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計畫名稱： 

Competing Risk Models with General Marginal Distribution of Causes 
(具一般發生原因分配之競爭型風險模型) 
 
 
中文摘要：  
 

對於競爭型風險數據，此研究提出一個以伯氏多項式建構發生原因分配和以正比風險

模型建構條件存活函數之半母數混合模型。我們將研究此競爭型風險模型之無母數最大概

然估計。我們建立此模型的漸近剖析概然函數理論；並提供一有效計算無母數最大概然估

計的演算法。模擬試驗說明無母數最大概然估計的良好數值表現，以及這個以伯氏多項式

建構發生原因分配的模型比傳統以羅氏函數建構發生原因分配的模型更具廣泛應用性。 
 

英文摘要： 

 
This study proposes a semiparametric mixture model for competing risks data, in which 
the failure time has proportional hazard rate conditional on cause type and the marginal 
distribution of cause conditional on covariates is described by Bernstein polynomials. We 
establish an asymptotic profile likelihood theory for this model and provide efficient 
algorithms for the computation of the nonparametric maximum likelihood estimate 
(NPMLE). The simulation studies indicate that the NPMLE perform excellently and that 
the Bernstein polynomial based model is more flexible than the popular logistic function 
based model. 
 

關鍵詞  

 
Bernstein polynomials; competing risks model; distribution of the failure type; 伯氏多項式; 
競爭型風險模型; 發生原因分配 
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報告內容 

一 前言、研究目的、文獻探討 

 Survival analysis deal with data measured from a specific time of origin until a 
specific endpoint. Competing risks models deal with survival data in which the endpoint 
consists of several distinct events of interests; these events are called causes or types of 
failure. One important and popular approach to competing risks data starts with 
characterizing the joint distribution of the failure time and type in terms of cause- specific 
hazard functions; see Prentice et al. (1987). In order to assess the direct effect of a 
covariate on the cumulative risk of a particular type, Larson and Dinse (1985) proposed a 
mixture model which incorporates covariates into a multinomial logistic model for the 
marginal distribution of failure type and parametric specifications of the conditional 
distribution of time to failure, given failure type. Fine (1999) proposes to analyze 
competing risks data by transformation models, in which the cumulative incidence 
function is decomposed into two parts: conditional survival distributions, given failure type, 
and the marginal distribution of the failure types.  

Let 0,  0,  ,d
i i iT C Z≥ ≥ ∈ℜ  and iW  be the time to event, the censoring time, the 

covariate, and the failure type of the i-th individual. Here {1, 2}iW ∈ for simplicity. Larson 
and Dinse (1985) and Fine (1999) assume the marginal probability of the failure from 
cause 1, for example, satisfies  

1 2( 1 | ) ( )T
i iP W Z z g zα α= = = +  (1) 

for some 1
1 2 and dα α∈ℜ ∈ℜ , and a known, positive and increasing function g. One 

popular choice of this function g is the logistic function. Much as this approach is 
convenient, popular and useful, it introduces certain constraints. Suppose the dimension 
d is 1 and iZ  is age, then (1) postulates that age-specific failure rate is a monotone 
function of age; it might seem desirable to have a model that does not impose 
monotonicity, if monotonicity is not suggested by substantive knowledge. Suppose the 
dimension d is 2, 1iZ  is age and 2iZ  is gender, then (1) postulates that either 
age-specific failure rate for female is always greater than that for male for any age group, 
or always smaller than that for male for any age group; it does not allow, for example, for 
younger people, female has larger failure rate than male, while, for older people, female 
has smaller failure rate than male. The purpose of this paper is to indicate that Bernstein 
polynomials provide a useful tool to model the marginal distribution of the causes 
conditional on covariates, without the aforementioned drawbacks.  
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A function f defined by
0

( ) (1 )J J j J j
j jj

f z a C z z −
=

= −∑ is called a Bernstein polynomial. 

Our approach capitalizes on the fact that many geometric properties of a Bernstein 
polynomial on [0,1] can be read off from its coefficients, and a continuous function 
satisfying certain shape restrictions can often be approximated by Bernstein polynomials 
with coefficients satisfying likewise conditions. One simple, yet useful such example is as 
follows. If 0{ , } [0,1],Ja a ⊂ then ( ) [0,1]f z ⊂ for every z in [0,1]; a continuous function on 
[0,1] with values in [0,1] can be approximated by Bernstein polynomials with coefficients 
contained in [0,1], whose proof can be obtained by the same arguments in Chang et al. 
(2005) or Chang et al. (2007a). In fact, this example motivates the following model (2).  

 
Suppose that 1 2( , )i i iZ Z Z= consists of a (0,1)-valued continuous covariate 1iZ and a 

categorical covariate 2iZ with K categories. We assume in this study that for some 

( 1)
01 11 1 0 1( , , , , , , , , ) (0,1) ,T J K

c J K K JKα α α α α α α += ∈  

 
2[ ]

1 1
0 0

( 1 | ) ( ) (1 ) ,i

KJ
Z k J j J j

i i jk j i i
j k

P W Z C Z Zα = −

= =

= = −∑ ∏    (2) 

which will be denoted by ( )iZα . Here 2[ ]iZ k=  is a shorthand for the indicator 
2[ ]1

iZ k= ; 

thus it is either 0 or 1 and it is 1 if and only if 2iZ k= . Expression (2) postulates that 
conditional on 2iZ k= ; the marginal distribution of failure type 1 is a Bernstein polynomial. 
The flexibility of model (2) lies in the fact that every continuous function can be 
approximated by Bernstein polynomials.  

 
We note that although both model (1) and (2) are in the category of the so called 

direct approach to modelling the cumulative incidence function in the sense of Jeong and 
Fine (2006, 2007), our approach based on (2) is different from Jeong and Fine (2006, 
2007), in which the right hand side of (1) is expressed in terms of Gompertz distribution. 
We also note that the approach based on (1) to competing risks data is an important and 
standard component in the cure models; see, for example, Farewell (1997), Kuk (1992), 
Taylor (1995), Betensky and Schoenfeld (2001), Peng (2003), Lu and Ying (2004) and 
Fang et al. (2005), among others. Our approach based on (2) might also be useful in 
examining these cure models. 
 

二 研究方法 

To simplify the presentation of models, we assume 2.d ≤  We note that K = 1 in 
expression (2) when d = 1. We assume that the marginal probability of the failure from 
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cause 1 is given by (2), and assume that, for j=1, 2 and z in ,dR  the conditional hazard of 
Ti at t given Wi=j and Zi=z is 

( ) exp( ),T
j jt zλ β  

where ( )jλ ⋅  is a non-negative deterministic baseline hazard function and d
jβ ∈R is the 

regression coefficient of covariate z. =1. 
 

With right censoring, the observed data consist of { }( , , ) | 1, , .i i iX Z i nΔ =  Here 

min{ , },i i iX T C= [ 1] [ , 1],i i i iT C WΔ = = ≤ =  [ 2] [ , 2],i i i iT C WΔ = = ≤ =  and [ 3] [ ].i i iT CΔ = = >  

Let 
0

( ) ( )
t

j jt u duλΛ = ∫ for j=1, 2 and 1 2 1 2( , , , , )T T T
cθ α β β= Λ Λ . We will estimate θ  based on 

observable data { }( , , ) | 1, , ,i i iX Z i nΔ =  assuming that { }( , , , ) | 1, ,i i i iT C Z W i n=  are 

independent and identically distributed. 
 

We now present the likelihood for the observable data. Assume that ( , )i iT W and 

iC are conditionally independent given iZ  and that the distribution of ( , )i iC Z has nothing 
to do with parameter .θ  Then the likelihood function is  

{ }
{ }
{ }

1 1

2 2

1 2

[ 1]

1 1
1

[ 2]

2 2

[ 3]

1 2

( ) ( ) { } exp( ( ) )

 ( ) { } exp( ( ) )

 ( ) exp( ( ) ) (1 ( ))exp( ( ) ) ,

iT T
i i

iT T
i i

iT T
i i

n
Z Z

n i i i
i

Z Z
i i i

Z Z
i i i i

L Z X e X e

Z X e X e

Z X e Z X e

β β

β β

β β

θ α

α

α α

Δ =

=

Δ =

Δ =

= Λ −Λ

× Λ −Λ

× −Λ + − −Λ

∏

 

where { } ( ) ( )j j jt t tΛ = Λ −Λ − , the jump of size of jΛ at time t. The maximizer of this 

likelihood function is referred to as the nonparametric maximum likelihood estimator 
(NPMLE) of the parameter .θ  
 

We establish the existence of NPMLE, derive the score functions, and to develop an 
efficient iterative algorithm for computing the NPMLE. The details are omitted here. In 
addition, we establish the consistency of the NPMLE, and follow Murphy & van der Vaart 
(2000) to get a profile likelihood theory of this model. The main results (Theorem 1~5) are 
given in the next section.  Furthermore, we conduct simulation studies to evaluate the 
performance of proposed method and indicate Bernstein polynomial based model (2) is 
more flexible than the popular logistic function based model (1).  
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三 結果與討論 

（1）Asymptotic properties 
  

 We establish the following asymptotic properties of the NPMLE. The proofs for them 

are skipped in this report. Denote the true parameter by 0 0 10 20( , , )cζ α β β=  and 

0 0 10 20( , , ).θ ζ= Λ Λ  Let the profile likelihood for ζ  be denoted by ( )npL ζ , which is equal 

to
1 2,

sup ( )nL θ
Λ Λ

. Then we have 

Theorem 1 0|| ||,nζ ζ−  1 10|| ||n ∞Λ −Λ , and 2 20|| ||n ∞Λ − Λ  converge to 0 almost surely, as 

n tends to infinity. Here || ||⋅  is the Euclidean norm and || ||∞⋅ is the uniform 

norm. 

Theorem 2 0( )nn θ θ−  converges weakly to a tight Gaussian process with mean zero 

and some covariance process. 

Theorem 3 0( )nn ζ ζ− is asymptotically normal distributed with mean zero and some 

covariance 1−Σ . Here 1−Σ  is the efficient variance of estimating .ζ  

Theorem 4  For all sequences ( 1) 2P J K d
nv v R + +⎯⎯→ ∈ and 0P

nρ ⎯⎯→ such that 

1( ) (1),n Pn Oρ − =  we have  2

log ( ) log ( )2 P Tn nn n n n

n

pL v pL v v
n

ζ ρ ζ
ρ

+ −
− ⎯⎯→ Σ  

Theorem 5  Under the null hypothesis 0ζ ζ= , the likelihood ratio statistic 

0

( )2 log
( )

nn

n

pL
pL

ζ
ζ

is asymptotically chi-squared distributed with ((J+1)K+2d ) 

degrees of freedom. 
 
（2）Simulation studies 
 

There are two studies in this section. In the first one, the marginal distribution of failure 
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type is a Bernstein polynomial; in the second one, the marginal distribution of failure type 
is not. While the first one is meant to provide information as to the performance of the 
method under the model assumptions, the second serves to indicate the robustness of 
our method. 

In the first study, we set 1;  2;d J= = 0 010 110 210( , , )T
cα α α α≡ (0.3,0.8,0.4);=  

10 201, 1,β β= = − 10 20( ) 1/ 4 and ( ) 1/ 5;t tλ λ= = the censoring variable iC is exponential with 
parameter 25; the distribution of the covariate 1iZ is uniform(0,1).There are 500 replicates 
in this study and each replicate is a random sample with sample size 150. Based on the 
data from these 500 replicates, about 45% of them fail from cause 1, 38% of them fail 
from cause 2, and 17% of them censored.  

 
The number of iterations in using the algorithm is set at 300, and the starting values 

are set as 1 2 1 2(0.5,0.5,0.5) , 0,  and ( ) ( ) .T
c t t tα β β= = = Λ = Λ =  

Table 1 summarizes the results of this simulation study. The second column of Table 
1 lists the true values of the parameters. The third, fourth and fifth columns report 
respectively the sample mean, sample standard deviation (SD) and sample 
mean-squared error (MSE) of the 500 estimates. The sixth column reports the average of 
the 500 standard deviations computed by profile likelihood theory (SDprof ); the final 
column gives the 95% coverage probability (CP) based on the normal approximation 
(Theorem 3). It is clear from Table 1 that the numerical performance of our method is 
excellent. 

 
The only difference between the model assumptions in the first study and those in 

the second study is that in the second study, the true probability of failure  
( 1 | ) 0.2 sin(2.5 ) / 2,i iP W Z z z= = = +  

which is not a Bernstein polynomial. The data is analyzed by model (2) based on 
Bernstein polynomial of order 2 and by model (1) with logistic function 

 
( ) ,

1

t

t

eg t
e

=
+

   (3) 

which was developed in Chang et al: [3]. The results of the second study are reported in 
Figure 1 and Table 2; entries in Table 2 bear the same meaning as those in Table 1. The 
mean integrated square error of ( )α ⋅ based on Bernstein polynomial model (2) and logistic 
model (3) are 0.0047 and 0.0132 respectively. These results seem to suggest that while 
both models provide quite good estimates of the relative risk coefficients in the conditional 
hazard rates, Bernstein polynomial model (2) with order 2J =  provides much better 
estimate of the marginal probability of failure type. We note that Bernstein polynomial 
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model (2) with order 1J = does not provide reasonable estimate (data not shown). 
 

（3） Disscussions 
 

We have introduced a new class of marginal distributions of competing cause 
using Bernstein polynomials. With suitably chosen Bernstein polynomial order, our 
approach is more flexible than the classical logistic model in describing the marginal 
distribution of failure type. We have presented an efficient algorithm and profile 
likelihood theory for the NPMLE. 

 
Our simulation studies indicate that the numerical performance of the NPMLE is 

excellent. It might be of some interest to explore the possibility of replacing logistic 
function by Bernstein polynomial in other regression models. One notable and closely 
related class of examples would be the cure models mentioned in the introduction. 
Another example is the mixture model for competing risks data in which the 
conditional survival time, given the failure type, is a proportional odds model (Fine 
1999). 

 
Our simulation studies also suggest that when the model assumption on the 

marginal distribution of failure type is not correct, it is still likely that the NPMLE gives 
reasonable estimate of the marginal distribution of failure type. While higher order 
Bernstein polynomials provide better approximation to the true marginal distribution 
of failure type, which is not known to the scientist, they involve more parameters. 
Further investigation in this regard is needed. 

 
The main idea of our approach is to capitalize on the fact that continuous 

functions valued in (0,1) can be approximated by Bernstein polynomials with 
coefficients in (0,1). Bernstein polynomials were used by Chang et al (2005) and 
Chang et al (2007b) to study shape restricted inference. In particular, they made use 
of the facts that if 0 1 Ja a a≤ ≤ ≤  then f is increasing on [0,1] and a continuous 
increasing function on [0,1] can be approximated by Bernstein polynomials with 
non-decreasing coefficients. We note that similar statements can be made for 
convexity and unimodality of a continuous function. These remarks suggest that we 
may incorporate substantive knowledge like monotonicity, convexity or unimodality 
into (2) by putting suitable restrictions on the coefficients of the Bernstein polynomials. 
We will take up this study in the future. 
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Table 1. Simulation study when the model assumptions are satisfied. 
 

Parameter True 
value 

mean SD MSE profSD  CP 

01α  

11α  

21α  

0.3000 
0.8000 
0.4000 

0.3126 
0.7922 
0.4075 

0.1227 
0.1745 
0.1308 

0.0152 
0.0305 
0.0172 

0.1302 
0.1975 
0.1271 

0.9460 
0.9680 
0.9360 

1β  

2β  
1.0000 
-1.0000 

1.0093 
-1.0393 

0.5630 
0.5476 

0.3171 
0.3014 

0.5330 
0.4916 

0.9360 
0.9400 

 
 
 
 
 

Table 2. Simulation study when the Bernstein polynomial model (2) is not satisfied. 
Numbers in brackets are estimates using logistic model (3), others are using Bernstein 

polynomial model (2). 
Parameter True 

value 
mean SD MSE profSD  CP 

1β  1.0000 
 

1.0131 
[1.0101] 

0.5441 
[0.5667] 

0.2962 
[0.3213] 

0.5201 
[0.5239] 

0.9300 
[0.9200] 

2β  -1.0000 
 

-1.0209 
[-1.0403] 

0.5658 
[0.5710] 

0.3206 
[0.3277] 

0.5200 
[0.5219] 

0.9280 
[0.9260] 
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Figure 1: Simulation study when the Bernstein polynomial model (2) is not satisfied. 
The solid line gives true probability of failure from cause 1, ( 1| )i iP W Z z= =  
0.2 sin(2.5 ) / 2,z= + which is not a Bernstein polynomial; the dash line gives the 

estimate using Bernstein polynomial model (2); the dot line gives the estimate using 
logistic model (3). 

 

 
 
 
 
 

計畫成果自評 

 
原計畫預期完成之工作項目(詳列如下)全部達成 
 

□ Establish the consistency and the asymptotic normality of the NPMLE.  
□ Provide asymptotic theories for standard error estimate and profile likelihood ratio 

inference.  
□ Develop algorithms for computing NPMLE and its asymptotic variance based on 

the integral characterization of the score functions.  
□ Conduct simulation studies to evaluate the performance of our method.   
□ Conduct simulation studies to indicate the flexibility of our model.  
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研究成果之學術或應用價值 
 

For analyzing competing risks data, we introduce a new class of marginal 
distributions of competing cause using Bernstein polynomials. With suitably chosen 
Bernstein polynomial order, our approach is more flexible than the classical logistic 
model in describing the marginal distribution of failure type.   

 
是否適合在學術期刊發表 
   Yes, we will submit our study to a appropriate journal. 
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一、參加會議經過 
 

在會議進行的幾天，參與了好幾個 talk sessions。其中有趣的，重要的或具啟發性

的包含 Dr. Xiaoli Meng 發表之 Self-consistency: a general recipe for semi- parametric 
and non-parametric estimation; Dr. Thomas Lee 發表之 Further applications of the 
self-consistency principle for missing data problems; Dr. Jianguo Sun 發表之 Statistical 
analysis of informatively censored failure time data; Dr. Joe Wellner 發表之 On and off 
semiparametric models; Dr. Michael Kosorok發表之Optima; semiparametric inference 
under parameter constraints 等等是與個人目前研究相關的。整個會議議程內容豐富，

討論也非常熱烈。此外，個人也參與了首天傍晚約兩小時的 poster session。緊接是接

待會，配合以晚餐 buffet 方式輕鬆地舉行，這讓的方式讓與會者有寬裕的時間能夠認識

彼此及討論交流。 
 
二、與會心得 
 

此次會議期間，個人也發表了近來的研究成果。對於競爭型風險數據，我們提出一

個以伯氏多項式建構發生原因分配和以正比風險模型建構條件存活函數之半母數混合模

型，並研究此模型之無母數最大概然估計。我們指出以伯氏多項式建構發生原因分配的

模型比傳統以羅氏函數建構發生原因分配的模型更具廣泛應用性。此研究除了吸引了包

括大會主席 Dr. Runze Li 等不少與會者的發問及對個人研究的肯定，也得到了他們很多

寶貴的評論和建議。例如:應在模型中考慮多變量共變異(multivariate covariate)因子；並

且將之應用於一個實際數據分析來說明此統計方法等等。此外，這次統計會議裡，認識

了許多不同統計領域的專家學者，與他們交換個別的研究心得，收穫良多。此次與會是

一次豐富且難得的經驗。 
 


