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This study proposes a semiparametric mixture model for competing risks data, in which
the failure time has proportional hazard rate conditional on cause type and the marginal
distribution of cause conditional on covariates is described by Bernstein polynomials. We
establish an asymptotic profile likelihood theory for this model and provide efficient
algorithms for the computation of the nonparametric maximum likelihood estimate
(NPMLE). The simulation studies indicate that the NPMLE perform excellently and that
the Bernstein polynomial based model is more flexible than the popular logistic function
based model.
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Survival analysis deal with data measured from a specific time of origin until a
specific endpoint. Competing risks models deal with survival data in which the endpoint
consists of several distinct events of interests; these events are called causes or types of
failure. One important and popular approach to competing risks data starts with
characterizing the joint distribution of the failure time and type in terms of cause- specific
hazard functions; see Prentice et al. (1987). In order to assess the direct effect of a
covariate on the cumulative risk of a particular type, Larson and Dinse (1985) proposed a
mixture model which incorporates covariates into a multinomial logistic model for the
marginal distribution of failure type and parametric specifications of the conditional
distribution of time to failure, given failure type. Fine (1999) proposes to analyze
competing risks data by transformation models, in which the cumulative incidence
function is decomposed into two parts: conditional survival distributions, given failure type,
and the marginal distribution of the failure types.

Let T, >0, C, >0, Z,eR’, and W, be the time to event, the censoring time, the

covariate, and the failure type of the i-th individual. Here W. € {1, 2} for simplicity. Larson

and Dinse (1985) and Fine (1999) assume the marginal probability of the failure from
cause 1, for example, satisfies

PW, =1|Z, =2)=g(e, +, 2) 1)

for some «, e R and ¢, e R, and a known, positive and increasing function g. One

popular choice of this function g is the logistic function. Much as this approach is
convenient, popular and useful, it introduces certain constraints. Suppose the dimension
dis 1 and Z, is age, then (1) postulates that age-specific failure rate is a monotone
function of age; it might seem desirable to have a model that does not impose
monotonicity, if monotonicity is not suggested by substantive knowledge. Suppose the
dimension d is 2, Z, is age and Z, is gender, then (1) postulates that either
age-specific failure rate for female is always greater than that for male for any age group,
or always smaller than that for male for any age group; it does not allow, for example, for
younger people, female has larger failure rate than male, while, for older people, female
has smaller failure rate than male. The purpose of this paper is to indicate that Bernstein
polynomials provide a useful tool to model the marginal distribution of the causes
conditional on covariates, without the aforementioned drawbacks.



A function f defined by f(z) =ij0ajcfzj (1-z)"' is called a Bernstein polynomial.

Our approach capitalizes on the fact that many geometric properties of a Bernstein
polynomial on [0,1] can be read off from its coefficients, and a continuous function
satisfying certain shape restrictions can often be approximated by Bernstein polynomials
with coefficients satisfying likewise conditions. One simple, yet useful such example is as
follows. If {a,,---a,} <[0,1],then f(z) < [0,1]for every z in [0,1]; a continuous function on
[0,1] with values in [0,1] can be approximated by Bernstein polynomials with coefficients
contained in [0,1], whose proof can be obtained by the same arguments in Chang et al.
(2005) or Chang et al. (2007a). In fact, this example motivates the following model (2).

Suppose that Z, =(Z
categorical covariate Z,,with K categories. We assume in this study that for some

1, Z,,)consists of a (0,1)-valued continuous covariate Z_ and a

_ T (J+D)K
0y =gy, 0y, Ay, Oy Oy, Ay ) € (0,1 )

PO, =112) =Y ([ [a)CiZ4a-2,)", @

j=0 k=0
which will be denoted by «(Z;). Here [Z;, =k] is a shorthand for the indicator 1, _,;;

thus it is either 0 or 1 and it is 1 if and only ifZ, =k . Expression (2) postulates that
conditional onZ,, =k ; the marginal distribution of failure type 1 is a Bernstein polynomial.
The flexibility of model (2) lies in the fact that every continuous function can be
approximated by Bernstein polynomials.

We note that although both model (1) and (2) are in the category of the so called
direct approach to modelling the cumulative incidence function in the sense of Jeong and
Fine (2006, 2007), our approach based on (2) is different from Jeong and Fine (2006,
2007), in which the right hand side of (1) is expressed in terms of Gompertz distribution.
We also note that the approach based on (1) to competing risks data is an important and
standard component in the cure models; see, for example, Farewell (1997), Kuk (1992),
Taylor (1995), Betensky and Schoenfeld (2001), Peng (2003), Lu and Ying (2004) and
Fang et al. (2005), among others. Our approach based on (2) might also be useful in
examining these cure models.

e = Ml

To simplify the presentation of models, we assume d <2. We note that K= 1 in
expression (2) when d = 1. We assume that the marginal probability of the failure from



cause 1 is given by (2), and assume that, for j=1, 2 and zinR?, the conditional hazard of
Tiattgiven Wi=jand Z=z is

2O exp(f]2),

where 2;(-) is a non-negative deterministic baseline hazard function and p; eR%is the

regression coefficient of covariate z. =1.

With right censoring, the observed data consist of {(Xi,Ai,Zi)|i=1,---,n}. Here
Xi =min{Ti,Ci}, [Ai :1]=|_Ti SCi’\Ni =1], [Ai ZZ]ZI.Ti SCiv\Ni 22]1 and [Ai 23]=|.Ti >Ci]'

Let A,(t) =J-0t/1j (u)duforj=1,2and &=(a;,A .5 A, A,). We will estimate ¢ based on

observable data {(X; A;,Z;)|i=1---,n}, assuming that {(T,,C;,Z,,W)|i=1---,n} are

independent and identically distributed.

We now present the likelihood for the observable data. Assume that (T,,W,) and
C, are conditionally independent given Z, and that the distribution of (C,,Z;)has nothing
to do with parameter 4. Then the likelihood function is

I‘n (0) = ﬁ {a(zi)/\l{xi}eﬂfzi exp(_Al(Xi)eﬂszi )}[A|:l]
[Ai=2]

x {a(zi )Az{xi}eﬁ}Z, exp(—A, (Xi)eﬁgz' )}

T T y[A=3]
x {a(zi)exp(_l\l(xi)eﬁl )+ (L-a(Z,) exp(—A, (X, )e”? )} ,

where A {t} = A;(t) - A;(t-), the jump of size of A;attime t. The maximizer of this

likelihood function is referred to as the nonparametric maximum likelihood estimator
(NPMLE) of the parameter 6.

We establish the existence of NPMLE, derive the score functions, and to develop an
efficient iterative algorithm for computing the NPMLE. The details are omitted here. In
addition, we establish the consistency of the NPMLE, and follow Murphy & van der Vaart
(2000) to get a profile likelihood theory of this model. The main results (Theorem 1~5) are
given in the next section. Furthermore, we conduct simulation studies to evaluate the
performance of proposed method and indicate Bernstein polynomial based model (2) is
more flexible than the popular logistic function based model (1).
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(1) Asymptotic properties

We establish the following asymptotic properties of the NPMLE. The proofs for them

are skipped in this report. Denote the true parameter by ¢, =(a.,, Sy, 55) and

6, =(&y, A, Ay). Let the profile likelihood for ¢ be denoted by pL, (<) , which is equal

tosup L, (9) . Then we have

Ay A,
Theorem 1 || gA“n =&l |l Amn - Ayl and|| Asn - A, ||, converge to 0 almost surely, as
n tends to infinity. Here ||-|| is the Euclidean norm and ||-]|, is the uniform

norm.

Theorem 2 \/ﬁ(én —6,) converges weakly to a tight Gaussian process with mean zero
and some covariance process.

Theorem 3 \/ﬁ(Zn —¢,) is asymptotically normal distributed with mean zero and some

covariance X . Here X! is the efficient variance of estimating ¢.

(J+1)K+2d

Theorem 4  For all sequences v, —"—veR and p, —"—0such that

109 pL, (&, + o) l0g PL,(S4)

- >v v
npe,

(np,)t=0,(1), we have

Theorem 5  Under the null hypothesis { = £, the likelihood ratio statistic

pL,(£,)
an (é/o)

degrees of freedom.

2log is asymptotically chi-squared distributed with ((J+1)K+2d )

(2) Simulation studies

There are two studies in this section. In the first one, the marginal distribution of failure



type is a Bernstein polynomial; in the second one, the marginal distribution of failure type
is not. While the first one is meant to provide information as to the performance of the
method under the model assumptions, the second serves to indicate the robustness of
our method.

In the first study, we set d=1J=2 a,=(¢y % Xp) =(0.3,0.80.4);

Lo =1 By =-1 A4,(t)=1/4 and 1,,(t) =1/5; the censoring variable C, is exponential with
parameter 25; the distribution of the covariate Z, is uniform(0,1).There are 500 replicates
in this study and each replicate is a random sample with sample size 150. Based on the
data from these 500 replicates, about 45% of them fail from cause 1, 38% of them fail
from cause 2, and 17% of them censored.

The number of iterations in using the algorithm is set at 300, and the starting values
are setasa, =(0.5,0.5,0.5)", 3 = B, =0, and A, (t) = A, (t) = t.

Table 1 summarizes the results of this simulation study. The second column of Table
1 lists the true values of the parameters. The third, fourth and fifth columns report
respectively the sample mean, sample standard deviation (SD) and sample
mean-squared error (MSE) of the 500 estimates. The sixth column reports the average of
the 500 standard deviations computed by profile likelihood theory (SDP ): the final
column gives the 95% coverage probability (CP) based on the normal approximation
(Theorem 3). It is clear from Table 1 that the numerical performance of our method is
excellent.

The only difference between the model assumptions in the first study and those in
the second study is that in the second study, the true probability of failure
PW, =1|Z, =z)=0.2+sin(2.52)/ 2,
which is not a Bernstein polynomial. The data is analyzed by model (2) based on
Bernstein polynomial of order 2 and by model (1) with logistic function

el
: 3

1+¢' @)

which was developed in Chang et al: [3]. The results of the second study are reported in

Figure 1 and Table 2; entries in Table 2 bear the same meaning as those in Table 1. The
mean integrated square error of a(-) based on Bernstein polynomial model (2) and logistic

g(t) =

model (3) are 0.0047 and 0.0132 respectively. These results seem to suggest that while
both models provide quite good estimates of the relative risk coefficients in the conditional
hazard rates, Bernstein polynomial model (2) with orderJ =2 provides much better
estimate of the marginal probability of failure type. We note that Bernstein polynomial



model (2) with order J =1does not provide reasonable estimate (data not shown).

(3) Disscussions

We have introduced a new class of marginal distributions of competing cause
using Bernstein polynomials. With suitably chosen Bernstein polynomial order, our
approach is more flexible than the classical logistic model in describing the marginal
distribution of failure type. We have presented an efficient algorithm and profile
likelihood theory for the NPMLE.

Our simulation studies indicate that the numerical performance of the NPMLE is
excellent. It might be of some interest to explore the possibility of replacing logistic
function by Bernstein polynomial in other regression models. One notable and closely
related class of examples would be the cure models mentioned in the introduction.
Another example is the mixture model for competing risks data in which the
conditional survival time, given the failure type, is a proportional odds model (Fine
1999).

Our simulation studies also suggest that when the model assumption on the
marginal distribution of failure type is not correct, it is still likely that the NPMLE gives
reasonable estimate of the marginal distribution of failure type. While higher order
Bernstein polynomials provide better approximation to the true marginal distribution
of failure type, which is not known to the scientist, they involve more parameters.
Further investigation in this regard is needed.

The main idea of our approach is to capitalize on the fact that continuous
functions valued in (0,1) can be approximated by Bernstein polynomials with
coefficients in (0,1). Bernstein polynomials were used by Chang et al (2005) and
Chang et al (2007b) to study shape restricted inference. In particular, they made use
of the facts that if a,<a, <---<a, then f is increasing on [0,1] and a continuous
increasing function on [0,1] can be approximated by Bernstein polynomials with
non-decreasing coefficients. We note that similar statements can be made for
convexity and unimodality of a continuous function. These remarks suggest that we
may incorporate substantive knowledge like monotonicity, convexity or unimodality
into (2) by putting suitable restrictions on the coefficients of the Bernstein polynomials.
We will take up this study in the future.
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Table 1. Simulation study when the model assumptions are satisfied.

Parameter True mean SD MSE sDP! CP
value
Ay 0.3000 0.3126 0.1227 0.0152 0.1302 0.9460
ay, 0.8000 0.7922 0.1745 0.0305 0.1975 0.9680
Ay 0.4000 0.4075 0.1308 0.0172 0.1271 0.9360
B 1.0000 1.0093 0.5630 0.3171 0.5330 0.9360
5, -1.0000  -1.0393 0.5476 0.3014 0.4916 0.9400

Table 2. Simulation study when the Bernstein polynomial model (2) is not satisfied.
Numbers in brackets are estimates using logistic model (3), others are using Bernstein
polynomial model (2).

Parameter True mean SD MSE SDPf CP
value
B 1.0000 1.0131 0.5441 0.2962 0.5201 0.9300
[1.0101] [0.5667] [0.3213] [0.5239] [0.9200]
5 -1.0000 -1.0209 0.5658 0.3206 0.5200 0.9280

[-1.0403] [0.5710] [0.3277] [0.5219]  [0.9260]




Figure 1: Simulation study when the Bernstein polynomial model (2) is not satisfied.
The solid line gives true probability of failure from cause 1, PW, =1|Z, =2)

=0.2+sin(2.5z)/ 2, which is not a Bernstein polynomial; the dash line gives the
estimate using Bernstein polynomial model (2); the dot line gives the estimate using
logistic model (3).
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[ ] Establish the consistency and the asymptotic normality of the NPMLE.

[ ] Provide asymptotic theories for standard error estimate and profile likelihood ratio
inference.

[ ] Develop algorithms for computing NPMLE and its asymptotic variance based on
the integral characterization of the score functions.

[ ] Conduct simulation studies to evaluate the performance of our method.

[] Conduct simulation studies to indicate the flexibility of our model.

10
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For analyzing competing risks data, we introduce a new class of marginal
distributions of competing cause using Bernstein polynomials. With suitably chosen
Bernstein polynomial order, our approach is more flexible than the classical logistic
model in describing the marginal distribution of failure type.

AT T A
Yes, we will submit our study to a appropriate journal.
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