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Positive solutions of nonlinear second-order
m-point boundary value problem

Tsorng Hwa Chang®, Chuan Jen Chyan® and Shang Wen Lin®)

Abstract

Under suitable conditions on f(¢,u), the nonlinear second-order m-point
boundary value problem

u”(t) + f(t,u(t) =0

m—2
u(0) =0, u(l) =" au(&)
i=1

has at least one positive solution.

1. Introduction

The study of multipoint boundary value problems for linear second-order ordinary
value problems was initialed by Ilin and Moiseer [1, 2]. Then Gupta [5] studied three-
point boundary value problems for nonlinear ordinary differential equations. We refer
the reader to [3-10], for some recent results of nonlinear multipoint boundary value

problems.
In this paper, we investigate the existence of positive solutions to nonlinear second-
order m-point boundary value problem:

u’'(t) + f(tu(t) =0, 0<t<l1 (1.1)

u(0) =0, wu(l) = Z_ a;u(&;) (1.2)

where a; > O0fort=1,.... m—3and a,, o > 0, & satisfy 0 <& <& <o <&pn < 1
and 27;2 a;&; < 1. We also make the following assumptions.

(A1) f € C([0,1] x [0,00);[0,00)), f # 0.



(Ag) 3Hy, Hy satisty f(s,u) < MjH; on [0,1] x [0, H] and f(s,u) > MsH; on

m—2
[€m2,1] x [[Ha, 00), where My = 2(1 = 377" &) and My = 220
m— “2ui—1 QiSi
or

(AL) 3Hs, Hy > 0 such that f(s,u) > MyHjz on [§,,_2, 1] x[0,T' H3] and f(s,u) < M H,
on [0,1] x [Hy, 00).

The proof of the main result in this article is based on an application of the following
well-known Guo-Krasioselskii fixed-point theorem [11].

Theorem 1.1. Let E be a Banach space and K C E be a cone in E. Assume €1 and €
are open subset of E with 0 € Qy and 1 C Qo, T : KN (Q\Q1) — K be a completely
continuous operator such that

(1) || Tu| < |ul|, Yu € KNI and ||Tul| > [jul], Vu € KN INy; or
(1) || Tu|| < |u|l, Yu € KNOQy and ||Tul| > ||ul], Vu € KN IQ,.
Then T has a fized point in K N (2\ Q).

2. The Preliminary Lemmas

Lemma 2.1 (Gupta et al. [5]). Let a; >0 fori=1,2,...,m—2, and S7"7> a;& # 1;
then for y € C[0,1], the boundary value problem:

u"(t)+y(t) =0, 0<t<l, (2.1)
u(0) = (0), u(l) = Z a;iu(&;), (2.2)

has a unique solution

t

u(t) = - Z:Zz @) /0 (1 —3s)y(s)ds — /0 (t —s)y(s)ds

t m—2

3
- i i — s)y(s)ds.
1- > au() z; /0 (& — s)y(s)

Let CT][0, 1] be the set of nonnegative function in C10, 1].

Lemma 2.2 (Ma [9]). Let a; > 0, fori=1,2,....m —2 and S.";* a;& < 1. Then
fory € C1[0,1], the unique solution u(t) of (2.1), (2.2) is nonnegative and satisfies

min  u(t) > I'||lu
oin (t) > T[]



where

I' = min {am_2(1 - 5771—2)’ am—ng—Za 51} .

1— a'm—ng—Q

3. Main results

In this section we show the existence of positive solution for the boundary value
problem (1.1), (1.2).

Theorem 3.1. Suppose (A1), (A2) hold, then (1.1), (1.2) has at least one positive
solution.

Proof. Let
K={y:yech 1), y>0, min_y@t)>Tlyl}.

Em—2<t<1

where I' is described as in Lemma 2.2. It is clear that IC is a cone. Define an integral
operator A : K — CT|0, 1].

Aw(®) = - / (t — ) f (s, y(s))ds

0 & = ) (,y()ds | Jy (L= 5)f (5, y(5))ds
L= 300" aig L -3 aik
Now (1.2), (1.2) has a solution y = y(¢) if and only if y solves the operator equation
A(y(t)) = y(t). It is clear that AKX C K. The details of the proof can be founded

in [9]. It is routine to check that A is a completely continuous operator on K. Let
O ={y e C[0,1] : ||y|| < H1} and choose y € K such that ||y|| = H;, then we see that

tfy (1= s)f(s,y(s))ds
1= asg
tfol(l — s)M1H,ds
T1-y"as
MH; -}
1= 3" asg
= H.

Ay(t) <

Thus, we have ||[Ay|| < ||ly]| on 991 N K. Now, let Qy = {y € C[0,1] : ||y|| < Hs} and
y € 02 NI, that is, ||y|| = Ha, according to Lemma 2.1 there exists a unique solution



of

u(1)

, te€(0,1) (3.1)

u(0) =0, wu(l)= A a;u(&;) (3.2)

m: ? aj foj & —s)f(s,y(s))ds
1— Z;n 12 a;&;

&
[— / (6 — ) F(s, y(s))ds — &2

S - s)f(s y(s))ds ]
1 - E] 1 CLJ§J

(LS
- Zai/O (& —s)f(s,y(s))ds
: (nfa-£> o o' & = 9 (s, y(s)ds

i=1 1_2] 1%5]
fo (1 —35)f(s,y(s))ds
_'_ 151
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> o Hlmzzazéz/fsy ds—Zaz@/sfsyw)d]

m—2

1
1_2@ g [ (19 uo)as

jj@l gm—Q

v

> o azfl f£ (1 — s)MyHods
1— Z] 1 aﬁ]
Zzn 12 azgz ( - 5m—2

]'_Zzlalg’l 2
= H,.

v

2
) - MyH,

Hence [[Ay[| = |Ay(1)] = |u(1)] = H2 = |lyll. [[Ayll = [ly]| on 89, N K. Therefore, by
(i) of the fixed-point theorem, it follows that A has a fixed point in K N (€2\€2). This
completes the proof.

Theorem 3.2. Suppose (A1) and (AY) hold, then (1.1), (1.2) has at least one positive
solution.

Proof. Let Q3 = {y € C[0,1] : |ly|| < Hs}. Thus, if y € K and ||y|| = Hs, we get

1 m—2 1
u(l) > 11— qu ¢ Zm&/ﬁ (1—39)f(s,y(s))d

=1 ISt ;—1 S
1 m—2 1

- 1= aid <; aigi) M H /ﬁm_g(l — s)ds

= ! N

- 1—- ZZEQ zgi <zzl al€z> 2 M2H3

= H;

Hence, || Ay|| > |Ay(1)| = |u(1)| > Hs, for all y € 9Q3 N K. Now let Qy = {y € C[0,1] :
lyll > Hy}. For y € K and |ly|| = Hy, we get

(s,y(s))ds

w) = = [ )1t nas - o= @'

1 - zz X azfz
I =) f(s,y(s))ds

1= aid
o (@ =) f(s,y(s))ds

1— 0 ik

+t

IN



M1H4 fol(]_ — S)dS
1= il

1
= MiH,- m—2
2(1 =307 a)

— H,
Hence, ||Ay|| < Hy = ||y|| on 094 N K.

4. Remarks

Remark 4.1. Recently, Ma [9] considered the second-order m-point boundary value
problem.

u’(t) +a(t)g(u) =0, t€(0,1) (4.1)
u(0) =0, wu(l)= A a;u(&;) (4.2)

and gave the following result.
Theorem 4.1. Assume

(A3) g € C(]0,00),[0,00)) and both limits

go := lim AL , oo := lim _g(u)
u—0t U u—oo U

exist.

(Ag) a € C([0,1],]0,00)), and there exists o € [Em—2,1] such that a(zg) > 0, and
221712 aifi < 1.

Then problem (4.1), (4.2) has at least one positive solution in the case (i) go = 0 and

Goo = 00 0T (ii) gy = 00 and g = 0.

Put f(t,u) = a(t)g(u) in (1.1). Assumptions (A;) and (Ay) will be fulfilled if the
conditions (A3), (A4) together with case (i) are satisfied. Similarly, assumption (A;)
and (A%) will be fulfilled if the conditions (A3), (A4) together with case (ii) are satisfied.

Remark 4.2. Y. Sun [10] considered the following boundary value problem
u’(t) + Xa(t)g(u) =0, te(0,1) (4.3)

u(0) =0, wu(l) = Z a;u(&;) (4.4)

6



where A is a positive parameter, a; > 0 fori=1,2,....,m — 3 and a,,_o > 0, & satisfy
0<& <& < &po<land E?:lz a;&; < 1. The author gave the following result.

Theorem 4.2. Assume
(c1) a € C(]0,00),[0,00)) and there exists xg € [Em_2, 1] such that a(zy) > 0.

(c2) g € C(]0,1],]0,00)) and there exists nonnegative constants in the extended reals,

9o, oo, Such that
go := lim M, Joo := lim M
u—0t U u—oo U

1 m2a, 1
Let A = m Jo (1 = s)a(s)ds, B = % fgm_z(l — s)a(s)ds. The problem
(4.3), (4.4) has at least one solution in the case

(i) If Agy < ' Bgs, then for each \ € (35—, 5=), the BVP (4.3), (4.4) has at least

I'Bgoo” Ago
one positive solution.

(ii) If go = 0 and goo = 00, i.e., g is super linear, then for any A € (0,00), the BVP
(4.3), (4.4) has at least one positive solution.

(ili) If goo = 00, 0 < go < 00, then for each A € (0, Aigo), the BVP (4.3), (4.4) has at
least one positive solution.

(iv) If go =0, 0 < goo < 00, then for each \ € (FBlgoo,oo) the BVP (4.3), (4.4) has
at least one positive solution.

Now if we put g(u) = 1 +sin”u and a(t) = 1 in (4.3), it is easy to see that both gy
and g, do not exist, thus we fail to discuss such a problem by applying Theorem 4.2.

On the other hand, if we put f(¢,u) = A(1 + sin®u) in (1.1), then for all positive
numbers a and b, f(t,u) < 2X on [0,1] x [0,a] and f(¢,u) > X on [0, 1] X (b, 00). Thus,
the existence of at least one positive solution is guaranteed by the Theorem 3.2.
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