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A Computational Approach To Probabilities Which Invovle
Spacings On A Circle

Chien-Tai Lin, Tamkang University,

Keywords: Circular Scan Statistic; Circular Spac-
ings; Symbolic Computation.

Abstract

A specialized algorithm is developed, based on the
recursions given by Huffer (1988) and the algorithm
proposed by Lin (1993) and Huffer and Lin (1996).
This approach can handle a variety of different rulti-
ple coverage problems and also give accurate answers.
Application to the distribution of circular scan statis-
tic is also discussed.

1 Introduction

Let Xy, X2,...,Xntt ben+1 points independently
and uniformly drawn from a circle of unit circum-
ference and let Xy < X < o € Xipa) de-
note these same points ordered in a clockwise fash-
jon starting with X; = X(y. The circular spac-
ings S1,S52,. .., Sn41 ArE defined to be the succes-
sive arc-lengths between these points, that is, S; =
— Xgoyy for 1 2 i < n+ 1 where we take
Xy = X (na1)- Let S denote the vector of circular
spacings; S = (51,52, .. L Sart)
For any set A C {1,2,...,n+ 1} define

S(A) = Si.

f1=ray

Jf( i)

Probabilities of multiple coverage problems on a circle
involve the joint distribution of overlapping sums of
consecutive circular spacings, 5o that we arc often
required to calculate probabilities of the form

r r
P (ﬂ{S(A.—) > d}) or P (ﬂ{S(Ai) < d}) (1)
i=} i=1 X
where the sets A1, Ag, ..., A, overlap and each of the
sets A; consists of a block of consecutive integers and
is allowed to “wrap around” if necessary

In this report we present a specialized method for
evaluating special probabilities of the form (1). Uti-
lizing this specialized algorithm we can handle a va-
riety of different multiple coverage problems much
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more guickly than the generalized progran developed
by Lin (1993).

The approach we use was sketched in Huffer (1988)
and more fully developed in Lin (1993). It depends
on repeated use of the recursion given in equations (2)
below. This recursion is used to re-cxpress a proba-
bility like that in (1) by decomposing it into a sum of
similar, but simpler components. The same recursion
js then applied to each of these components and so
on. The process is contiuued uinkil we ebtain compo-
nents which are simple and easily expressed in closed
form.

2 Basic Recursion and Defini-
tions

Our approach is based on the following recursion.

Let T be an r x (n -+ 1) real matrix. Let S =
(51,52, - ,Spt1)" be the vector of spacings befween
uniform random variables as defined in Section 1. For
any &€ € R, define T'i¢ to be the r x (n + 1) matrix
obtained by replacing the ith column of T by & The
basic recursion is the following.
Theorem 1 Suppese ¢ = {c1,€2,.-- ,C,H.]_)’ satisfies
ntte — 1. Let € =Tc. Then

i=1

. n+1
P(CSeB)=) cP(lieS € D).

=1

(2)

for any measurable set B C R

This recursion was first obtained by Micchelli
(1980) as a result about multivariate B-splines. 1t
was rediscovered in the context of spacings by Hulfer
(1988). Examples showing how the basic recursion
is applied in computations can be found in Huffer
(1988) and Lin {1993).

Notation

We now introduce the notation we shall use for the
problems.



)

;
%
4

Let A be any matrix having at most -+ 1 columns.
Take ' to be the matrix with n + 1 columns obtained
by padding A with columns of zeros; T = (A] 0).
Let v be the number of rows in A and define ¥ =
(Y1,Y2,...,V,) by Y =T'S. For any value of d, we
define

{A}} = P{Y; > d for all i} = P{minY; > d}, (3)
and
{A}2 = P{V; < dforall i} = P{maxY; < d}. (4)

When the value of d is held fixed in an argument,
we delete the subscript and just write {A}! or {A}2.
We also omit the superscript when convenient. The
quantity {4} is well defined so long as the munber of
spaciugs n + 1 is greater than or equal to the number
of columns in A,

Explicit Formulas

For explicit calculations, we rely on the following for-
mula. Let Ay, As,...,A, be nonecmpty subsects of
{1,2,...,n+ 1} with cardinalities |A;] = 1 +¢;. De-
fine £ = (&,.:.,¢4). Let 0 < d < 1. If the sets
A;,i=1,...,r are disjoint, then

P (ﬂ{S(Ai) N ,_l}) )
i=1
Z (ki, ” kr) paLY (1— T(],):’__Eki |

O<k<l

I

where k = (ky,..., k) is an r-tuple of integers and
0 < k < £ means that 0 < k; < ¢; for all 2. Here we
use (z)+ to denote the positive part, that is, (z)4 =
max(z, ). For our purposes, a very convenient way to
rewrite this formula is as follows. For integers j > 0
and real values A > 0, define

() (1 — Ad)nd

. for Add < 1,
R(J,A)f—{ 5

for Add > 1.

The dependence of 2 on n and d can be left implicit
because these values are fixed in any given application
of our methods. In terms of R, formula (5) becomnes:
If the sets &, i =1,...,r are disjoint, then

p(ﬁ{smi) >d})

i=1

- Ziki R -

= (3 ki), (0)

To evaluate { A}, we contimie decomposing matrices
using (2) until we reach “simple” terms which can be

cvaluated using (6). Writing our answers in terws of
R allows us to obtain very compact expressions for
{ A} by suppressing the dependence on 7 and d. {(Sce
the exaunples in Scction 4.)

3 Proposed Algorithm

Tu this scction we describe a specialized algorithm for
computing { A} when A is a binary matrix where the
1’s in each row of the top part form a contiguous
block, and the 0’s in each row of the bottom part
form a contiguous block. Qur description will be
somewhat sketchy for the algorithm remains under
development. The current version of the algorithm
can evaluate { A} for mnany cases of interest.

Qur approach for evaluating { A} is roughly as fol-
lows. The main idea behind this algorithm is to delete
the bottom part of the matrix and form a matrix with
conseentive nenzero integers in each row.

Before describing our algorithmm we must introduce
some notation. Let I3 be the class of matrices in which
the U's in each row form a contiguous block, C be the
class of matrices in which nonzero integers in cach
row form a contiguous block, and D be the class of
matrices in which nonzero integers in each row form
a contiguous block and is allowed to “wrap around”.
Dencte A € D be an (r-5) x p matrix with 7 > 2 and
5 > 1, where r and s represent the number of rows in
the top and bottom part of the matrix respectively.

In order to maintain a cauonical ” descending” form
of matrix, we have the following rules:

(R1) We always move the replaced vector (0,€)" to
the last column or the replaced vector (e,., €} to
the same group of the columns in the matrix.

(R2) If there occurs the first row which is not over-
lapping to the second row in the top part of ma-
trix, we will push the second row to the last row
of matrix to be the new first (r + 5) — 1 rows of
the matrix and pack the original first row to be
the new last row of matrix. We then count the
number of O's before the starting 1 in the first
row, say k, push the last p — k& columuns of the
matrix to be the new first p — k columns of the
inatrix, and pack the original k colwmns to be
the new last & columns of the matrix.

We can now describe our algorithm. We compute
{A} as follows:

1. 1f A € B, we evaluate { A} using the program of
Huffer and Lin (1996).

2. If A € C, we evaluate { A} using the program of
Lin (1993).




ST —’f

3. Otherwise, locate the first block in the top part
of A; having at least two rows and decompose
Aj; using the procedure in Huffer and Lin (1996)
for matrices in D.

4. Now apply this same process to all the daughter
matrices obtained in the previous step.

For any matrix A € D, this algorithm in general
leads to expressions of the form

{A}=Zw,-{13i}.

where the values w; are integers and the matrices B;
belong to £ (If B € £, then {B} is given in a simple
closed form by equation (6}). Evaluating each of the
terms {B;}, we obtain our final answer in the form

(4) = YRl ).
where the values ¢; and A; are all integers.
Special Case: Binary Matrices with One Zero
in Each Row

Let A be a (m + 1) x (m -+ 1) matrix as

e

11 11 1 110
01 11 1111
1011 1111
11 061 11 11
1 11 1 0 1
1 1 1 1 11 1
and n > m.

The probabilities of
(A} = P(X(iymy — X >dfori=1,...,m+1)
and
{A);= P(X(ipm) — Xy <dfori=1,....m+ 1)

are discussed respectively in the followings.

Evaluating {A}'

Upon repeated applications of the recursion we have

m m—1 3 2 1 0
{A}l — m+1 n i 3
- 1 m—1 3 2 1 .
m+1 m 4 3

Carrying on the application of the recursion with § =
(0,0)" gives

{A)a=(-1)" 1(7” * 1)P{Sl > d, Sy > d}

m—2
n -1
J‘ 2 5.
+ZO (-1Y (G +2) ——
J,——
+3 P + 2
+-+j+4s,,”2+j+39,,! > dy. (1)

We can now evaluate (7) using the program of Lin
(1993).
Evaluating {A}?

It is clear that

(AP = 1= P28+ So koo S 2 ).

Continually applying the recursion with & = 0 we

Al nin
LA AL

Sl +Sg+ +Sm+[ Zd}

P{—
i m—1 )
= Z (-1Ymi(m + DP{SL + ...+ Sy 2 d}

=0

+(_1)”‘TIL"‘P{%51 > d} .

Writing out the expression in terms of 2 in (6) leads
to

we—1 m—j-—1
{AP =1= " (-1Ym/(m+1) Z Rk, 1)
7=0
( 1)m1”1nR(0 M)

4 Examples

This section contains two examples of computations
carried out using the algorithm in Scction 3. The
problems in the examples have been chosen to be
small enough so that the answers fit conveniently on
the page; our programs can handle larger problems.

Example 1

For our first example we evaluate { A} for the 7 x 7
matrix

NS

it
et e R B B e B
—_—0 O OO
[==en B Rw il
oo B e B T O
[ B e R
= e R e
i B === R ]




This matrix has a pattern that the entrics in the
last few rows are “wrap around”. Thus, the matrix
does belong to D so that an expression for {A}2 can
be rapidly obtained by the algorithm in Section J.
Our final answer is

1 + 728R(0,2) — T20R(0,7/3) + TR(1,1)
— 952R(1,2) — TR(1,2) + T0R(2, 2)
— 35R(3,2) + TR(4,2).

{AY =

We may now use this expression to compute {A};
for arbitrary n and d. When n = 6, the value of (A}
can be interpreted as a “multiple coverage” probabil-
ity for random points on a circle, and 51,52, .. , Sy
can be viewed as the circular spacings between 7 ran-
dom points on a circle with circumference equal to 1.
For 7 random points on a circle, {A}5 is the prob-
ability that every arc of length d contains at least 3
of these points. An equivalent interpretation is the
following. Suppose 7 arcs of length d are placed at
random on a circle. Then {A} is the probability
that every point on the circle is covered by at least
3 of these arcs. These multiple coverage probabilities
have been studied by Holst (1980) and Deken (1981).

Example 2

The other type of multiple coverage problems which
have also received some attention in the literature is
the problems of covering the unit circle by random
arcs of fix length. The circular coverage probabili-
ties are closely related to the clustering probabilities
{See Glaz and Naus (1979) eq. 1}. The clustering
probabilities have been extensively studied particu-
larly in connection with the distribution of the cir-
cular scan statistic, a test for the presence of non-
random clustering in a circle of unit circmmference.
Much work has been done on the exact calculation of
these clustering probabilities; sce Ajne (1968), Roth-
man (1969), and Wallenstein (1971). Other work re-
lates to the asymptotic results; see Ajne (1968) or
Flatto (1973). Some of the clustering probabilities
can be evaluated by the current version of the algo-
rithm. We conclude by giving an example of one such
probability.

In this example we suppose that there are 10 ran-
dom points on a circle of unit circumference. We want
to compute

(A} = P(X(iyey — Xy > &, fori=1,...,10).

This is simply the probability that ne arc of length
d contains more than 6 of the 10 random points
X1, Xz,-.,X10- Thatis, 1 - {A}) is the probability
that there exists a cluster of 7 or more points in an

arc of length d. The final answer is

—4290894R(0, 5/3) -+ 45875201R(0, 7/4) |
—206625R(0, 2) + 153090R(1, 5/3) + 163840R(1,7/4)
—33510R(1,2) + 6070R(2, 2) — 550072(3,2)
+2150R(4, 2) + 560R(5,2) + 80R(6,2)

which is valid for all d and all n > 6.
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