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Abstract

Let p: G ----2> GL((n, F) be a
representation of G.  We shall study the
ring of invariants F[V]° in the case when
the characteristic of F divides the order
of G.  We shall specially consider the
case when order of G is a prime power.
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For a representation p: G ----=
GL((n, F) of a finite group G over the
field F, we have an induced action on the
algebra F{V] of polynomial functions on
V = F*. F[V]® denote the ring of
invariants.

In the nonmodular case, i.e. when
the order of G is relatively prime to the
characteristic of f, the ring F[V]® is
known to be Cohen-Macaulay [HE, S1].
Chevalley-Shephard-Todd Theorem also
tells us that in this case F[V]% is a
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polyromial ring if and only if G is
generated by pseudo-reflections  [Ch,
STI.

Invariant theory in the modular
case is not well-developed and
organized. In fact apart from the basic
finiteness theorem of Noether and
Hilbert's syzygy theorem, all the nice
features of the nonmodular case can and
do fzil in the modular case.

In the modular case, the Dickson
algebra provides a source of universal
modular invariants. Actually, the
Dickson polynomials are present in any
ring of invariants in characteristic p.
One way to study a ring of invariants in
characteristic p is to regard it as an
integral extension of the Dickson
algebra.

Besides Dickson algebra, one can
introduce  Steenrod algebra . It
orgenizes information derived from the
Frobenius homomorphism. It also
provides a mean of constructing new
inveriants from old ones and imposes a
rigil structure on modular rings of
imvariants.
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Let F, denote the Galois field, q =
p". GL(nF)) is a finite group of order
(@™1)(q"-q)...(q"-q"") acting on V = F".
Dickson algebra D*(n) is the ring of
invariants F [V]®®® [D]. For any
finite group G acting on V, the ring of
invariants Fq[V]G is a finite extension of
F[V]®F. We shall first give some
theorem involving the modular case and
then we shall give some examples.




Theorem (Dickson). Suppose n €
N, p a prime, ¢ = p® and V = Fy.
Then

D*(n) = F,[V]CEMF) > F oy, ..y

where deg(y;) = q" — q"* for i =

1,...,n.

The polynomials y; can be found ex-
plicitly.

Theorem (Stong-Tamagawa). [S-T)
Letn € N, p be a prime and q a power
of p. Then

D*(n) =Fyldno, ..., dnn-1]

where

dn,i = Z H v
}

V<V g
dim(W)=1i

The polynomial d,, ; has degree q" —q'.

The classes d,, ; are called the Dick-
son polynomials. '

In the case of p-group P in charac-
teristic p, the fixed point set VF # 0.
The higher the dimension of this fixed
point set is, the simpler the action is.
Also in the modular case, the ring of
invariants F[V]¢ need not be Cohen-
Macaulay. The Cohen-Macaulay prop-
erty of F[V]¢ is in fact controlled by
the p-Sylow subgroup of G.

Theorem. Let F be a field of char-
acteristic p # 0 and p :— GL(n,F)
a representation of finite group G. If
F[V)# is Cohen-Macaulay, so is F[V]¢
where H is a p- Sylow subgroup of G.

To construct invariants, we shall in-

troduce orbit polynomials and orbit Chern

classes.

Definition. Let G be a finite group
acting on a set X. A subset Y C X
is said to be invariant if g -y € Y for
aly e Yand g e G. If BC X is
invariant and G acts transitively on B

(ie. Vb,b' € B3g € G such that g-b =
b').
Let V be a finite dimensional G-

representation, G a finite group. For
an orbit B C V* set ‘

vp(X) = [[(X +b)

beB

which we regard as an element of the
ring F[V][X]. ¢p(X) is called the or-
bitm polynomial. It is clear that pp(X) €
F[V]®[X]. In fact, we can define vp(X)
as above to get an element in F[V][X].
If Bis invariant, then pp(X) € F[V])¢[X].
If the subsets B and B’ are disjoint,
then pp(X)  0p(X) = ppup (X).

If | B| denotes the cardinality of the
orbit B, we may expand pg(X) to a
polynomial of degree |B| in X obtain-
ing

i+j=|B|

defining classes ¢;(B) € F[V]% called
the orbit Chern classes of the orbit B.
Note that F[V] is integral over F[V]¢
of finite type and for v € V* the or-
bit polynomial ¢g.,(X) is the mini-
mal polynomial of the element —v over
F[V]©.

Remark. 1. The first orbit Chern class
c1(B) is the sum of the orbit elements
and hence c¢;(B) = Tr%/Ge(b) where
b € Bisarbitrary and G, si the isotropy
group of b.

2. If k = |B|, then cx(B) is the
product of all the elements in Band
referred to as the top Chern class of
the orbit. It is also referred to as the
norm of b and is multiplicative.

3. The Chern classes of the orbit
are nothing but the elementary sym-
metric polynomials in the elements of
the orbit.

Definition. F[V]¢ is said to satisfy
the weak splitting principle if there are



a finite number of orbits whose orbit
Chern classes generate F[V]C. If a sin-
gle orbit suffices then we say that F[V]¢
satisfies the splitting principle.

Example 1. Consider the subgroup
of GL(2,F3] generated by the matrices

0 1 -1 1,
=ho) e[

Set
1 1
coana]l 1]

One readily check that
A*=B*=C%=—J

~where I is the identity matrix. Hence

this subgroup is isomorphic to the quternion

group (g of order 8. One can check
that Qg acts transitively on F2. Thus
the only orbits are {0} and V* — {0}
and the only Chern classes are there-
fore

zyd — 29

;?;3—_2%) (zy® — z°y)?
where {z, y} is the dual of the canoni-
cal basis of F2. These polynomials are
of degree 6 and 8. However, 1 + y? is
invariant, hence the Chern classes can
not generate F3|z,y|9s.

Example 2. The group G = GL(2,F,)
is a non-abelian group of order 6, hence
1s isomorphic to S3. It acts on V =
F3. There are two orbits for the ac-
tion namely, {0} and V — {0}and anal-
ogously for the dual space V*. If {z, y}
is a basis for V* then the Chern class
of V* — {0} are

0 fori =1

;=< 22 +ay+y? fori=2

ry® + 22y fori =3
as they are elementary symmetric poly-
nomials in the elements x.y and = 4y
of V* — {0}. The classes ¢;, cy are al-
gebraically independent, so Fo[V]% D
Faolz? + zy + y?, 2%y + 23?). In fact,
they are equal because of the follow-
ing theorem:

Theorem. Suppose G — GL(V) is a

finite dimensional representation of a

finite group G and F[V]9 contains el-

ements fy,... f,, n = dimp(V) such

that deg (fi) ..., deg(fn)= |G|. If

f1,- ., fn are system of parameters then
F[VI® 2 F[f1,..., fa].

Example 3. Fix a prime p and let
m|p — 1. The dihedral group Doy, =
Z/m x Z/2 of order 2m has a faithful
representation of dimension 2 over F,
given by the matrices

6 0 01
[0 G—I}v[l O]EGL(Q)IFP)

where 8 € F, is a primitive m — th root
of unity. Let {u, v} denote a basis for
V = ]F?, with respect to which the gen-
erators of D, have the above form.
One can see that

Fp[V]P2m ~ Flpy, po]
where
pL=uv, py=u"+ ’Um

are possible choice of polynomial gen-
erators. Let B be the orbit of u + v.
The orbit polynomial of B is

p(X) = [[(X + 6w+ 0770).

i=1
To compute this polynomial, we let
a(u,v) := (utv)" —(u"+v™) € Fplu, v].

Note that a(u,v) is invariant with re-
spect to the involution that interchanges
u and v. Therefore, it is possible to
write a(u,v) as a polynomial in the
slementary symmetric functions e, =
u+ v and ey = uv. Taking account of
homogeneity we see that’

— § i1 12
o = Qi€ €37,

11 +2i9=m



where a;,;, € F,. Since a(u,v) does
not contain the terms u™, v™ it follows
that 7y < m, so we may rewrite this
formula in the form

m/2]

m2]]
a—Eb] 2

where b; € F, and [m/2] denotes the
integral part of m/2 After calculation,
by = m # Omod p. Computing further
we obtain

a(u,v) = (u+v)™ — py

m/2]
— Z b em 23 ]
m/2] . ‘
= Z by (u + v)™ " (yp)?
Jj=1
m/2|

=Y bllut o
Jj=1

which yields the identity

(*)
[m/2]

(utv)™ Z b]/’l(“+1) MM —py =0
=1

Let

/2]
h(X) = X" = (Y bip] X™%) — p,

i=1

€ Fplu, v)P2 [ X]

The identity (*) shows that h(u+v) =
0. The coefficients of A(X) are invari-
ant with respect to the action of Dy,
s0 Dy, acts on the roots of h(X) in
- Fylu,v]. Hence h(X) is zero on the el-
ements of the orbit Dy, - {# u+9“’v}
But the degreeof h(X) is m = = |Dy,, -
(u+v)| and h(X) is monic, hence h(X) =
©D2m.(u4v)(X), the orbit polynomial
of Dy, - (w+v). From this we read off
the Chern classes of the orbit of u -+ v,
in particular, we have

C?i(DQm : (“ + U)) =
- -1
— bipj forl <1 [*—m ]
2
b[m/2][)[1m/2] —pg fori= [%]andmodd

— pa fori = [%—]andmeven

0 otherwise

since by = m # Omodp it follows that
22( Doy - (w + v)) and cm(Dam - (u +

7))generate the ring of invariants, so
I7p[V]P2 satisfies the splitting princi-
ple.
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