學委員會專題研究計畫成果報告

計畫名稱:完全雙分圖的分割的研究

計畫編號: NSC 88-2115-M-032-003

執行期限: 87年8月1日至88年7月31日

主持人: 高金美

E-mail: cmfu@mail.tku.edu.tw

執行機構及單位名稱:淡江大學數學系

Research on the decompositions of complete bipartite graph

一、中文摘要

- (a)當 m ≥ 4, n ≥ 6 且 m, n 均為偶數時 *Km*_m 為(p, q, r)-可分解;
- (b)當 n 為奇數時, $K_{n,n}$ F 為(p,q,r)-可 分解,其中F代表 $K_{n,n}$ 中的 一組完全配 對(perfect matching);
- (c)當 $m \ge n \ge 4$ 時 $2K_{m,n}$ 為(p,q,r)-可分 解.

(d)

關鍵詞: 完全雙分圖, (p,q,r)-可分解

Abstract

Let $K_{m,n}$ be the complete bipartite graph, C_r be an elementary cycle of length r, and $2K_m$ be the 2-fold complete bipartite graph. A graph G is (p,q,r)-decomposible if G can be decomposed into p copies of C_4 , q copies of C_6 , and r copies of C_8 for each triple p,q,r of nonnegative integers such that 4p + 6q + 8r = |E(G)|, in the following two cases:

- (a) $G = K_{m,n}$, if $m \ge 4$, $n \ge 6$, and m, n are even
- (b) $G = K_{n,n} F$, where F is a 1-factor, if n is odd.

(c) $G = 2K_{m,n}$, if $m \ge n \ge 4$. **Keywords:** complete bipartite graph, (p,q,r)-decomposible.

I. Introduction

Let $K_{m,n}$ and C_k denote the complete bipartite graph and the elementary cycle of length k. By a *decomposition* of a graph G we mean a partition of its edge-set E(G). If a graph G can be decomposed into p copies of C_4 , q copies of C_6 and r copies of C_8 , then we write G= $pC_4 + qC_6 + rC_8$. We assume throughout the paper that $p,q,r \in \mathbb{N} \cup \{0\}$, the set of nonnegative integers.

Decompositions of K_n and $K_n - F$ (that is, K_n minus a 1-factor) into cycles of different lengths has been investigated several times [1,3,5]. Decompositions of $K_{m,n}$ into cycles of length 2k were considered in [6]. In this project, we show that $K_{2m,2n} = pC_4 + qC_6 + rC_8$ whenever $m \ge 2$, $n \ge 3$, and 4p + 6q + 8r = 4mn, $K_{2n+1,2n+1} - F = pC_4 + qC_6 + rC_8$ whenever $n \ge 1$, and 4p + 6q + 8r = 2n(2n+1), and $2K_{m,n} = pC_4 + qC_6 + rC_8$ whenever $m \ge n \ge 4$, and 4p + 6q + 8r = 2mn, by using recursive construction

For convenience, we make the following definitions:

$$D(G) = \{(p,q,r) | p,q,r \in \mathbb{N} \cup \{0\} \text{ and } G$$

= $pC_4 + qC_6 + rC_8\}$

and

$$S_i = \{(p,q,r) | p,q,r \in \mathbb{N} \cup \{0\} \text{ and } 4p + 6q + 8r = i\},$$

for each positive integer i. Then clearly

 $D(G) \subseteq S_{|E(G)|}$, and we can state our main theorem as follows.

Main Theorem. Let m and n be positive integers. Then

(a) $D(K_{2m,2n}) = S_{4mn}$ if $m \ge 2$, $n \ge 3$, while $D(K_{4,4}) = S_{16} \setminus \{(2,0,1)\}$;

(b) $D(K_{2n+1,2n+1} - F) = S_{2n(2n+1)}$, where F is a 1-factor in $K_{2n+1,2n+1}$.

(c) $D(2K_{m,n}) = S_{2mn}$ if $m \ge n \ge 4$.

II. Reference.

- D. E. Bryant and P. Adams,
 Decomposing the Complete Graph
 into Cycles of Many Lengths,
 Graphs Combin., 11 (1995), 97-102.
- C.-M. Fu and W.-C. Huang,
 Decompositions of K_{m,n} into
 4-cycles and 8-cycles, Tamkang J. of
 Math.
- K. Heinrich, P. Horák and A. Rosa, On Alspach's Conjecture, Discrete Math., 77 (1989) 97-121.
- 4. K. Heinrich and G. Nonay, Exact coverings of 2-Paths by 4-Cycles, J. Combin. Theory Ser. A, 45 (1987), 50-61.
- J. L. Ramìrez-Alfonsin, Cycle Decompositions of Complete and Complete Multipartite Graph, Australas. J. Combin., 11(1995), 233-238.
- D. Sotteau, Decompositions of K_{m,n}
 (K_{m,n}*) into cycles (circuits) of length 2k, J. Combin. Theory Ser. B, 30 (1981), 75-81.