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Abstract

This paper illustrates a martingale method of constructing repeated significance
tests for a multi-dirﬁeﬁ;sional parameter in survival analysis by reducing it to tests
for one-dimensional parameters. This illustration is made with parametric survival

data with staggered entry. A simulation study is included to indicate its numerical

performance. L ‘
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1. Introduction.

The purpose of this{ paper is to illustrate a martingale method of constructing
repeated signiﬁcance-tegts for a multi-dimensional parameter in survival analysis by
reducing it to tests foré one-dimensional parameters. We will make the illustration
by considering para.meti‘,ric survival data with staggered entry times. The parameter
space is assumed to b‘.eitwo‘dimensional for simplicity, although it can be extended

to higher dimensions without difficulty.

For parametric survival data with staggered entry, we know the likelihood score
process is a martingale felé,tive to the calendar time filtration. In case the parameter
space 1s one—dimensiona?, we can make a random time change to obtain a Brownian
motion approximation té) the likelihood score process, which paves the way to propos-

ing repeated signiﬁcafncé tests of the parameter. (cf. Andersen et al. (1993), p.397).

The situation is different in the multi-dimensional case. Although components of
the likelihood score proéess_ are martingales, they are not orthogonal. The operating
characteristics of sequenfial tests defined in terms of these likelihood processes would
be difficult to calculafe. EWe will consider martingale transforms of these components
so as to get orthogonal n?lartingale estimating functions and then apply strong repre-
sentation theorem to O"bt;éain the standard R*-valued Brownian motion approximation

to them. With this preparation, we can propose repeated significance tests and study

their asymptotic properties.

We would like to remark here that, although the model of Tsiatis, Boucher and
Kim (1995) involves a milulti—dimensional parameter, the hypothesis they considered
concerns only the value (;)f a one-dimensional parameter. In fact, their work can be

extended with the methoid presented in this paper.

This paper is organize?:i as follows. Section 2 contains the theoretical developments




of the repeated significa}nce tests and section 3 presents a numerical study. The nu-
merical study indicates: that our theory is satisfactory. We would like to note that
this method may a,léo be useful in other models when.the hypothesis of interests is
of multi-dimensional. One example is the case of praired survival data with staggered
entry. (cf. Chang, Hsiung and Chuang (1997)). Another is the case of Cox regression

model with simultaneous entry.

2. Repeated Signiﬁca‘fnce Tests for Parametric Survival Data.

Let (Y}, Z;, X;,C;) be an i.i.d. sequence of random vectors with ¥; denoting the
entry time, Z; the cova%iate, Xj; the survival time and C; the censoring time of the
jth person in a clinical t;tial. Assume that Y; and X; are independent; conditional on
Y; and Z;, X; and Cj affe independent. Assume the hazard function of X; given Z;

is of the form

{*+-,Z;,0) |8 € ©} (2.1)

|
{or some open set © R"'

b

We are interested in jpr()]:uosing_.l; repeated significance tests for the true parameter

p in the situation that tli;e data available at calendar time ¢ is

(Y; N5, 25, (Y5 + X5 N Ci) A s, Livaxpmestvyaopnd | s S 67 =1,---,J). (2.2)
Let
:
M;(2,8) = Liy;4x; 00t A (Y + C;)) — /0 Ms = Y5, Z5, 0 v, viax;n0,)(8) ds. (2.3)

The assumption (2.1) imi)lies that- M;(t, ) is a calendar time martingale relative to

the probability for 0.

In order to write down the log-likelihood for (2.2), we introdue the stochastic
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processes
i

M) = oA CiA (= Y5)),
@J‘(u) = Lo.x;n0;n-;)+)(1):
We note that N;(u) - fg‘ A(s, Z;,0)H}(s) ds is a martingale in u for each ¢ > 0. Then,

according to Chang @nﬂit Hsiung (1988), the log-likelihood of the data (2.2) at time ¢

Li(t,0) ): ] tllog/\ (u, Z;,0) VY Z f A, 23, O)H (w) du. (2.4)

Assume that A(t, ijﬂ)-has bounded third derivatives in & and is bounded away

from 0. Then, the erlii;c’aod score process

UJ'I(t,H) %IE —ag—LJ(t,O)
)
: Z/ A(u -y, ZJ,O)) 1(y;,00) (1) dM;(, 0) (2.5)

1s a calendar time martingale relative to the probability for #. (cf. Chang and Hsiung
(1988), Tsiatis et al. (1995)). Here I = 1,2.

Let

' - Uga(t,0) = Usy(t,0),

. ' N 2y Y, 7;,0)
Us2(t,0) = Uya(t, 6) T DD .
52(4,8) = Usa(t, 0) | b [ as(,0) Yz 0 (W M 0). (26
Here |
(B2 0= ¥, 2, ) B~ ¥, 73,0)

0 — ge, 72 ETH Iy &1 ,
aJ(ua ) (JZ_; A(u _ };_, Z_,‘, 9) 1(1"1"31"*‘)(!’\6}'}(“)

| (Bh(u - Y,,2,0)0 -

(Z: | a{;\(u - Y}J, ZJ-J, 0) Ly yexsnon(@) | (2.7)

&




In this paper, we adopt the convention that 2 = 0. We note that a; is well-defined
because of the Schwartz inequality for mutual variation process. (cf. Elliott (1982},
p-101). Let a(u,8) be the limit of a;(u,f) as J tends to infinity, whose existence is

implied by the law of large numbers.

It follows from (2.6) and (2.7} that, relative to the probability for 6, the mutual

predictable variation process

<0J1( 9) [sz( ) >,

- Z[l 86 YJ”ZJJB)(BQ—(U—')GrZJ:G) (u 9)3>‘(u Yj’Zjao))
- Mu—Y;,Z;,0)

'1(1?.1?+X;AG,-};(U) du
= 0,

which says that (~JJ.1(_-,9) and Ujz(-,0) are orthogonal martingales relative to the
probability for 6.

Let P7 denote thé probability for the parameter § = p + fj Applying the

martingale central limit ?theorem, we get

" g Uni(t
Proposition 2.1 - Under PI#H, Uj;ét,;:i i; ) converges to ( G:gt; ) as

J goes to infinity, where G1(+) and G3(-) are two continuous independent mean 0

Gaussian martmgales mth variances

}fl)ZI p))
5 = aa. ) ]
al) = B / N =i Zr.p) Ly, v+ xi801(1) du, (2.8)
2
g;(t) - E j 392 }/lazlfp)) ha(u p)(%(u“K,ZhP))
’\(u_YlaZlap) ’ ’\(u_Yi;Zlap)
) (u’ - ]}ID Zlap)l(}’;. ’1+X14’\C1](u) du (2.9)
respectively.

Straight-forward calculations (cf. Chang and Hsiung (1988)) lead to
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Proposition 2.2 Uncfer P9 as J goes to infinity,

, |
i) 3 391 8 [1a(t,p) converges to —gy(t),
i) 1 736 2-0;54(t, p) converges to —g12(t),

iii) 325-Us2(t, p) ,coglverges to 0,

iv) 32-U,1(2,p) converges to ~g2(1),

where
galt) = E”j - ? Yr\’(flipl)q,z(::p) K,th)lm.mxlr\c‘J(U) du,
g22(t} - = ] ( /\(u — ;/;:ZZ::;)))I1(y'hyl+xl,\cl](u) du
+E, / a(u,p) o (- Y;\,(ftp});%z(f p_)Yhth)l(mwmcxl(“)d‘“-

We note that g;»(t) also equals to

‘ té(é-)\—(u‘*-yigzlap))z
E .[ | aiz(u —Y1,%1,p) (1.1 +X1Acll(u) du

r (B(u = Y3, Zy,p))?
+ _E,,/ a*(w,p ag\l(u-}’l,zl,p) Livn+x,a0,) (1) du,

and ¢,(t) also equals to

|( (u }qul’p))z
E./ 5 u—YhZI’ p) 011 +x, 80 (1) du

}/1 Zl 3 p))

Applying the mean-ya'}lue theorem, we get
1 ( QJ.l(t;p)) _ L [ U+ 7
\/j UJ,Z(tap)! ‘\/_— UJ?(tap + 7")

UJl(t 0 ) U_]1(t 0 )
"7( 3 a5 Usa(t,0.) 5. Un(t f..) )‘ﬁ’ (2:10)




for some 6, and 8., lying between p and p + %
It follows from (2.10), Proposition 2.1 and Proposition 2.2 that we have

P
t
Theorem 2.1 Under P"(“’) ( gj:gt’g ) converges weakly to G¢(t) = ( %8 ),
where G2(t) — d1g1(2) ~ $2g12(t) and G2(t) — $2922(t) are two continuous independent

mean ( Gaussian martingales with variances g;(t) and go(t) respectively.

It follows from (2.6) that the predictable variation processes

1 . - (2{u— Y, Z;,p))?
—_— . ==
< \/jUJ.l( 'P) >t _, E :f ~Y;,Z;p) 71(1’;"1’_:'+Xﬂ\6‘jl(”)d” (2.11)

L e (a*(u Y;, Z5,) — a5, 1) 2 (u — Y, Z3, 1)
/\(U*‘Y},Zj,p)

1 . ‘
< —_UJ,Q('ap) > =

Vi

1(!@- .vj+xjac;}(“] du. : (2.12)
Let
Coa N 1~
Fre(9) =inf{t 20 |< Z5Usilp) >e> s}, (2.13)

|
= n - ‘
Because < Vljﬁj,;(-,p) >|g converges almost surely to g;(t), we know 7;;{s) converges ‘
almost surely to g,-_l (s).i”From this together with Theorem 2.1 and the strong repre- ‘

sentation theorem (cf. Rollard (1984), p.71), we get

Theorem 2.2 Under EFPJW 3= ( [U/jlg-jlgt; p; ) converges weakly to B*(t) = : ‘
2(Tr2(t), .
B¢ ,
( Bl 8 ) where B¢(i) 1t — dagn2(g7 1(t)) and B“s(t) — ¢2922(g2 1(t)) are two in- ‘

dependent standard Brownlan motions. : ‘

Theorem 2.2 is useful in providing repeated significance tests for the parameter 0.

For example, for the hy[:ioﬁhesis

IJ’() 10 = P, ‘
we introduce the stopping time
' |



T;

L R T -
= inf{t 20 |< %Uf,i(‘,P) >¢2> Mo, I%UJ,i(t)p)‘ Zd,\/< WUJJ'(UP) >t }(214)

truncated as soon as <l %-3-(71,,-(-, p) >1> m for some m > my. The repeated signif-
icance test is to stop sel;mpling at (Ty A m) A (T2 A 12) and reject Hy if and only if

Ty < ny or Ty < 54, where

5 1 -
7 = inf{t > 0 [< —=Us:(-,p) >:= m}. (2.15)

V7

Here mg, m and d; aré'given constants. Because of the independence guaranteed by
i

Theorem 2.2, the significance level and some of the powers can be approximated by

the related results for on'je-dimensional Brownian motion. (cf. Siegmund (1985), p.73-

81). In section 3, some éf the detailed computation will be illustrated.
3. Numerical Studi'eséh

3.1. Complete Sequential Tests.
|

The distributions of YJ, Z;, X; and C; for this simultation study are described as
- follows. Let ¥; be uniformly distributed in the interval [0,8], C; = oo, the covariate
Z; = (Z5,2;5) and Zj; ébe iLid. with P(Z; = 0) = P(Z; = 1) = 1. Conditional
on Z;, X; has intensity éxp(ﬂlZJ-l + 0,Z;3). The simulation results presented in the

following are based on sa{mple size J = 100.

Let T('d) = inf{t = mo | |W,(t)] > dv/t}, where W, is a Brownian motion with
drift g. From Corollary 4%.19 and Theorem 4.21 of Siegmund (1985), we know

P <m) = (d=d™)g(d)log(-) +4d76(d) + o(d™$(d),  (31)
BTl <m) = 1—®fmi(dm™F — )] + {g[m (dm~F = w)]/(um}))
(1 + o(l)), | (3.2)

S




where P, is the probablhty corresponding to W, ¢ and @ are respectively the density

function and dlstrlbutlon function of a standard normal variable.

We now éonsider’ the hypothesis Hy : @ = p = (0,0). Let my = 0. 05 and m = 0. 3,
d; be specified by (31) so as to make PO(T('d'_) < m) approximately «;, for i=1, 2.
Here a;, a3 are non—nééative numbers and satisfy oy + a3 — ajoy = 0.05. With these

constants, we will consider the tests defined in (2.14) and (2.15).

Straight-forward calculatlons give that a(u, p) 1, g12(t) = 19:(¢) and gp(t) =
2ga(t). Let py = f(31 +2), 4 = -\/—92. Theorem 2.2 indicates that

POWNT < 5y or Ty < ) (3.3)

O

= P (7, f] )4+ POENT, < py) — PO <y Ty < 72)
is approximately
Py (T(’dl) < m) + B, (T('d‘z) <m)~ P, (T(rdl) < m)Puz(T(’d,') < m), (3.4)

where P(1:92) ig the pr0=ba,bility corresponding to the parameter (6;,0,).

When 8, = 6, = 0, &34) shows that the nominal significance level of the test is
0.05. For other values c;rféﬂl, 02, we can use (3.1), (3.2) and (3.4) to find its asymptotic
powers, which is denot’eci by . We denote the empirical power (3.3) by 8 for b = 0
and #V for b = 1. We réca,ll that & = 0 is the simultaneous entry case.

Table 1-4 present for different values of #; and 6,, the empirical powers A% and

A by calculating the px';oportlon of 10,000 replicates for which 77 < 7y or T} < 5.
! .

To simulate empiricai power SO and A1) we need to simulate the score process
and then check whether (it has crossed the boundary from information time mg to

m. Since the score proce?ss changes its value continuously, we consider ¢ € [0,3] and

10




divide the interval [0, 3J into equal spaced subintervals and only check whether it has

crossed the boundary ::it the endpoints of these subintervals.

In Table 1-4, At is I%the length of the subintervals. The first column is the value of
the parameter (8, §2), i;he 2nd, 3rd, 4th and 5th columns display the empirical powers
BO or ) when At :L 1,0.1,0.01,0.001,0.0001 respectively, and the last column is
the asymptotic powér ﬁ These tables indicate that the empirical powers get close to
the asymptotic bowgrsgas the subintervals At gets smaller, and (3.4) provides quite

%

good approximation to the power of the test.

Remark With the previous discussion, we now indicate an additional advantage of
this approach as follow;;s.

|

Given the signiﬁcaﬁ{ce level @, and parameter values 6, 8, satisfying 02 + 02 = 1,
for example, we can usafé (3.1) and (3.2) to choose oy, a3 and d;, d; so that the test
has a large power in the direction (#;,0;). This property is useful when we need a

sequential test that has a large power in a given direction.
3.2. Group Sequential Tests.

Since one typically performs group sequential tests in medical applications, we

!
present a simulation study for such tests based on the work in Section 2 and Subsection
3.1. In particular, the data in this simulation study is the same as the one described

in the first paragraph 033:i Subsection 3.1.

For given dy,dy, /At and K, we can define

Ti = inf{t2 0t = k- Atk =1, , K, |—=Usi(7i(0), )] > div/i}. (3.5)

A
V7
Let

Ty = inf{t 2 0t = k- Atk =1, K, [W,(t)| > dvi). (3.6)

11




It follows from Theorem 2.2 that the significance level and powers of the group

sequential test
PORNT <K or T) < K) (3.7)

is approximately

Py (Tiay S K) + Puo(Tgyy < K) = P Ty < K)Pu(T (g, < K), (3.8)

where P(%) P and P,, are the same as the one described in Subsection 3.1.

Let A and g deniote respectively the empirical significance levels and empirical
powers of (3.7) for b :?0 and b = 1. Let 3 denote the empirical significance levels

and empirical powers ofj (3.8).

Table 5-6 present B(Oi); BM and ffor K =5, d, = d, = 2.68 and At = 0.05 and for
different sample sizes. Both B and B are the proportion of 10,000 replicates for
which T} < K or Ty < K Since (3.6) involves really o_nly multi-variate normal dis-
tributions, 3 is the propiortion of 10,000 replicates for which T('dl) < K or T(’d:) < K.

These simulation results indicate that (3.8) approximates (3.7) reasonably well.
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Table 1: significance lévels, empirical and asymptotic powers 8 and 8 for oy
ay = 0.02532 and for various values of (01,0;) and At

(0, 0)\ O] 1 0.1 | 0.0 | 0.001 [0.0001 | 7

(0.0,0.0) [ 0.0078 [0.0284 | 0.0473 | 0.0472 | 0.0438 | 0.0500
(0.1,0.0) | 0.0233 [ 0.0532 [ 0.0787 | 0.0914 | 0.0858 | 0.0648
(0.0,0.1)  10.0257 | 0.0578 [ 0.0850 | 0.0924 | 0.0922 | 0.0982
(0.1,0.1) 10.0552 | 0.1074 | 0.1341 | 0.1477 | 0.1460 | 0.1175 |

Table 2: significance. IeVels empirical and asymptotic powers A1) and g for o
az = 0.02532 and for various values of (0y,6,) and At

(61,0)\ At ] 1 0.1 0.01 | 0.001 |} 0.0001 B
(0.0,0.0) 1'0.0106 | 0.0294 | 0.0418 | 0.0461 | 0.0509 | 0.0500
(0.1,0.0)  1'0.0248 | 0.0617 | 0.0810 | 0.0879 | 0.0897 | 0.0648
(0.0,0.1) }0.0229 | 0.0536 | 0.0757 | 0.0848 | 0.0799 | 0.0982

0.1028 | 0.1327 | 0.1389 | 0.1369 | 0.1175

(0.1,0.1)

0.0523

Table 3: significance Iev‘els empirical and asymptotic powers A and g for o
0.005, a3 = 0.04523 and for various values of (01, 0;) and At

(O, 0)\ AL | 1 0.1 | 0.01 | 0.001 [0.0001] 24
{0.0,0.0)" 0.0093 0.0299 | 0.0428 | 0.0470 | 0.0473 | 0.0500
(0.1,0.0) 10.0161 | 0.0391 | 0.0621 | 0.0692 | 0.0642 | 0.0540
(0.0,0.1) {0.031370.0653 | 0.0526 | 0.0902 | 0.0919 | 0.1034
(0.1,0.1) |06.0444 | 0.0833 | 0.1153 | 0.1211 | 0.1223 | 0.1151
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Table 4: mgmﬁcance levels, empirical and asymptotic powers SV and 8 for o =

0.005, ar; = 0.04523. a,nd for various values of (6;,6,) and At

(01,82) \ At 1 0.1 0.01 0.001 | 0.0001 i)
(0.0,0.0) J 0.0100 | 0.0303 | 0.0451 | 0.0486 0.0449 | 0.0500
(0.1,0.0) 1 0.0199 ! 0.0427 { 0.0666 | 0.0638 { 0.0683 | 0.0540
(0.0,0.1) }0.0267 | 0.0572 | 0.0750 | 0.0791 | 0.0825 | 0.1084
(0.1,0.1) - | 0.0428 } 0.0855 ] 0.1005 { 0.1128 | 0.1109 | 0.1151

Table 5: significance levels and empirical powers (% and ) for J = 100 and g for

various values of (4, 92)

. (011 92)

3

30

g

[(0.0,0.0)

0.0485

0.0465

0.0491

(0.1,0.0)

0.0813

0.0847

0.0614

(0.0,0.1)

0.0862

0.0726

0.0870

(0.1,0.1)

0.1340

0.1287

0.1135

i
b

Table 6: significance leve]s and empirical powers 8% and % for J = 200 and 3 for

various values of (fy, 92)

(017 02)

3©

g

B

10.0,0.0)

0.0499

0.0505

0.0506

10.1,0.0)

0.1053

0.1026

0.0771

(0.0,0.1)

0.1095

0.0949

0.1333

(01,00

0.1971

0.1866

0.1898

14
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