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Abstract

A magic scjuare of order nis an

n>a array such that each row, each
column and two main diagonal have the

K
m

same sum. A pandiagonal magic scjuare
of order n 1s an nxa array with integers 1,
2, ..., n’ such that each row, each column
and each broken or unbroken diagonals
thithis plan,
we got that any odd power of a

have the same sum. In

papandiagonal magic square of order 4 1s
stistill a pandiagonal magic square.

Keywords: magic square, pandiagonal
magic square

L Introduction

A semi-magic square Is an ma
array such that each row and each
column have the same sum. A magic
square of order n Is an n>a array such
that each row, each column and two main



ciagonal have the same sum. A
pandiagonal magic scjuare of order n 1s
an n>a array with integers 1, 2, .., n?
such that each row, each column and

each broken or unbroken diagonals have
the same sum. The set of magic squares
of order n(resp., the set of semi-magic
squares of order n, the set of pandiagonal
magic squares of order n) we denote by
Mag(n) (resp., Smag(n), Pmag(n)). Let
J be the n-by-n matnx satisfymg J; = 1 1f
1+]=ntl, otherwise J;=0.

II. Main result

Let s(IM) be the sum of
each column. Then the eigenvalues of

Proposition 1.

any pandiagonal magic scjuare are s(M),
0, A, and —A, where A 1s any real number.

Proposition 2. The power of any odd
number of pandiagonal magic scjuares of
order 4 1s a pandiagonal magic square.
Proof. Let M be a member of Pmag(4).
Define M’ =M - tr(M)-E/4, where E 1s
the 4-by-4 matrix with entries equal to 1
and tr(M) denotes the trace of M. Since
E is a pandiagonal magic scjuare of order
4, M isa pandiagonal magic scuare of
order 4. From the definition, we know
that t((M®) = 0, since tr(E) = 4. Thus
s(M") =0. By Proposition 1, we obtain
that the eigenvalues of M are 0,0, A
and —A, where A 1s any real number.
Hence the charactenstic polynomial of
M is p(x) = (- 1%).

From Caley-Hamuilton theorem, we
have (Mn)3 = ocl\/Io, where o 1s a real

number. Thus (M®)’is a pandiagonal
magic square of order 4. Consequently
(M)’ = o (M®)’ = o’M" is a pandiagonal
magic square. T herefore (M%?is a
pandiagonal magic scjuare for all odd p >
1.

Now we have M° = M - tr(M)-E/4, ie.,
M = M + tx(M)-E/4.

M2 = (M° + tx(M)-E/4)®

= (M2 +p* (MO ti(M) Bl + ...+
p* (M) (tr(M) E/d) B2 + (tr(M)-E/4) ®

Since M° E is equal to zero matnx, we
have M2 = (M%)?+ (tr(M)-E/4) ®

= (M")®+ (tr(M)/4) ®- E®
= (M2 + ((tx(M)) ¥4) - E
From the defimtion of E, we get

E?=4*1.E  Forany odd integer p,
(M%? s a pandiagonal magic square.
Therefore M? is a pandiagonal magic

square. QED.

For the discussion of panciagonal
magic scuares of order 5, we can not get
the same result. But we have the
power of any odd number of panciagonal
magic squares of order 5 is a magic
square. At the same time we generalize
this result. For tlus part, you will see 1t
in my student’s master thesis.
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