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The Bl_umiberg Problem in Nonmetrizable Spaces {1
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Abstract. In this work, we investigate the correlation between the
Blumberg property and Baire spaces. We modify Blumberg’s idea which
are descriptive and metric and replace the meftrizable condition to the
nonmetrizable condition. We show that real-valued functions defined on
nqumetrizable spaces have some properties given by Blumberg. We also

show such spacés have some property similar to Blumberg property.
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1. Introduction

We lnow that continuity plays an important role in Mathematics.
In 1922, Blumberg (1] showed that for each real-valued function f defined
on a separable complete and metrizable space X, there exists a dense
subset D of X such that f|p is continuous. Hence, we say that this
property is the élumbe’rg property. A space which has Blumberg prop-
erty is called a Blumberg space. In 1990-1991, Baldwin[2] show that a
real-valued function acting on a categorically dense subset has the same
result as Blumberg’s. He strengthened Blumberg’s theorem. ln our work,
we weakened Blumberg’s theorem. In 1960, Bradford and Goffman (3]
showed that every Blumberg space is a Baire space and the converse is
true if the Baire space is metrizable. Clearly, the structure of metrizable
spaces having the Blumberg space is well developed in the literature. We
notice that discussing the continuity of a function defined on a nonmetriz-
able space is more difficult. In 1974, White [7] proved that X is a Baire
space if and only if for every function f:X — Y where Y is a countable
topological spaée, then there 1s a dense set D such that f|p is continu-
ous. However, it is not always true if ¥ is not countable. In 1977, Weiss
[6] constructed a compact Hausdorff non-Blumberg space. We know that
every compact Hausdorff space is a Baire space. Therefore, there exists
a non-Blumberg Baire space. In this work, we consider spaces without

metrizable property and show that most properties which Blumberg [1]
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- did hold for tﬂgéé-Spaces. We modify Blumberg’s idea by using densely
approach to 'analirze the structures of real-valued functions defined on a
nonmetrizable space and give a new property of any real-valued function
defined on a nonmetrizable space. Also we extend the whole structure
to functions with image in R". We modify Blumberg’s idea by using
other topological properties to replace the metrizable condition. Then,
it is possible for real-valued functions defined on nonmetrizable spaces

to have the properties given by Blumberg in 1922. Also, we extend the

whole structure to functions with image in R"™.

2. Weak Blumberg Property

Definition 2.1. Let R be a binary relation between open sets and el-
ements, let U be an open subset of a topological space X and let & be
an element of X. URp means that the open set U has the relation R to
the element p. The relation R is closed if for every subset A of X, the

relationships URs for all s € A and p € A imply URp.

Definition 2.2. A partiel neighborhood, denated by N, of p is an open

set of which p is an interior or a boundary element.

Lemma 2.3. [1] If R is a closed relation, then the elements p for which
(a) NRp for every open neighborhood N of p, and

(b) a partial neighborhood N¢ of p exists such that N¢ Rp is false,
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constitute a nowhere dense set.

Lemma 2.4. Lét X be any topological space and f : X — R be any
real-valued function defined on X. We define as follows the relation
R, r,, where 1 and ro are any two real numbers and m < ro: If p is an
element of X and U is an open subset of X, then UR,,,p if and only

if p € U and an element ¢ of U exists such that r1 < f(q) < ry9. Then

Ry r, is closed.

Let Q be thé set of all rational numbers in R. And let N be the set

of all natural numbers.

Lemma 2.5. If f is a real-valued function defined on a topological
| space X, then for every pair of rational numbers 71,73 where ry < rg,
thé elements p of X for which
(a) NR, r,p for every open neighborhood N of p, and
(b) N<R,, -, p is false for some partial neighborhood N< of p,
constitute a nowhere dense set, say, Ty, r,. Thus, U _ eQTﬁ r, 15 of the

first category.

Definition 2.6. A function f : X — R is densely approached at point
p of X if and only if for each € > 0 there exists an open neighborhood

N of p such that the elements g of N for which |f(g) — f(p)| < € form a

dense set in N.

Definition 2.7. A subset of a topological space is residual if 1ts com-
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plement is of the first category.

Theorem 2.8. For every real-valued function f : X — R where X is a
topological space, the elements x of X at which f is densely approached

constitute a residual set.

Proof. We have to show that the set of elements p of X at which f
1s not densely approached is of the first category. I f is not densely
approached at p, then there exists a positive number ¢ such that for
every open neighborhood N of p, NN f~1(f(p) — ¢, f(p) + €) is not
dense in N. For each open neighborhood N of p, there exists an open
set Uy such that Uy NN is nonempty and | f(gn) — f(p)] > € for all gn
in Uv NN. Let U = Uy(Uxy N N), then U is a partial neighborhood
of p and |f(q) — f(p)| > e for all g in U. Let r; and ry be two rational
numbers with f(p) —e < 7 < f(p) < r2 < f(p) + €. Then UR,,,,p
is false and MR, ., p for all neighborhood M of p. Therefore p is an
element of T, ., (It was defined in Lemma, 2.5). U, . eQTri, is of the

first category. Thus, the theorem holds.

Definition 2.9. A function f : X — R is ezhaustibly approached at
point p of X if and only if an open neighborhood N of p and a number
€ > 0 exist such that the set of elements ¢ of N where |f(q) — f(p)] < ¢

is of the first category. If f is not exhaustibly approached at p then we

say that f is inexhaustibly appmached at p.

Theorem 2.10. For every real-valued function f : X —R where X

5




18 Separable,' vi';heji set constituted by elements x of X at which f is ex-

haustibly approaéched is of the first category.

Proof. Let S,., = (7"— %, r+ %) where r € Q, n € N. If f is ex-
haustibly approa;ched at ¢, then there exist a positive number ¢ and an
open neighborhood N, of ¢, such that f~ (f(g)—€ , f(g) +e) NN, is
of the first category. Let’s pick the set S,, such that f(q) € S,, C .
(f(g)~€, f(g)+e€). Then f~'(S..) N N, is of the first category.
Let E., = {z € f~'(S;.) | a neighborhood N, of z exists such that
f71{Sm) N N, is of the first category}. Then the countable union of
E,., where r € Q and n € N is the set of all elements at which f is
exhaustibly approached. Now, it is sufficient to prove that every F,, is

of the first category.

Given E,,. X is separable, i.e. X has a countable dense subset,
say, P = {p; | © € N}. For each z in E,,, there exists an open neigh-
borhood N, of & such that f~!(S,,) N N, is of the first category. P
is dense. So, for each N,, there exists an element p; of P such that p;
belongs to N,. Let &; = {N, | p; € N,}. Take an element M; from
each nonempty family &;. Then we claim that F,, \ (U;M;) is nowhere

dense. We prove it by contradiction. Suppose that the claim is not

true. Then E,., \ (U; M;) contains a nonempty open subset U. Pick an
‘element y from the set UN(E,,, \ (U;M;)). Then N,NU is an open neigh-

borhood of y. This implies that there exists an element p;, of P such
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that pg is in N, N U. &) 1s nonempty and pi belongs to U;M;. Thus,
p belongs to Un (U;M;). Since U;M; is open, X \ (U;M,) is closed.

U C B \(UiM;) € X\(UM;) = X\ (U;M;). Thus, U N (U; M;)

is-empty. It contradicts to that py belongs to U N (U;M;). Hence,
U; (f_l (Spn) N Mi) U (B \ (U M) is of the first category. Also,

Epn = Epa) (U Mi) g (En \L%JMi)
c (S (U Mi) U (E \ U Mz‘)
= U (£ (Sem) () M:) U (En \L;JMi) .

We have that E,., is of the first category. Hence, the theorem holds.
If M is a subset of X, we shall use, in connection with approach,

the expression ”via M?” to indicate that p is restricted to range in M.

Definition 2.11. A function f is inexzhaustibly approached at p via M
if for each open neighborhood N of p and each positive number ¢, the set
of elements g of NN M where |f(p) — f(q)| < € is of the second category;

otherwise, f is ezhaustibly approached at p via M.

We know that if A is of the first category, then every subset of 4
is also of the first category. Thus, if f is exhaustibly approached at p,
then f is exhaustibly approached at p via M. On the other hand, if f is

inexhaustibly approached at p via M, then f is inexhaustibly approached

at p.




Definition 212 A function f is densely approached at p via M if and
only if for ._each e > 0 there exists an open neighborhood N of p such
that the elements q of M NN for which |f(p) — f(q)| < € form a dense
subset of M N N.

Definition 2.13. If A is a subset of the topological space X and if x
is a point of X, we say that = is a limit of A if and only if every open

neighborhood of x .intersects A in some element other than x itself.

Lemma 2.14. Let f be a real-valued function defined on a topological
space X and p be an element of X. If M is a subset of X such that pis
a limit of M, the following statements are equivalent.

(1) f: X — R is densely approached at p via M.

(2) For every partial neighborhood N of p such that Nc N M has p as

a limit, the set .
(Ne N M) = {(=z, f(z))|z € Nc N M}

has p’ = (p, f(p)) as a limit.

Theorem 2.15. For every real-valued function [ defined on a separable
Hausdorfl space X, there exists a residual subset S of X such that if p
is an element of S then the function f is inexhaustibly ,and therefore

densely, approached at p via S.

Proof. Let E; be the set of elements at which f is exhaustibly ap-

proached, and let S = X \ E|. By Theorem 2.10, we know that | is of
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the first Categofjf;. | Then S is residual and f is inexhaustibly approached
at the elements ;of Sy. That is, if ¢ is an element of 51, then for each
e > 0 and fof eacih opén neighborhood N of g, there exists a subset M of
N such that M is of the second category and [f ()= f(g)| < eforall z
in M. MNS; = M\ Ej is of the second category since M N E is of the
first category and M is of the second category. Thus, f is inexhaustibly
approached at the elements of S; via S;.

Casel. Suppose that f is bounded. Then there exists a real number
k sﬁch that & > sup{f(z)|z € X}. Let’s define a function ¢ : X — R
by: | |

. f(.’L) if.iEGSl,
g(x)_{k if z € B

Then, by Theorem 2.8, the elements of X at which g is densely ap-
proached constitute a residual set, say, S,. For every element r in F
and for every s in Si, g(r) — g(s) > k — sup{f(z)lz € X} > 0. g is
densely approached at the elements of S; NS, via 51. f is densely ap-
proached at the elements of 51 N 5y via S1. Furthermore, S, NS; =
(Scu S8) = X\ (S5u SJf) is a residual set since Sg and ST are of the
first category. It follows that the elements of S1 at which f is densely
approached via 8y constitute a residual set,say, S. Let Ey = $; \ S.
Then X = Ey U Ey U S. It implies that Es is of the first category. For
every element p of S, f is inexhaustibly approached at p via S since

E, is of the first category and f is inexhaustibly approached at the el-
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ements of S1 Via; Sy. Also, f is densely approached at p via §;. For
every partiai Iieiighborhood Noofp,ifpisa limit of N NS then p is
a limit of N. N 51 By Lemma 2.14, it implies that p’ = (p, f(p)) is a
limit of (N N S’i)’ = {(z, f(X))lz € N. N S1}. That is, evetyopen

neighborhood of p' intersects (N« M S1)" in some element other than p’

itself. For each ¢ > 0 and for each open neighborhood N of p, there |

exists an element which is distinct from p, say, p* such that p* belongs
to NN (N nNSy) and |f(p*) — f(p)] < €/2. It follows that f is inex-
haustibly approached at p* via S since p* belongs to Sy and 51\ .S = Ey
is of the first caﬁegory. X is Hausdorff so {p} is closed. It follows that
(N N No)\ {p} is an open neighborhood of p*. Thus, a subset M of
(NN NN S)\ {p} exists such that M is of the second category and
for every elements ¢* of M, |f(¢*) — f(p*)| < €/2. By triangle ineciua,l—
ity, we have that |f(¢*) — f(p)| < € for all ¢* in M. We can pick an
element ¢ from M such that ¢ is distinct from p, g € NOA NN S and
|f(q) = f(p)| < e. It implies that p is a limit of (N< N .S)". Hence, f is

densely approached at p via S.

Case2. Suppose that f is unbounded. We define a function f: X —
R by f(z) = f(z)/(1 + |f(=z)]). Then f is bounded and the properties
of densely approach, exhaustibly approach and inexhaustibly approach

of f are preserved by f. Thus, the proof is done.

Corollary 2.16. For every real-valued function f defined on a separable
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Hausdorff Baire :Bpa,ce X, there exists a dense subset S of X such that
if p is an ‘elemen%t of § and N is a partial neighborhood of p then the

function f is inexhaustibly approached at p via SN N,

Proof. By Theorem 2.15, there exists a residual set S of X, such that if
p is an element of S, then f is densely approached at p via S. That is, if
M. is a ﬁartial neighborhood of p such that p is a limit of M. NS, then
P = (p, f(p)) is a limit of (M. NSY = {(z, f(2))|z € Mc N S}. Given
a partial neighborhood N¢ of p, N¢ \ {p} is open since X is Hausdorff.
The assumption that X is a Baire space implies that S is dense. So,
p is a limit of N. N S. It follows that p’ is a limit of (N N S). So,
for cach open neighborhood N of p and for each € > 0, there exists an
element p* which is distinct from p such that p* belongsto NN NN S
and |f(p*) — f(p)| < €/2. p* belongs to S, hence, by Theorem 2.15,
f is inexhaustibly approached at p* via S. Since No NN is an open
neighborhood of p, there exists a subset M of No. N N NS such that
M is of the second category and |f(p*) — flg)] < €/2for all g in M. It
implies that |f(g) — f(p)| < € for all ¢ in M. Thus, f is inexhaustibly

approached at p via No. N S.

Definition 2.17. We say that X is a weak Blumberg space or X has
weak Blumberg property if and only if for each real-valued function f
defined on X, there exists a dense subset D of X such that if p is an

element of D then for each ¢ > 0 there exists an open neighborhood
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N of o8 suq}h that the elements ¢ of DA N for which If(p) — flg)l < e

. constitute a den%e subset of DN N.
o
Theorem 2.18 Every separable Hausdorff Baire space has the weak

Blumberg propetty.

Proof. We knovs% that every residual set of a Baire space is dense. Hence,

by Theorem 2.15, the theorem holds.
Example 2.19. [0, I}QNO is a weak Blumberg space.

Proof. [0, 1]2N° is a separable compact Hausdorff space. Every compact
) ‘Hausdorff Spaceéis Baire. So, [0, 1]230 1s a separable Hausdorff Baire
space. By Theorem 2.18, [0, 1]2" is a weak Blumberg space.

0,112 is nonmetrizable, so it is a nonmetrizable weak Blumber
5 ‘ g

space.

3. Multivalued Functions

We consider: the functions with image in R”".

Definition 3.1. ;Let F: X — R" be given by

F(p) = (f1(p), fa(D)y -, falp)), VP € X

where f; : X — R,a,re real-valued functions for alli. Then every f; : X —

R is called a coo*}‘dinate function of F\.

12
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Definition 3.2.é A function F': X — R™ is densely approached at p of
X if and only if %avery coordinate function f; of F is densely approached

at p.

Theorem 3.3. For every function F' : X — R™ where X is any topolog-
ical space, the elements of X at which F' is densely approached constitute

a residual set.

Proof. By Theorem 2.8, for each coordinate function f; of F, there
exists a residual set S; of X such théfc fi .is densely approached at p; for
all p; in S;. Let § = NS;. Then F is densely approached at p for all p
in §. S¢is of the first category since §¢ = (NS;)° = USY is countable

union of sets which are of the first category. Hence, the theorem holds.

Definition 3.4. Let p be an element of a topological space X. We say
that a function F' : X — R" is exhaustibly approached at p if and only
if there exists a éoordinate function f; of F' such that f; is exhaustibly
approéched at p. And if F' is not exhaustibly approached at p, then we
say that F' Is inexhaustibly approached at p. That is, F' is inexhaustibly
approached at piif and only if every coordinate function f; of F' is inex-

haustibly approached at p.

Theorem 3.5. For every function F : X — R" where X is separa-
ble, the set constituted by elements x of X at which F is exhaustibly

approached is of the first category.

13




Proof. By Theé)rem 2.10, for each coordinate function f; of F, tilere
exists a subset Ez of X such that E; is of the first category and 1is ﬁhe
set of elements a;t which f; is exhaustibly approached. Let B = UL E;.
Then E 1s the set of elements at Wﬁich F' is exhaustibly approached.
Furthermore, F ‘is of the first category since it is a finite union of sets

which are of the first category.

Definition 3.6. Let M be a subset of a topological space X. We say
that F : X — R" is inezhaustibly approached at p via M if and only if

every coordinate function f; of F' is inexhaustibly approached at p via

M.

Definition 3.7. Let M be a subset of a topological space X. We say
that F: X — R" is densely approached at p via M if and only if every

coordinate function f; of F is densely approached at p via M.

Theorem 3.8. For every function F' : X — R"™ where X is a separable
Hausdorff Baire space, there exists a residual subset S of X such that
if p is an element of S and N< is a partial neighborhood of p then the

function F' is inexhaustibly approached at p via S N N, and therefore,

densely approached at p via S.

Proof. By Corollary 2.16, we have that for each coordinate function f;of
F, there exists a residual set S; such that if p; 1s an element of S; and
N¢; is a partial neighborhood of p;, then f; is inexhaustibly approached

at p; via S; N Ng;. Let S =NS;. 5¢ =USY is of the first category since

14
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5¢ are.of the ﬁr§i; category for all :. Then S is a residual set. Given an
element p of S aiild a partial neighborhood N¢ of p, then for each ¢, f; is
inexhaustibly apProached at pvia S;NN.. S;\S = 5;N5° is of the first
category. It follows that f; is inexhaustibly approached at p via SN N
for all <. So I is inexhaustibly approached at p via SN N, for all pin
S and for all partial neighborhood N of p.

Let M. be a partial neighborhood of p such that p is a limit of
M N S. Then f; is inexhaustibly approached at p via M. NS for all 7.
Given i. For each positive number € and for each open neighborhood N
of p, there exists a subset By of NNM NS such that | f;(b;)— fi(p)| < € for
all b; in B; and B; is of the second category. So, there exists an element ¢
of B; C NN M NS which is distinct from p such that |fi(¢) — fi(p)] < e
P ..—..' (p, fi(p)) is é limit of (M« N S)Y = {(=, fi(z))|x € M N S}. Thus,
{; is densely approached at p via S for all 4. [t implies that F' is densely

approached at p via S for all p € 5.

Corollary 3.9.. If X is a separable Hausdorff Baire space then for each
function F : X — R"™, there exists a dense subset D of X such that if
p belongs to D then for each ¢ > 0 there exists an open neighborhood
N of p such that the elements g of D N N for which |fi(p) — fi(z)| < e

constitute a dense subset of D NN for all coordinate function f; of F.

Proof. By Theorem 3.8, the corollary holds since every residual set of

a Baire space is dense and a finite intersection of open sets is open.
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