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Abstract

Keywords:Blumnberg Property, weak Blumber Property, metric

spaces, nomnetrizable spaces, real-valued functions, continuous functions

In this work we investigate the real-valued functions and research wlat
kind of domains are good for Blunberg property. Through the metric
spaces, we try to figure out how those properties will work on the non-
metrizable spaces. We wish to classify the non-inetrizable spaces to be with

Blumberg's property or to be without the Blumberg property.



1. Introduction
Continuity is very useful in Mathematics and in sciences. We investi-

gate the variants of Blumberg’ theoremn that

(A) For every f : X - R, there exists D C X, D dense in A, such that
flD is continuous. |

(B) For every f : X — R, there exists W C X, W is {3-dense in X', such
that f|W is pilecewise discontinuous.

(C) For every f: X — R, there exists D C X, D is w-dense in X, such
that f|D is continuous.

(D) For every f : X — R, there exists W C X, W is n-dense in X, such
that f|W is piecewise discontinuous.
Also we investigate those spaces are not satify the Blumberg’s property.

Finally, we try to work out on non-metrizable spaces.

2. Metric spaces

Theorem 2.1. For every f: X — R, there exists D C X, D dense in X,

such that f|D is continuous.

Property 2.2. For every f : R? — R, there exists D C R?, D dense in

R?, such that f|D is continuous.

Property 2.3. For every f : X —~ R, where X is any comnplete metric

space,there exists D C X, D dense in X, such that f|D is continious.

Theorem 2.4. Forevery f : X — Y, where X is a 2ud countable Hausdorff
Baire space and Y 1s a 2nd countable Hausdorff space, there exists D ¢ X,

D dense in X, such that f|{D is continuous.
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Property 2.5. Forevery f: X — Y, where X and Y are Euclideau spaces,

there exists ) € X, D dense in X, such that f|D is continuous.

Theorem 2.6. Theorem 2.1 holds for metric spaces if and only if X is a
Baire space. For every f: X — Y, where X and Y are Puclidean spaces,

there exists D C X, D dense in X, such that f|D is contimious.

Definition 2.7. A setis called a Lusin set if it has no uncountable nowhere

dense subset 1 it.

Theorem 2.8. For every f: X — R, there exists W C X, W 15 Q2-dense

in X, such that f|W is piccewise discontimious.

Theorem 2.9. For every f : X — R, there exists D C X, D is omega-

dense in X, such that f|D is continuous.

Property2.10. Theorem?2.9 holds for a separable metric space X if and

only if X is uncountable.

Theorem 2.11. Forevery f : X — R, there exists W C X, W is n—dense

in X, such that f|W is piecewise discontinuous.

3. Non-metrizable spaces

Definition 3.1. Let R be a binary relation between open sets and eleinents,
let U be an open subset of a topological space X and x be an element of
X. URp means that the open set U has the relation R to the element p.
The relation R is closed, if, for every subset A of X, the relationships URs
for all s € A and p € A imply URp.
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Definition 3.2. A partial newghborhood, denoted by N, of p is an open

set of which p is an interior or a boundary element.

Lemma 3.3. If R is a closed relation, then the elements p for which
(a} NRp for every open neighborhood N of p, and
(b) a partial neighborhood N of p exists such that N Rp is false, consti-

tute a nowhere deuse set.

Proof. Let M Dbe the set of elements which satisfy conditions (a) and
(b). Given p € M. According to condition (b), there exists a partial
neighborhood N, of p such that N Rp is false. By assumption that R is
closed, there exists an open neighborhood B of the given p such that NoRq
is false for all ¢ in B. It implies that NV -Rg* is false for all ¢* 11 BN N,
N 1s an open neighborhood of ¢*. By condition (a), ¢* is not an element
of M for every ¢* in BN N. That is, there exists a partial neighborhood
M. = BN N, of psuch that M. and A are disjoint. Thus, M is nowhere

dense.

Lemma 3.4. Let X be any topological space and f : X — R be any
real-valued function defined on X. We define as follows the relation R, ..,
where #y and vy are any two real numbers and vy < ry: If p is an element
of X and U is an open subset of X, then UR, .. p if and only if p € U and

an element g of U exists such that r1 < f(q) < ro. Then R ts closed.

LA ]

Proof. Given a subset A of X. If p € A and UR,, S for all sin A, then by
the definition of /R, ,, 5, an element g of U/ exists such that »; < f(q) < ry
and s isin U for all sin A. Thus A c U. pisin A so pin U. By the
definition of Ry, ,,, U, ., p. Hence, R, ., is closed.

Let Q be the set of all rational numbers in R. And let N be the set of

all natural nmumbers.



Lemma 3.5. If f is a rcal-valued function defined on a topological space
X, then for every pair of rational numbers ry,ry where r, < rq, the elements
p of X for which

(a) NR,,.,p for every open neighborhood N of p, and

(b) NcR,. ., p is false for some partial neighborhood N of p,

constitute a nowlere dense set, say, 1y ,,. Thus, U EQT’"l r, 15 of the

first category.

Proof. By Lemma 3.3 and Lemma 3.4, we know that 75 ,, is nowlere

172
dense. U QTrr 18 countable union of nowhere dense sets. Therefore,

it is of the first category.

Definition 3.6. A function f: X — R is densely approached at p of X if
and only if for each ¢ > 0 there exists an open neighborhicod N of p such

that the elements q of N for which |f(q) — f(p)| < € form a dense set in N.

Definition 3.7. A subsct of a topological space 1s residual if its comple-

ment is of the first category.

Theorem 3.8. For every real-valued function f : X — R where X is a
topological space, the elements z of X at which f is densely approached

constitute a residual set.

Proof. We have to show that the set of elemnents p of X at which f is not
densely approached is of the first category. If f is not densely approached
at p, then there exists a positive number € such that for every open neigh-
borhood N of p, N f~1(f(p) — €, f(p) -+ €) is not dense in N. For each
open neighborhood N of p, there exists an open set Uy such that Uy NN is
nonempty and |f(gy )= f(p)| 2> eforallgy in UyNN. Let U = Uy (UyNN),
then U is a partial neighborhood of p and | f{q)— f(p)| > eforall g in /. Let
ri and 73 be two rational numbers with f(p)—e < r; < f(p) < re < f(p)+e
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Then UN,,,, pis false and MR, ., p for all ucighborhood A of p. Therefore
p is an element of 7, ,, (It was defined in Lenuna 2.5). U, . ean py 18 Of

the first category. Thus, the theorem holds.

Definition 3.9. A function [ : X — R is exhaustibly approuched at p of
A if and only if an open neighborlhood N of p and a number € > 0 exist
such that the set of elements g of N where |f(gq) — f(p)| < € is of the first
category. And if f is not exhaustibly approached at p then we say that f

15 tnexhaustibly approached at p.

Theorem 3.10. Ffor every rcal-valued function f : X —R where X is
separable, the set constituted Dy elements x of X at which [ is exhaustibly

approached is of the first category.

Proof. Let S,,, = (r — % r - ?1—1) where r € Q, n € N. If f is exhaustibly
approached at g, then there exist a positive number € and an open ncighbor-
hood Ny of g, such that =1 (f (¢) — e, f{g) + €INN, is of the first category.
Let’s pick the set S, such that f{g}) € 8., C{(f{g) —€. f{g)4¢€). Then
S (Sen ) NN, is of the first category. Let F,,, = {z € f~1(Smm) | a neigh-
borhood N, of 2 exists such that f~! (S,,) N N, is of the first category}.
Then the countable union of F,,, where r € Q and n € N is the set of all
elements at which f is exhaustibly approched. Now, it is sufficient to prove
that every I, is of the first category.

Given F.,,. X is separable, i.e. X has a countable dense subset, say,
P = {p; | i € N}. For each & in E,,, there exists an open neighborhood NV,
of x such that f=1(5,,)NN, is of the first category. P is dense. So, for cach
Ny, there exists an elcment p; of P such that p; belongs to N,. Let &, =
{N, | pi € N.}. Take an element M; from each nonempty family &;. Then

we claim that ., \ (U;34;) is nowhere dense. We prove it by contradiction.

Suppose that the clain is not true. Then &,., \ (U;A4;) contains a nonempty
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open subset U. Pick an element y from the set U N (E,., \ {(U;M;)). Then
N, N U is an open neighborhood of y. This implies that there exists an
element p; of P such that py is in NV, NU. & is nonempty and pg belongs
to U;M;. Thus, px belongs to U N (U; M;). Since U; M; is open, X \ (U; ;)
is closed. U C E \(U;M;) C X\ (U;M;) = X\ (UM;). Thus, U N
(U;M;) 1s empty. 1t contradicts to that pp belongs to U N (U, M;). Hence,
Ui (f 71 (Spn) MM} U(Epn \ (UiM;)) s of the first category. Also,

By = By (U Mi> U (E v Mi>

C S (U ﬂii) g (En \Lz-JMi)
_ U ( “1(5..) QM,-) U (E \LfJM) .

We have that #,,, is of the first category. Hence, the theorem holds.

If M is a subset of X, we shall use, in connection with approach, the

expression "via M” to indicate that p is restricted to range in A.

Definition 3.11. A function f is inexhaustibly approached at p via M if
for each open neighborhood N of p and eacl positive number €, the set of
elements g of N N M where [f(p) — f(q)| < € is of the second category;

otherwise, [ is exhaustibly approached at p via M.

We know that if A is of the fivst category, then cvery subset of 4 is also
of the first category. Thus, if f 1s exhaustibly approaclied at p, then f is
exhausiibly approached at p via M. On the other hand, if f is inexhaustibly

approached at p via M, then f is inexhaustibly approached at p.

Definition 3.12. A function f is densely approached at p wia M if and

only if for each € > 0 there exists an open neighborhood N of p such that
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the elements q of M NN for which | f(p) — f{q)| < € form a dense subset of
MNON.

Definition 3.13. If A is a subset of the topological space X and if x
i1s a point of X, we say that x is a lmit of A if and only if every open

neighborliood of x intersects A 1n somne element other than x 1tself.

Lemma 3.14. Let [ be a real-valued function defined on a topological
space X and p be an element of X. If M is a subset of X such that p is a
Linit of M, the following statements are equivaleiit.

(1) f:X — R is densely approached at p via M.

(2} For every partial neighborliood N of p such that No N A has p as a

Iinit, the set
(Ne ﬂf), = {{z, f(l))ll e Nonif}
has p’ = (p, f(p)) as a limit.

Proof. We prove it by contradiction. (1)=(2). Suppose that statement (2)
does not hold. That is, there exists a partial neighborhood N of p such
that pis a limit of No N A and p’ = (p, f(p)) is not a limit of (N N AMY.
Then there exist a positive number € and an open neighborhood U of p such
that U N NN M is nonempty and [f(p)— flg)] 2 eforallg in UNN-NM,
g # p. By asswunption and statement (1), there exists an open neighborhood
N of p such that the set of elements ¢* of M NN for which |f{g™)— f(p)| < ¢

is dense 11 AMf N N. Now,

CNM(YM(\N) = U(N (M [\ &

is nonempty and is open in A N N. Furthermore, |f(p) — f()] > ¢ for all
elements r of (U N N) N (M N N) where r is distinet from p. It contracdics

that f is densely approached at p via M. Hence, statement . (2) holds.
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(2)=>(1}. Suppose that statement (1) does not hold. That is, there
exists € > 0 such that for each open neighborhiood NV of p there exists an
open set Uy such that Uy N {M NN} is nonempty and |f(p) — f(a, )| > ¢
for all elements ., of Uy N (M NN). Let U = Uy(Uny N N). Then U is a
partial neighborhood of p, and |f(p)— f(z)| > € for all elements & of N AL,
Therefore, p" = (p, f(p}) is not a limit of (UNM)" = {(x, f(2)})|z € UNAM}.
Since VN AM has p as a limnit, it contradicts statement (2). Hence, statement

(1) holds.

Theorem 3.15. For every real-valued function f defined on a separable
Haunsdorff space X, there exists a residual subset .S of X such that if p Is
an element of § then the function f is inexhaustibly ,and therefore densely,

approached at p via S.

Proof. Let I} be the set of elements at which f is exhaustibly approached,
and let S| = X \ Ey. By Theorem 3.10, we know that Ey is of the first
category. Then S| is residual and f is inexhaustibly approached at the
clements of §;. That is, if ¢ is an element of Sy, then for each € > 0 and for
cach open neighborhood N of g, there exists a suthset A of NV such that Af is
of the second category and |f (z)—f (g) | < eforallzin M. MNS| = M\ E|
is of the second category since M N E| 1s of the first category and A is of
the second category. Thus, f is inexhaustibly approached at the elements
of 51 via 5;.

Casel. Suppose that f is bounded. Then there exists a real number &
such that & > sup{f(z)|z € X}. Let’s define a function g: X — R by:

- {0 Ezea

Then, by Theorem 3.8, the elements of X at which g is densely approached

constitute a residual set, say, S,. For every element r in £| and for every
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sin Sy, g{r)—g{s) > k — sup{f(a)|lz € X} > 0. g is densely approached
at the elements of S§; NS, via S1. f is densely approached at the elements
of S; NS, via 5;. Furthermore, S, N S = (S; USf)c = X\ {55 USP)
is a residual set since Sy and Sy are of the first category. It follows that
the elements of Sy at which f is densely approached via 5| constitute a
residual set, say, §. Let By = S; \ S. Then X = By U Ey US. It iinplies
that E3 is of the first category. For every element p of S. f is inexhaustibly
approached at p via S since Fy is of the first category and f is inexhaustibly
approached at the elements of 57 via S|. Also, f is densely approached
at p via S;. For every partial neighborhood N of p, if p is a limit of
NN S then p is a limit of N N5, By Lemma 2.14, 1t implies that
p' = (p, f(p)) i1s a limit of (N N 51) = {(z, f{X})lz € No NS1}. That is,
every open neighborhood of p' intersects (N. N.S;)’ in some element other
than p’ itself. For each € > 0 and for each open neighborhood N of p, there
exists an element which is distinct from p, say, p* such that p* belongs to
NN(NcNS)) and |f(p*) — f(p)| < /2. It follows that f is inexhaustibly
approached at p* via S since p* belongs to S; and 5, \ S = E3 is of the first
category. X is Hausdorff so {p} is closed. It follows that (VN NN} \ {p}
is an open neighborhood of p*. Thus, a subset M of (N NN NS)\ {p}
exists such that M is of the second category and for every elements ¢* of M,
|f(g*)— f(p*}| < €/2. By triangle inequality, we have that |f(¢*)— f(p}| < €
for all ¢* in M. We can pick an element g from M such that ¢ is distinct
from p, g € NN NN S and |f(q) — f(p)| < e. It implies that p is a limit
of (Ne N S). Hence, f is densely approached at p via S.

Case2. Suppose that f is unbounded. We define a function f: X —
R by f(z) = f(2)/(1 + [f(x)]). Then f is bounded and the propertics of
densely approach, exhaustibly approach and inexhaustibly approach of f

are preserved by f. Thus, the proof is done.
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Corollary 3.16. For every real-valued function f defined on a separable
Hausdorff Baire space X, there exists a dense subset S of X such that if p
is an element of S and N is a partial neighborhiood of p then the function

f is inexhaustibly approached at p via SN N..

Proof. By Theorem 3.15, there exists a residual set S of X, such that if
p is an element of S, then f is densely approached at p via S. That is, if
M, is a partial neighborhood of p such that p is a limit of M, NS, then
P = (p, f(p)) 1s a limit of (M. NS) = {(z, f{z))|xz € Mc NS} Given a
partial neighborhood N of p, N\ {p} is open since X is Hausdorff. The
assumption that X is a Baire space implies that S is dense. So, p is a limnit
of No NS, Tt follows that p’ is a limit of (N. N S)'. So, for each open
neighborhood N of p and for each € > 0, there exists an element p* whicl is
distinct from p such that p* belongs to NN NS and | f(p*) - f(p)] < /2.
p* belongs to S, hence, by Theorem 3.15, f is inexhaustibly approached at
p* via S. Since N.NN is an open neighborlhood of p, there exists a subset M
of NeNNNS such that M is of the second category and | f(p*)— f(q)] < €/2
for all g in M. Tt implies that |f{g) — f(p}| < e for all ¢ in M. Thus, f is

inexhaustibly approached at p via No N S.

Definition 3.17. We say that X s a weak Blumberg space or X has weak
Blumberg property if and only if for each real-valued function f defined on
X, there exists a dense subset D of X such that if p is an element of D
then for each € > O there exists an open neighborliood N of p such that the
elements ¢ of DN N for which |f(p) — f(q)] < € constitute a dense subset
of DN N,

Theorem 3.18. Every separable Hausdorff Baire space has wealk Blun-

berg property.
Proof. We know that every residual set of a Baire space is dense. Hence,
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Iy Theorein 3.15, the theorem holds.
Example 3.19. [0, I]QNO is a weak Blumberg space.

Proof. The cardinality of R is 2%, so the elements of {0, 1]2}:“ can be con-
sider as functions defined on R with image [0, 1]. We define fo 4 .qipipo-pp
R [0, 1] by:

rge 1fx < p
g ilp <a<p

faoar - aqupipr-opn (T) = i g; i pi <@ <pig

Lge  if 2 2> i,

where ¢;,p; € Q, for 0 < e <k, 1 <j <k Let
Ap = {ft?nth---qwzpz'“Pk|givpj €QUZi<k 1<y <k}

and

A= UkeNAk'

A, is countable, so A is countable. Furthermore, A is a dense subset of
[0, 1]2ND. So, [0, I]QNO is separable. Since [0, 1] is compact and every product
space of compact spaces is also compact, we have that {0, I]ERU 15 conipact.
If (o) and (y.) are two elements of [(),1]2Nn and (z,) is distinct from
(Yo ), then z,, # Yo, for some ag. [0, 1] is Hausdorff, so there exist open
neighborhoods U and V of z,, and y., respectively such that ' NV is

cinpty. Let
, XN e # oy
Ua=194 7 .
U if o= oy,
and
V if oo = gy

Vo {1 if o # a
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Then IIU, and ITV,, are open neighborhoods of {2} and (y,) respectively
and (11U, ) N (1IV,) is empty. It implies that [0, 1]QND is Hausdorft. Thus,
[0, 1]2H0 is a separable compact Hausdorfl space. Every compact Hausdorft
space is Baire. So, [0, 1]“}'ND is a separable Hausdorfl Baire space. By Theo-
rem 3.18, [0, 1]2HO is a weak Blumberg space.

[0, 1]2% is nonmetrizable, so it is a nonmetrizable weak Blumberg

space.

References

[1}] O.T.Atas, On Blumberg’s Theorem, Atti Accad. Naz.Lincel 60(1976),
579-582.

[2] H. Blumberg, New properties of all real functions, Trans. Amer. Math.
Soc.24 (1922}, 113-128.

[3] J. C. Bradford and Casper Goffman, Metric spaces in which Blumberg’s
theorem holds, Proc. Amer. Math. Soc. 11 (1960), 667-G70.

[4] J.B.Brown, it Metric spaces in which a strengthened formn of Blum-
berg’s Theorem holds, Fund. Math. 71 (1971), 243-253.

[5] J.B. Brown,A measure theoretic variant of Blumberg’s Theorem, AMS
66 (1977), 266-268.

(6] Muwrray Eisenberg, Topolegy. Halt, Rinehart and Winston, New York,
1974.

[7] C. Goffman, On a Theorem of Henry Blumberg, Mich. Math. J. 2
(1954), 21-22.

[8] R.Levy, A totally ordered Baire space for which Blumberg’s Theorem
fails,Proc. AMS 41(1973), 304.

[9] R.Levy, Strong non-Blumberg spaces, Gen. Top. And Appl. 4(1974),
172-177.



[10] James R. Munlkres, Topology : @ first course, Prentice-Hall Englewood
Cliffs, N. J., 1974.

[11] William A. R. Weiss, The Blumberg problem, Trans. Amer. Math. Soc.
vol. 230 (1977) 71-85.

[12] H. E. White, Jr., Topological spaces in which Blumberg’s theorem holds,
Proc. Amer. Math. Soc. 44 (1974), 454-462.

[13] Albert Wilansky, T opology for analysis, Xerox College Publishing
Walthawm, Mass., 1973.

16



