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Abstract

In this work we investigate the existence of traveling wave solutions for
a class of diffusive predator-prey type system whose each nonlinear terms
can be separable as a product of suitable smooth functions satisfying some
monotonic conditions. The profile equations for the above system can be
reduced as a four-dimensional ODE system, and the traveling wave solu-
tions which connect two different equilibria or the small amplitude traveling
wave train solutions are equivalent to the heteroclinic orbits or small am-
plitude periodic solutions of the reduced system. Applying the methods
of Wazewski Theorem, LaSalle’s Invariance Principle and Hopf bifurcation
theory, we obtain the existence results. Our results can apply to various
kinds of ecological models.

Keywords. Traveling wave; Predator-prey; Wazewski Theorem; LaSalle’s Invari-
ance Principle; Lyapunov function; Hopf bifurcation theory

∗Department of Mathematics, National Central University, Chung-Li 32001, Taiwan. E-mail:
chhsu@math.ncu.edu.tw. Research supported in part by NSC, NCTS of Taiwan.

†Department of Applied Mathematics, National Chiao Tung University, Hsin-Chu 30010,
Taiwan. E-mail: cryang1980@gmail.com.

‡Department of Mathematics, Tamkang University, Tamsui, Taipei County 25137, Taiwan.
E-mail: thyang@mail.tku.edu.tw. Research supported in part by NSC of Taiwan.

§Department of Mathematics, Tunghai University, Taichung 40704, Taiwan. E-mail:
tsyang@thu.edu.tw. Research supported in part by NSC of Taiwan.

1



1 Introduction

This work concerns with the existence of traveling wave solutions for the following
diffusive predator-prey type system:{

ut = d1uxx − h(u) (g(w)− p(u)) ,

wt = d2wxx − ℓ(w)q(u),
(1.1)

where d1 > 0, d2 > 0, p(u), g(w), h(u), ℓ(w) and q(u) are smooth functions satis-
fying some monotonic conditions which will be mentioned later. System (1.1) is
a general form of the diffusive predator-prey system which contains many known
models. Indeed, system (1.1) describes not only the interspecies relations for eco-
logical and social models, but also the base block of more complicated food web,
food chain and biochemical network structure. In ecology, the functions u(x, t)
and w(x, t) represent the species densities of the prey and predator, respectively;
the constants d1 and d2 are the spatial diffusion rates of the two species; the
function h(u)p(u) is the net growth rate of the prey in the absence of predator;
the function h(u) is the predator functional response which describes consump-
tion rate of prey by a unit number of predators; the graphs g(w) − p(u) = 0
and q(u) = 0 are the prey nullcline and predator nullcline on the phase portrait,
respectively. In the sequel, we will illustrate some models where the existence of
traveling wave solutions has been studied in the past decades.

In 1983, Dunbar [6, 7] considers the existence of traveling wave solutions for
the following reaction-diffusion system based on the Lotka-Volterra differential
equation model of a predator-prey interaction: ut = d1uxx + Au(1− u

K
)−Buw,

wt = d2wxx − Cw +Duw,
(1.2)

where d1, d2, A, B, C, D, K are positive constants. A is the intrinsic rate of
increasing for the prey species; C is the death rate for the predator in the absence
of the prey; K is the carrying capacity of the environment; the predator functional
response here is the identity function of u. By using the Wazewski Theorem (an
extension of shooting argument in higher dimension) together with a Lyapunov
function and LaSalle’s Invariance Principle, he proved the existence of traveling
wave solutions.

Dunbar [8] further considered the existence of traveling wave solutions for
system (1.2) but with Holling type II functional response H2(u) =

u
1+Eu

, i.e., ut = d1uxx + Au(1− u

K
)−BH2(u)w,

wt = d2wxx − Cw +DH2(u)w.
(1.3)

where E > 0. System (1.3) includes the effects of predation satiation : the
consumption rate of prey by a unit number of predators cannot continue to grow
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linearly with the number of prey available but must “saturate” at some value
(see [13, 14]). The parameter 1/E here is the satiation rate of predation. Assume
d1 = 0, Dunbar used the method similar to that in [6, 7] and the invariant manifold
theory to prove the existence of traveling wave train and traveling front solutions
for system (1.3). The case for d1 ̸= 0 was then considered by Huang, Lu and
Ruan [17]. Using the same shooting argument and the Hopf bifurcation theory,
they established the existence of the traveling wave solutions connecting two rest
states as well as the existence of small amplitude traveling wave train solutions.

Later, Li and Wu [21] also consider the system (1.3) but with Holling type-III
functional response H3(u) =

u2

1+Eu2 , i.e., ut = d1uxx + Au(1− u

K
)−BH3(u)w,

wt = d2wxx − Cw +DH3(u)w.
(1.4)

By using the similar methods of [6, 7], they establish the existence of traveling
wave solutions of (1.4) for the case d1 = 0. In this work, we generalize the results
of [21] to the case d1 ̸= 0.

In addition to the previous Holling types of functional responses, Ivlev in
1961 [19] introduced another functional response H4(u) = E(1− e−Mu) where E
represents the maximum rate of predation and M is a constant representing the
decrease in motivation to hunt. The diffusive predator-prey model with logistic
growth rate of prey and Ivlev type functional response is described by ut = d1uxx + Au(1− u

K
)−BH4(u)w,

wt = d2wxx − Cw +DH4(u)w.
(1.5)

If d1 = d2 = 0, system (1.5) was studied by many authors, see [3, 4, 20, 22, 23,
25, 27, 29, 30]. Most of these papers concentrate on the existence and stability of
limit cycle. Recently, in [28], Wang, Shi and Wei also study the global bifurcation
of a class of more general predator-prey models with a strong Allee effect in prey
population. On the other hand, if d1 ̸= 0 and d2 ̸= 0, there seems no results for the
existence of traveling wave solution of system (1.5). In Section 5.4 of this work,
we will apply our main theorem to obtain the new existence results for traveling
wave solutions of system (1.5).

For other examples, Owen and Lewis [24] consider the the following general
system {

ut = εα0uxx + α1uf1(u)− α2wf2(u),

wt = α0wxx + α3wf2(u)− α4w,
(1.6)

where all ϵ ≈ 0 and αi are positive constants. They study the mechanism for
which predation pressure can slow, stall or reverse a spatial invasion of prey.
Some numerical results of traveling wave solutions are demonstrated in [24] for
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specific f ′
is described below. The function f1 is given by f1(u) = (1 − u) or

f1(u) = k(1− u)(u− a) for some constants k and a; while f2 is given by Holling
type I (f2(u) = u), type II, or type III functional response. However there is no
theoretical proof for their numerical results.

Motivated by the above models, throughout this article, we consider p(u),
g(w), h(u), ℓ(w) and q(u) to be C1 functions satisfying the following assumptions:

(A1) p′(u) < 0 for u > 0, and p(K) = 0 for some u = K > 0.

(A2) q′(u) < 0 for u > 0, and q(u∗) = 0 for some u∗ ∈ (0, K).

(A3) g′(w) > 0, ℓ′(w) > 0, ℓ′′(w) ≤ 0 for w ∈ R, g(0) = ℓ(0) = 0 and g(∞) =
ℓ(∞) = ∞.

(A4) h(0) = 0 and h′(u) > 0 for u ∈ R.

Note that (A1)∼(A4) hold for the systems (1.2)∼(1.6) provided the corresponding
parameters lying in suitable regions. For example, let p(u) = A(1−u/K), g(w) =
Bw, h(u) = u, ℓ(w) = w and q(u) = C − Du for (1.2), then (A1)∼(A4) hold if
C/D < K.

For further simplification, we introduce the parameter d = d1/d2 and rescale
the spatial variable x by x̃ = x/

√
d2. Then system (1.1) is recast as (still using x

instead of x̃) {
ut = duxx − h(u) (g(w)− p(u)) ,

wt = wxx − ℓ(w)q(u).
(1.7)

According to assumptions (A1)∼(A4), it is easy to see that system (1.7) has three
spatially uniform equilibria: E0 = (0, 0), E1 = (K, 0), and E2 = (u∗, w∗) where

w∗ = g−1 ◦ p(u∗) > 0.

Note that E0 corresponds to the absence of both species; E1 corresponds to the
prey being at the environment carrying capacity in the absence of the predator;
and E2 corresponds to the coexistence of the two species. The purpose of this
work is to establish the traveling wave solutions of system (1.7) connecting the
equilibria E1 and E2, which is called the “wave of invasion”, cf. [5].

A traveling wave solution of (1.7) is a solution of the form

u(x, t) = u(x+ ct) = u(s) and w(x, t) = w(x+ ct) = w(s), (1.8)

where the constant c > 0 is the wave speed; s = x + ct is called the moving
coordinate. Substituting (1.8) into (1.7), we have the following profile equations:{

cu′ = du′′ − h(u) (g(w)− p(u)) ,

cw′ = w′′ − ℓ(w)q(u),
(1.9)

4



where ′ denotes the differentiation with respect to s. It is required that u and w
of system (1.7) are nonnegative for natural ecological restriction. Then we look
for the nonnegative solutions of (1.9) connecting the equilibria E1 and E2, i.e.,
satisfying the following boundary conditions:

u(−∞) = K, w(−∞) = 0, u(∞) = u∗, and w(∞) = w∗. (1.10)

Our main results are stated as follows.

Theorem 1.1. Assume (A1)-(A4) hold and let d < 1, c∗ :=
√

−4ℓ′(0)q(K).

(i) If 0 < c < c∗, then there is no nonnegative traveling wave solution of system
(1.7) connecting the equilibria E1 and E2.

(ii) If c > c∗, ℓ(w) = αg(w) and q(u) = β(h(u) − h(u∗)) for some α > 0 and
β < 0, then there is a nonnegative traveling wave solution of (1.7) connecting
the equilibria E1 and E2.

Furthermore, there exists a σ∗ > 0 such that

(1) if |αβ| < σ∗, then the traveling wave solutions approach E2 monotoni-
cally for large s;

(2) if |αβ| > σ∗, then the traveling wave solutions have exponentially
damped oscillations about E2 for large s.

Extending the ideas of [6, 7], we apply the Wazewski theorem (see Lemma 2.3)
together with LaSalle’s Invariance Principle (see [16]) to prove Theorem 1.1. Note
that although we apply the techniques similar to those of [6, 7], there are some
differences. First, the model that we consider is more general, and our results
contain (or extend) all the results of [6, 7, 17, 24] and some other models, e.g., the
predator-prey model with Ivlev’s functional response (1.5) and some typical S.I.R
models, such as Kermack-McKendrick model (cf. [12]). Second, due to the general
setting of system (1.1), the construction of Wazewski set is more complicated than
those of [6, 7], and it’s more difficult to find an invariant orbit of system (1.9) in
the Wazewski set. Third, we construct the Lyapunov function for system (1.1)
more generally to prove the existence results.

According to Theorem 1.1, we know that

c∗ = 2
√
DK − C, 2

√
DH2(K)− C, 2

√
DH3(K)− C

for system (1.2), (1.3) and (1.4) respectively. Note that for specific form of system
(1.2), Dunbar [6] pointed out that c∗ is a distinguished speed dividing the positive
traveling wave solutions into two types: wave of speed c < c∗ being one type
connecting E0 and E2, wave of speed c ≥ c∗ being of the other type connecting E1

and E2. In our case, the existence of positive traveling wave solutions connecting
E0 and E2 is still open, and will be in our further study.
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This paper is organized as follows. In Section 2, we recall a variant of Wazewski
Theorem and construct the Wazewski set. Then we use the standard stable man-
ifold theorem to investigate the behavior of solutions for system (1.9) in the 4-
dimensional phase space and prove that there is an invariant solution orbit in the
Wazewski set. In Section 3, we construct the Lyapunov function for the invariant
orbit. In Section 4, we prove Theorem 1.1 by using LaSalle’s Invariance Principle.
In Section 5, we apply our main theorem to systems (1.2)-(1.5). We further inves-
tigate the existence of traveling wave train solutions for these systems by using
the Hopf bifurcation theory. The technical proof for Proposition 2.4 and Lemma
2.18 are given in Appendix I and II respectively.

2 Construction of Wazewski set and Invariant

Orbit

In this section, we will apply the Wazewski Theorem to prove that there is an
orbit invariant in a bounded region containing E1 and E2. First, let’s rewrite
system (1.9) as a system of first order ODEs in R4,

u′ = v,
dv′ = cv + h(u)(g(w)− p(u)),
w′ = z,
z′ = cz + ℓ(w)q(u).

(2.1)

Then the boundary conditions (1.10) yields{
u(−∞) = K, v(−∞) = 0, w(−∞) = 0, z(−∞) = 0,
u(∞) = u∗, v(∞) = 0, w(∞) = w∗, z(∞) = 0.

(2.2)

It’s obvious that

H := {(u, v, w, z) : u = v = 0} and V := {(u, v, w, z) : w = z = 0}

are invariant manifolds of (2.1). The eigenvalues of the linearization of (2.1) at
(K, 0, 0, 0) are

λ1 =
c+

√
c2 − 4 d h(K)p′(K)

2 d
> 0, λ2 =

c+
√
c2 + 4ℓ′(0)q(K)

2
,

λ3 =
c−

√
c2 + 4ℓ′(0)q(K)

2
, λ4 =

c−
√
c2 − 4 d h(K)p′(K)

2 d
< 0.

The corresponding eigenvectors are given by

e1 = (−1,−λ1, 0, 0),
e2 = (−1,−λ2,−ψ(λ2),−λ2ψ(λ2)),
e3 = (−1,−λ3,−ψ(λ3),−λ3ψ(λ3)),
e4 = (−1,−λ4, 0, 0),

(2.3)
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where

ψ(λ) =
1

g′(0)h(K)

(
dλ2 − cλ+ h(K)p′(K)

)
(2.4)

Note that λ1 and λ4 satisfy the equation

dλ2 − cλ+ h(K)p′(K) = 0; (2.5)

λ2 and λ3 satisfy the equation

λ2 − cλ− ℓ′(0)q(K) = 0.

Let d < 1. If c2 < −4ℓ′(0)q(K), then λ2 and λ3 are complex conjugate eigenvalues
and λ1 > Reλ2 = Reλ3 > 0 > λ4. Thus there is 1-dimensional strongest unstable
manifold, which is tangent to e1 at (K, 0, 0, 0). This manifold is actually contained
in the invariant manifold V . Therefore a solution of (2.1)-(2.2) cannot lie in
the strongest unstable manifold. It follows that a solution of (2.1)-(2.2) must
tend spirally to (K, 0, 0, 0). Hence w(s) < 0 for some s. Therefore, there is no
nonnegative solution of (2.1)-(2.2). The part (i) of Theorem 1.1 is then proved.

On the other hand, if c2 > −4ℓ′(0)q(K), then it’s obvious that λ1 > λ2 > λ3 >
0 > λ4. Note that ψ(λ2) < 0 and ψ(λ3) < 0.

To investigate the structure of the eigenvalues at (u∗, 0, w∗, 0), we recall the
Routh-Hurwitz Stability Criterion. Consider the polynomial equation

anx
n + an−1x

n−1 + ...+ a1x+ a0 = 0.

The Routh array for the above equation is defined by
an an−2 an−4 an−6 ...
an−1 an−3 an−5 an−7 ...
b1 b2 b3 b4 ...
c1 c2 c3 c4 ...
...

...
...

... ...


where

bk = − 1

an−1

∣∣∣∣ an an−2k

an−1 an−2k−1

∣∣∣∣ , ck = − 1

b1

∣∣∣∣ an−1 an−2k−1

b1 bk+1

∣∣∣∣
and so on. For example, the Routh array for a four degree polynomial (n = 4) is
given by 

a4 a2 a0
a3 a1 0
b1 b2 0
c1 c2 0
d1 0 0


where

b1 = − 1

a3

∣∣∣∣ a4 a2
a3 a1

∣∣∣∣ , b2 = − 1

a3

∣∣∣∣ a4 a0
a3 0

∣∣∣∣ ,
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c1 = − 1

b1

∣∣∣∣ a3 a1
b1 b2

∣∣∣∣ , c2 = − 1

b1

∣∣∣∣ a3 0
b1 0

∣∣∣∣ = 0, d1 = − 1

c1

∣∣∣∣ b1 b2
c1 c2

∣∣∣∣ .
With the Routh array, the Routh-Hurwitz Stability Criterion([15], [18] and [26])
tells us how many roots having positive real parts.

Proposition 2.1. The number of sign changes in the first column of the Routh
array equals to the number of roots with positive real parts.

Now we consider the characteristic equation of the linearization of (2.1) at
(u∗, 0, w∗, 0), i.e.,

λ4 − (c+
c

d
)λ3 +

c2 − ξ∗
d

λ2 +
cξ∗
d
λ+

ζ∗
d

= 0. (2.6)

where ξ∗ = −h(u∗)p′(u∗) > 0 and ζ∗ = −ℓ(w∗)h(u∗)q
′(u∗)g

′(w∗) > 0. Applying
Proposition 2.1, we have the following lemma.

Lemma 2.2. Equation (2.6) has two eigenvalues with positive real parts and two
eigenvalues with negative real parts.

Proof. After simple computation, we have the following Routh array for equation
(2.6) 

1 (c2 − ξ∗)/d ζ∗/d 0

−c− c/d cξ∗/d 0 0

(c2 − ξ∗)/d− ξ∗/(d+ 1) ζ∗/d 0 0

cξ∗/d+ c(1 + d)ζ∗/(b1d
2) 0 0 0

ζ∗/d 0 0 0


,

Where b1 = (c2−ξ∗)/d−ξ∗/(d+1). It can be verified that the signs of first column
always change twice. Hence equation (2.6) has two roots with positive real parts.
On the other hand, if we replace λ by iω in equation (2.6) then we have

ω2 = −ξ∗/(1 + d) < 0,

which is a contradiction. Hence there is no purely imaginary roots. The proof is
complete.

2.1 Wazewski Theorem

We now recall a variant of Wazewski Theorem which is a formalization and ex-
tension of the shooting method in higher dimension (see Proposition 2 of [7]).

Let us consider the differential equation:

y′(s) = f(y(s)), (2.7)
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where f : Rn → Rn is a Lipschitz continuous function. Denote y(s; y0) as the
unique solution of (2.7) with initial value y(0) = y0. For convenience, the notation
y0 · s stands for y(s; y0) and y0 · S for the set of points y · s with s ∈ S ⊂ R. Now
we define the following sets.

◦ Given W ⊆ Rn, we define the immediate exit set W− of W by

W− = {y0 ∈ W : ∀s > 0, y0 · [0, s) ⊈ W}.

◦ Given Σ ⊆ W , we set Σ0 = {y0 ∈ Σ : ∃s0 > 0 such that y0 · s0 /∈ W}.

◦ For y0 ∈ Σ0, we define the exit time T (y0) of y0 by

T (y0) = sup{s : y0 · [0, s] ⊂ W}.

Note that y0 · T (y0) ∈ W− and T (y0) = 0 if and only if y0 ∈ W−. The Wazewski
Theorem is stated as the following.

Theorem 2.3. Consider equation (2.7). Suppose that

(i) if y0 ∈ Σ and y0 · [0, s] ⊆ cℓ(W ), then y0 · [0, s] ⊆ W ;

(ii) if y0 ∈ Σ, y0 · s ∈ W and y0 · s /∈ W−, then there is an open set Vs about
y0 · s disjoint from W−;

(iii) Σ = Σ0, Σ is a compact set and intersects a trajectory of y′ = f(y) only
once.

Then the mapping F (y0) = y0 ·T (y0) is a homeomorphism from Σ to its image on
W−.

A set W ⊆ Rn satisfying the conditions (i) and (ii) of Theorem 2.3 is called a
Wazewski set.

2.2 The Exit Set W−

According to Theorem 2.3, the idea for choosing a Wazewski set for (2.1) is to
exclude the region where the trajectories will go to infinity. The vector field of
system (2.1) leads us to exclude the region where v and v′ (or z and z′, resp.) are
both positive or negative. Thus, we set W (see Figure 1) by

W = R+ ⊕ R3 \ (P ∪Q ∪R ∪ S), (2.8)

where

P = {(u, v, w, z) : 0 < u < u∗, w > w∗, z > 0},
Q = {(u, v, w, z) : u > u∗, w < w∗, z < 0},
R = {(u, v, w, z) : 0 < u < u∗, g(w)− p(u) < 0, v < 0},
S = {(u, v, w, z) : u > u∗, g(w)− p(u) > 0, v > 0}.
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P

Q
R

S

u

u = u∗
w

w∗

K

g(w) = p(u)

Figure 1: The projection of P , Q, R, and S in the uw-plane.

Note that in the block P (or Q ∩ {w > 0}, resp.) z → ∞ (or z → −∞, resp.);
in the block S (or R, resp.) v → ∞ (or v → −∞, resp.); the set W is the
complement of the four blocks P,Q,R, S in R+ ⊕ R3. It is easy to see that

∂W = (∂P \R) ∪ (∂Q \ S) ∪ (∂S \Q) ∪ (∂R \ P ),

since P ∩R ̸= ∅, and Q∩ S ̸= ∅. Using the phase space analysis, the structure of
W− is described in the following proposition.

Proposition 2.4. The exit set W− is given by

W− = ∂W \
(
(u∗, 0, w∗, 0) ∪ (K, 0, 0, 0) ∪ J1 ∪ J2

)
,

where

J1 =J10 ∪ J11 ∪ J12 ∪ J13,
J10 ={(u, v, w, z) : u ≥ u∗, v > 0, w = z = 0},
J11 ={(u, v, w, z) : u = u∗, v > 0, w < 0, z = 0},
J12 ={(u, v, w, z) : u > u∗, v < 0, w < 0, z = 0},
J13 ={(u, v, w, z) : u > u∗, v ≥ 0, w < 0, z = 0, g(w)− p(u) < 0},
J2 ={(u, v, w, z) : u = v = 0, w ∈ R, z ∈ R}.

Proof. The proof is tedious and illustrated in Appendix I.

2.3 Construction of Σ

By the standard Stable Manifold Theorem, there is a 1-dimensional strongest
unstable manifold Ω1 tangent to e1 at (K, 0, 0, 0), and a parametric representation
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for this manifold in a small neighborhood of (K, 0, 0, 0) given by

F1(ε1) = (K, 0, 0, 0) + ε1e1 +O(|ε1|2).

There is also a 2-dimensional strongly unstable manifold Ω2 tangent to the linear
subspace spanned by e1 and e2 at (K, 0, 0, 0), and a parametric representation for
this manifold in a small neighborhood of (K, 0, 0, 0) given by

F2(ε1, ε2) = (K, 0, 0, 0) + ε1e1 + ε2e2 +O(|ε1|2 + |ε2|2).

Finally, the 3-dimension unstable manifold Ω3 at (K, 0, 0, 0) has a parametric
representation in a small neighborhood of (K, 0, 0, 0) given by

F3(ε1, ε2, ε3) = (K, 0, 0, 0) + ε1e1 + ε2e2 + ε3e3 +O(|ε1|2 + |ε2|2 + |ε3|2).

Throughout the rest of this article, y(s;y0) stands for the solution of (2.1) with
initial value y0 = (u0, v0, w0, z0); u(s;y0) stands for the u-coordinate of y(s;y0),
and similarly for the other three coordinates of y.

For y0 ∈ Ω1, we have the following properties.

Lemma 2.5. Let y(s;y0) be the solution of (2.1) with y0 ∈ Ω1 and 0 < u0 < K.
Then there is a finite s0 > 0 such that u(s0;y0) < u∗ and v(s;y0) < 0 for s ∈ [0, s0].
That is, the solution enters region R.

Proof. Since e1 ∈ H is an invariant manifold, it follows that Ω1 ⊂ V . Thus, to
investigate the dynamics of solutions on Ω1, we may let w = z = 0 in (2.1). Let us
fix a y0 ∈ Ω1 closed to (K, 0, 0, 0). The parametrization F1 of Ω1 implies that there
exists m > n > 0 such that y0 lies between the two curves: v = m(h(u)− h(K))
and v = n(h(u) − h(K)). If m and n are large and small enough respectively,
then we claim that y(s;y0) always lies between those two curves until u = u∗.
We prove the claim by contradiction. Suppose that there is an s1 > 0 such
that v = m(h(u) − h(K)) and (v − m(h(u) − h(K)))′ ≤ 0 at s = s1 (where
u∗ < u(s1) < K), then we have

0 ≥v′(s1)−mh′(u(s1))v(s1)

=cv(s1)− h(u(s1))p(u(s1))−mh′(u(s1))v(s1)

=− h′(u(s1))(h(u(s1))− h(K))m2 + c(h(u(s1))− h(K))m− p(u(s1))h(u(s1)).

However, the above inequality can not hold when m is large enough. Therefore,
the trajectory y(s;y0) with s > 0 can not lie below the curve v = m(h(u)−h(K))
whenever u∗ < u(s;y0) < K.

Similarly, suppose that there is an s2 > 0 such that v = n(h(u) − h(K)) and
(v − n(h(u)− h(K)))′ ≥ 0 at s = s2 (where u∗ < u(s2) < K), then we have

0 ≤v′(s2)− nh′(u(s2))v(s2)

=cv(s2)− h(u(s2))p(u(s2))− nh′(u(s2))v(s2)

=− h′(u(s2))(h(u(s2))− h(K))n2 + c(h(u(s2))− h(K))n− h(u(s2))p(u(s2)).
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The above inequality also can not hold when n is small enough. Therefore, y(s;y0)
with s > 0 can not lie above the curve v = n(h(u) − h(K)) whenever u∗ <
u(s;y0) < K.

Since y(s;y0) is bounded by the curves v = m(h(u)−h(K)) and v = n(h(u)−
h(K)), it follows that v(s;y0) < 0 and u(s;y0) decreases until u(s;y0) < u∗. The
proof is complete.

Since the invariant manifold Ω1 has w = 0 and z = 0, we immediately have
the following Lemma.

Lemma 2.6. Any trajectory y(s;y0) with y0 ∈ Ω1, u0 > K and v0 > 0 will stay
in the region {u > K, v > 0} for s > 0.

Proof. Let y0 ∈ Ω1 be near (K, 0, 0, 0), then w(s;y0) = 0 for all s. Since u0 > K
and v0 > 0, we have v′(s;y0) > 0 for s > 0. Hence the assertion follows.

Lemma 2.7. Any trajectory y(s;y0) with 0 < u0 < K, w0 > 0, and z0 >
c
2
w0

will stay in the region {w > 0, z > c
2
w} whenever 0 < u(s;y0) < K.

Proof. Assume the assertion of this lemma is false. Let s1 > 0 be the first time
that y(s;y0) leaves the region {w > 0, z > c

2
w} with 0 < u(s1,y0) < K. Then for

s ∈ [0, s1), we have

w′(s) = z(s) >
c

2
w(s) with w(0) > 0,

which implies w(s1) > 0. Since

z(s1) = cw(s1)/2 and z′(s1)− (c/2)w′(s1) ≤ 0,

we have

0 ≥cz(s1) + ℓ(w(s1))q(u(s1))−
c

2
z(s1)

≥c
2

4
w(s1) + ℓ(w(s1))q(K) ≥

(c2
4
+ ℓ′(0)q(K)

)
w(s1).

This contradicts the assumption c > c∗. The proof is complete.

On Ω2, let’s parameterize a small circle centered at (K, 0, 0, 0) by

G(θ) = F2(ε cos(θ + ψ0), ε sin(θ + ψ0)), (2.9)

where θ ∈ [0, 2π] and the constant phase ψ0 is chosen such that G(0) lies in Ω1

with u < K. Set

A := {θ ∈ [0, 2π) : ∃s0 > 0 satisfying u(s0;G(θ)) = u∗ and

v(s;G(θ)) < 0 on s ∈ (0, s0]}.

By Lemma 2.5, A is nonempty since θ = 0 ∈ A. Denote

θ1 := sup{θ ∈ A : [0, θ) ⊂ A} and y1 := G(θ1).
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Remark 2.8.

(i). ψ0 is close to zero provided ε ≈ 0.

(ii). According to Lemma 2.5, there exists an s0 > 0 such that u(s0;G(0)) <
u∗ and v(s;G(0)) < 0 for s ∈ [0, s0]. The continuous dependence of a solu-
tion on initial condition implies that θ1 > 0.

(iii). Since v(0;G(θ)) ≤ 0 for θ ∈ A, we have A ⊂ [0, 3π/4−ψ0). If θ ∈ [0, 3π/4−
ψ0), then the components u and w of G(θ) satisfy 0 < u < K and w > 0.
Thus, we have w(0;y1) > 0.

Lemma 2.9. Let ε > 0 be small enough. If θ ∈ [0, 3π/4−ψ0), then the trajectory
y(s;G(θ)) with s ≥ 0 will stay in the region {w > 0, z > cw/2} whenever 0 <
u(s;G(θ)) < K.

Proof. Let y0 = G(θ) ∈ Ω2. From (2.9), the w and z coordinates of y0 satisfy
w > 0 and z ≈ λ2w > cw/2. Then the assertion follows by Lemma 2.7.

Lemma 2.10. Suppose y0 = G(θ) for some θ ∈ (0, θ1). Then y(s;y0) will leave
W and enter the region R or P .

Proof. Fix a θ ∈ (0, θ1), then there exists s0 such that

u(s0;G(θ)) = u∗ and v(s;G(θ)) < 0 for s ∈ (0, s0].

If (g(w)− p(u))s=s0 < 0, we have

dv′(s0) = (cv + h(u)(g(w)− p(u)))s=s0 < 0,

which implies v(s+0 ) < 0 and u(s+0 ) < u∗. That is, the trajectory enters region R.

If (g(w) − p(u))s=s0 ≥ 0, then w(s0) ≥ w∗ by u(s0) = u∗. Since v(s0) < 0,
we have u(s+0 ) < u∗. By Lemma 2.9, we have w(s0) > 0 and z(s0) >

c
2
w(s0) >

0. Thus w(s+0 ) > w∗. That is, the trajectory enters region P . The proof is
complete.

The next lemma shows that there is a “last” trajectory on Ω2 such that u(s)
decreases to the value u = u∗.

Lemma 2.11. There exists an s0 > 0 such that u(s0;y1) = u∗ and v(s0;y1) = 0,
see Figure 2. Moreover, we have

g(w(s0;y1))− p(u(s0;y1)) > 0 and w(s0;y1) > w∗.

Proof. Recall that u∗ < u(0;y1) < K, v(0;y1) ≤ 0 and w(0;y1) > 0. The proof
consists of several steps as follows.

(1). We claim that u(s;y1) ≤ u∗ or v(s;y1) ≥ 0 for some s > 0.
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Suppose the claim is false, i.e., u(s;y1) > u∗ and v(s;y1) < 0 for all s > 0.
Then u(s;y1) decreases monotonically to u(∞;y1) ≥ u∗ and v(∞;y1) = 0. By
Lemma 2.9, we have

w′(s;y1) = z(s;y1) > c/2w(s;y1),

which implies w(∞;y1) = ∞. Then it follows that

dv′(s;y1) = cv(s;y1) + h(u(s;y1))(g(w(s;y1))− p(u(s;y1))) → ∞,

as s→ ∞. However, this fact contradicts v(∞;y1) = 0. Hence the claim follows.

(2). Let s0 be the first time that u(s;y1) = u∗ or v(s;y1) = 0. We claim that
v(s0;y1) = 0, v(s;y1) < 0 for s ∈ (0, s0), and u(s0;y1) ≥ u∗.

Suppose the claim is false, i.e,

v(s;y1) < 0 for s ∈ (0, s0] and u(s0;y1) = u∗.

Then, by the Implicit Function Theorem, there exists a function s0(θ) with θ ≈ θ1
such that

u(s0(θ);G(θ)) = u∗.

By the continuous dependence of the solution on θ, we have for θ ≈ θ1

v(s;G(θ)) < 0 on s ∈ (0, s0(θ1) + δ].

Also, by continuity of the function s0(θ), we have s0(θ) ∈ (0, s0(θ1)+δ] for θ ≈ θ1.
Therefore, there are θ ≳ θ1 satisfying

v(s0;G(θ)) < 0 on (0, s0(θ)] and u(s0(θ);G(θ)) = u∗.

This fact contradicts the definition of θ1. Thus the claim follows.

(3). We claim that g(w(s0;y1))− p(u(s0;y1)) > 0 and v′(s0;y1) > 0.

Indeed, since v(s0;y1) = 0 and v(s;y1) < 0 on s ∈ (0, s0), we have v
′(s0;y1) ≥

0 and
dv′(s0;y1) = h(u(s0;y1))(g(w(s0;y1))− p(u(s0;y1))) ≥ 0.

Thus g(w(s0;y1)) − p(u(s0;y1)) ≥ 0. Suppose g(w(s0;y1)) − p(u(s0;y1)) = 0,
then

dv′′(s0;y1) ≥ h(u(s0;y1))g
′(w(s0;y1))z(s0;y1),

which leads to

dv′′(s0;y1) > h(u(s0;y1))g
′(w(s0;y1))cw(s0;y1)/2 > 0

by Lemma 2.9. This implies that v(s;y1) ≥ 0 for s ≈ s0, which contradicts the
definition of s0. Therefore g(w(s0;y1))− p(u(s0;y1)) > 0 and v′(s0;y1) > 0.

(4). We claim that u(s0;y1) = u∗.
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Since v(s0;y1) = 0 and v′(s0;y1) > 0, by the Implicit Function Theorem,
there exists a function s0(θ) for θ ≈ θ1 such that v(s0(θ);G(θ)) = 0. Suppose
u(s0;y1) > u∗. Then, the continuous dependence of the solution on θ implies

v(s0(θ);G(θ)) = 0, v′(s0(θ);G(θ)) > 0; v(s;G(θ)) < 0 on s ∈ (0, s0(θ));

and u(s0(θ), G(θ)) > u∗ for θ ≈ θ1. Thus θ /∈ A for θ ≈ θ1, a contradiction. Hence
u(s0;y1) = u∗. It follows from g(w(s0;y1))−p(u(s0;y1)) > 0 that w(s0;y1) > w∗.
The proof is complete.

u

w u = u∗

K

w∗

(u(s0;y1
), w(s0;y1))

Figure 2: Projection of the trajectory y(s;y1) in the uw-plane.

Lemma 2.12. There exists a θ2 ∈ [θ1, 3π/4 − ψ0) such that the v coordinate of
y2 := G(θ2) is equal to zero.

Proof. By (2.9), the v coordinate of G(θ) is given by

v = −ε
√
λ21 + λ22 sin(θ + ψ0 + ψ1) +O(ε2),

where sinψ1 = λ1/
√
λ21 + λ22 and ψ1 ∈ (π/4, π/2). Obviously v = 0 at

θ2 := π − ψ0 − ψ1 +O(ε) ∈ (0, 3π/4− ψ0).

Recall that the v coordinate of G(θ1) is non-positive. It follows that θ2 ≥ θ1. The
proof is complete.

On Ω3, we consider a small sphere centered at (K, 0, 0, 0) with radius ε, which
are parameterized by

U(θ, ϕ) =F3(ε cos(θ + ψ0) sinϕ, ε sin(θ + ψ0) sinϕ, ε cosϕ), (2.10)

where θ ∈ [0, 2π] and ϕ ∈ [0, π]. The constant phase ψ0 is the one in (2.9). This
sphere contains the arc G(θ) = U(θ, π/2). According to Lemma 2.12 we know
that the sphere intersects the hyperplane v = 0 at least one point U(θ2, π/2). The
next lemma shows that the intersection is a smooth closed curve.
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Lemma 2.13. The intersection of the sphere defined by (2.10) and the hyperplane
v = 0 is a smooth closed curve.

Proof. The equation for the intersection of the sphere with v = 0 is given by

M(θ, ϕ) := λ1 cos(θ + ψ0) sinϕ+ λ2 sin(θ + ψ0) sinϕ+ λ3 cosϕ+O(ε) = 0.

Since the v coordinate of G(θ2) is zero, we have M(θ2, π/2) = 0. Furthermore,

∂M

∂ϕ

∣∣∣
(θ2,π/2)

= −λ3 +O(ε) ̸= 0,

when ε is small enough. By the Implicit Function Theorem, there exists a C1

function ϕ(θ), θ near π/2 solving M(θ, ϕ) = 0. The points solving M(θ, ϕ) = 0 in
a neighborhood of the curve can be defined by

cotϕ = − 1

λ3
(λ1 cos(θ + ψ0) + λ2 sin(θ + ψ0)).

Moreover, the points where
∂M

∂ϕ
= 0 in a neighborhood of the curve are defined

by

tanϕ =
1

λ3
(λ1 cos(θ + ψ0) + λ2 sin(θ + ψ0)).

Since the two curves are disjoint, by the Implicit Function Theorem, the function
ϕ(θ) can be extend to θ ∈ [0, 2π]. The proof is complete.

Lemma 2.14. The intersection of the sphere defined by (2.10) and the hyperplane
z = 0 is a smooth closed curve.

Proof. The equation for the intersection of the sphere with z = 0 is given by

N(θ, ϕ) := λ2ψ(λ2) sin(θ + ψ0) sinϕ+ λ3ψ(λ3) cosϕ+O(ε) = 0. (2.11)

Since the z coordinate of G(0) is zero, we have N(0, π/2) = 0. Furthermore,

∂N

∂ϕ

∣∣∣
(0,π/2)

= −λ3ψ(λ3) +O(ε) ̸= 0,

when ε is small enough. By the Implicit Function Theorem, there exists a C1

function ϕ(θ), with θ near 0 solving N(θ, ϕ) = 0. The points solving N(θ, ϕ) = 0
in a neighborhood of the curve can be defined by

cotϕ = − 1

λ3ψ(λ3)
λ2ψ(λ2) sin(θ + ψ0).

Furthermore, the points where ∂N
∂ϕ

= 0 in a neighborhood of the curve are defined
by

tanϕ =
1

λ3ψ(λ3)
λ2ψ(λ2) sin(θ + ψ0).

Since the two curves are disjoint, by the Implicit Function Theorem, we can extend
the domain of ϕ(θ) to θ ∈ [0, 2π]. The proof is complete.

16



Lemma 2.15. There exists a point y3 lying on the sphere defined by (2.10) such
that the v and z coordinates of y3 are both zero.

Proof. Let θ(ϕ) be the function solving (2.11), which defines the smooth curve of
the intersection of the sphere with {z = 0}. It follows that

θ(π/2) + ψ0 = 0 +O(ε) or π +O(ε).

Substituting θ(ϕ) into N(θ(π/2), π/2) = 0 gives the v coordinate of the smooth
curve of the intersection of the sphere with {z = 0} at ϕ = π/2. Indeed, we have
N(0 + O(ε), π/2) > 0 and N(π + O(ε), π/2) < 0. Therefore the v coordinate
takes both positive and negative values on the close curve of the intersection of
the sphere with {z = 0}. The prove is complete.

Now we are ready to give the definition of Σ. First, the range of ϕ is restricted
to make cosϕ ≥ 0 so that the hemisphere of the sphere defined by (2.10) is under
our consideration. Then we will define Σ as a subset of the hemisphere. The
following notations and Figure 3 can help us to understand the set Σ.

Notation 2.16.

(1). Let y0 := G(θ0) be to the intersection of the sphere with Ω1 in the region
0 < u < K.

(2). Denote by ŷ0yi, i = 1, 2 the portion of the circle defined in (2.9) with
θ ∈ (0, θi).

(3). Denote by ŷ2y3 the portion of the intersection of the hemisphere with {v =
0} lying between (not including) y2 and y3.

(4). Denote by ŷ3y0 the portion of the intersection of hemisphere with {z = 0}
lying between (not including) y3 and y0.

(5). Let B be a small ball around y0 in the space spanned by e1, e2 and e3. Let
y4 and y5 be the interaction points of B with ŷ3y0 and ŷ2y2 respectively.
Denote by ŷ4y5 the portion of interaction of the hemisphere with B (not
including y4, y5 ).

Now we define the set Σ as the closed topological quadrangle in the hemisphere,
whose sides consist of the closure of the arcs ŷiyi+1, i = 1, 2, 3, 4 and ŷ5y1.

2.4 Existence of An Invariant Orbit

According to previous construction, the set Σ is obviously simply connected. Un-
der the hypothesis Σ0 = Σ, it can be shown that the image of Σ under the mapping
F defined in Theorem 2.3 is not simply connected.
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y0

e1

e2

y4

y5

y1

y2

y3

Σ

e3

Figure 3: The topological quadrangle Σ.

Lemma 2.17. If Σ0 = Σ, then the set F (Σ) is not simply connected, where F (·)
is defined in Theorem 2.3.

Proof. The result can be proved by following the ideas of [7] with slight modifi-
cations. Since the detail is tedious, we illustrate it in Appendix II.

Next, we prove the existence of an invariant orbit in the set W by using the
Wazewski Theorem.

Lemma 2.18. There exists a y ∈ Σ such that y · s ∈ W for s ≥ 0.

Proof. Suppose that no such y exists in Σ, i.e., Σ0 = Σ, we will show that it
contradicts the result of Theorem 2.3.

Obviously the condition (i) of Theorem 2.3 holds since W is closed. The
condition (iii) of Theorem 2.3 also holds by the construction of Σ. Next, we show
that the condition (ii) in Theorem 2.3 holds.

First, we claim that if y ∈ Σ then

y · s /∈ J1 ∪ J2 ∪ {(u∗, 0, w∗, 0), (K, 0, 0, 0)}, for all s ≥ 0. (2.12)

Obviously, y · s ̸= (u∗, 0, w∗, 0), (K, 0, 0, 0) since they are equilibria. Furthermore,
y · s /∈ J2 since J2 = H is an invariant manifold, and y cannot be in J2 (y is close
to (K, 0, 0, 0)). Also y · s /∈ J10 since J10 is an subset of the invariant manifold V
while y cannot be in V .

If y · s1 ∈ J12 ∪ J13 for some s1 < T (y), then

z′(s1) = ℓ(w(s1))q(u(s1)) > 0,
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which implies z(s−1 ) < 0 and y · s−1 ∈ Q. This fact contradicts s1 < T (y). Thus
y · s /∈ J12 ∪ J13.

If y · s1 ∈ J11 for some s1 < T (y), then

u(s1) = u∗, v(s1) > 0, w(s1) < 0, z(s1) = 0,

which implies z′(s1) = 0 and z′′(s1) > 0. Therefore,

u(s−1 ) < u∗, v(s
−
1 ) > 0, w(s−1 ) < 0 and z(s−1 ) > 0.

Let s2 := inf{s : u(t) < u∗, w(t) < 0, on (s, s1)}. Then s2 > 0 since u(0) > u∗. It
follows that

dv′ ≤ cv and z′ ≤ cz, for s ∈ (s2, s1). (2.13)

At time s2, there are two possibilities:

(a) u(s2) = u∗, v(s2) ≤ 0 or (b) w(s2) = 0, z(s2) ≤ 0.

By (2.13), case (a) yields v(s) ≤ 0 on (s2, s1) and which contradicts v(s−1 ) > 0.
Similarly, by (2.13), case (b) yields z(s) ≤ 0 on (s2, s1) and which contradicts
z(s−1 ) > 0. Thus we conclude that y · s /∈ J11. Hence the assertion of the claim
(2.12) follows.

Now we verify the condition (ii) in Theorem 2.3. Let y ∈ Σ, y · s ∈ W and
y · s /∈ W−. According to (2.12), y · s must be in the interior of W . Hence there
is an open set about y · s disjoint from W−.

Since all the conditions in Theorem 2.3 hold, it follows that F (Σ) is homeo-
morphic to Σ. Then we have a contradiction since F (Σ) is not simply connected.
The proof is complete.

3 Lyapunov Function for the Invariant Orbit

Let ȳ(s) be the orbit which is positively invariant in W . Our purpose is to
construct a Lyapunov function for ȳ(s). Some prior estimations for ȳ(s) are
needed for the construction of Lyapunov function.

Lemma 3.1. The coordinate functions ū(s) and w̄(s) of ȳ(s) are positive for all
s.

Proof. Since ȳ(0) ∈ Ω3\Ω2 (see Claim II of Appendix II) and 0 < λ3 < λ2 < λ1,
ȳ(s) will approach to (K, 0, 0, 0) along the direction of e3 as s → −∞. The
construction of Σ implies that the components of ȳ(s) satisfy 0 < ū(s) < K and
w̄(s) > 0 for s→ −∞.

Suppose s1 := sup{s : ū(s) > 0} < ∞. Then ū(s1) = 0 and v̄(s1) ≤ 0. Since
ȳ(s) /∈ H and v̄(s1) < 0, then ū(s+1 ) < 0 and ȳ(s+1 ) /∈ W , which leads to a
contradiction. Thus s1 must be ∞, i.e., ū(s) > 0 for all s.
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Suppose s2 := sup{s : w̄(s) > 0} < ∞. Then w̄(s2) = 0 and z̄(s2) ≤ 0. Since
ȳ(s) /∈ V , Q and R, we have z̄(s2) < 0, ū(s2) ∈ (0, u∗] and v̄(s2) ≥ 0 respectively.
If v̄(s2) = 0 then

dv̄′(s2) < −h(ū(s2))p(ū(s2)) < 0,

which implies v̄(s+2 ) < 0, ū(s+2 ) < u∗ and ȳ(s+2 ) ∈ R, a contradiction. Hence,
v̄(s2) > 0 and ū(s+2 ) > u∗, which leads to ȳ(s+2 ) ∈ Q, also a contradiction. Thus,
s2 must be ∞, i.e., w̄(s) > 0 for all s. The proof is complete.

Lemma 3.2. The coordinate functions ū(s) and w̄(s) of ȳ(s) are bounded above.
In fact, ū(s) < K and w̄(s) < M for some constant M > 0.

Proof. The proof consists of the following six steps.

(1). We prove that ū(s) < K for all s > 0.

Suppose s1 := sup{s > 0 : ū(s) < K} < ∞, then v̄(s1) ≥ 0. Since w̄(s) > 0
for all s, we have

ū(s1) = K > u∗, g(w̄(s1))− p(ū(s1)) > 0 and v̄(s1) ≥ 0.

Then v̄′(s1) > 0, v̄(s+1 ) > 0, ū(s+1 ) = K > u∗, g(w̄(s
+
1 )) − p(ū(s+1 )) > 0 and

ȳ(s+1 ) ∈ S, a contradiction. Thus, s1 must be ∞, i.e., ū(s) < K for all s > 0.

(2). Let’s study the behavior of ȳ(s) projected in uw-plane, cf. Figure 1.

First, we have the following observations:

◦ since ȳ(s) does not enter region P , we have z̄(s) < 0 whenever 0 < ū(s) < u∗
and w̄(s) > w∗;

◦ since ȳ(s) does not enter region R, we have v̄(s) > 0 whenever 0 < ū(s) < u∗
and 0 < w̄(s) < w∗;

◦ since ȳ(s) does not enter region Q, we have z̄(s) > 0 whenever ū(s) > u∗
and 0 < w̄(s) < w∗;

◦ since ȳ(s) does not enter region S, we have v̄(s) < 0 whenever ū(s) > u∗
and w̄(s) > w∗.

Therefore, we know that

◦ w̄(s) is decreasing in the region {0 < u < u∗, w > w∗} and increasing in the
region {u > u∗, 0 < w < w∗};

◦ ū(s) is increasing in the region {0 < u < u∗, 0 < w < w∗} and decreasing in
the region {u > u∗, w > w∗}.
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Thus, to prove that w̄(s) is bounded above, it suffice to prove that w̄(s) is bounded
above in the region {u > u∗}.

(3). Now we prove that it is impossible that ū(s) > u∗ for all sufficient large
s and lims→∞ w̄(s) = ∞.

Indeed, since ȳ(s) does not enter region S, we have v̄(s) ≤ 0 and which implies
that ū(s) is monotonically decreasing to ū(∞) ≥ u∗ and lims→∞ v̄(s) = 0. Then
it follows that

dv̄(s)′ ≥ cv̄(s) + h(ū(s))(g(w̄(s))− p(ū(s))) → ∞,

which contradicts lims→∞ v̄(s) = 0.

(4). We claim that if ȳ(s) enters the region

Γ := {u > u∗, w > 0, g(w)− p(u) < 0},

then z̄(s) ≤ cw∗ whenever ȳ(s) remains in region Γ.

If ȳ(s) ∈ Γ then z̄′(s) ≤ cz̄(s) and z̄(s) ≥ 0 (since ȳ(s) /∈ Q). This yields
w̄′(s) = z̄(s) ≥ z′(s)/c and dz̄/dw̄ ≤ c. Integrating dz̄/dw̄ ≤ c with respect to w̄
from 0 to w∗ gives z̄(s) ≤ cw∗. Hence the claim follows.

(5). We claim that if ȳ(s) enters into the region Γ and crosses the boundary
g(w) − p(u) = 0 into the region {u > u∗, w > 0, g(w) − p(u) > 0}, then the
component v̄ is uniformly bounded below as it reaches the boundary g(w)−p(u) =
0.

Suppose s1 is the first time that g(w̄(s1)) − p(ū(s1)) = 0, then (g(w̄(s1)) −
p(ū(s1)))

′ ≥ 0, which leads to

g′(w̄(s1))z(s1)− p′(ū(s1))v̄(s1) ≥ 0

or

v̄(s1) ≥
z̄(s1)g

′(w̄(s1))

p′(ū(s1))
≥ cw∗g

′(w̄(s1))

p′(ū(s1))
.

The above last term is uniformly bounded below since g(w) and p(u) are C1

function and the closure of Γ is a compact set. Then the claim follows.

(6). We prove that M := sup{w̄(s) : u∗ < ū(s) < K} <∞.

Taking γn ∈ R such that limn→∞ γn = ∞. If M = ∞, then there exists a
sequence sn such that g(w̄(sn))− p(ū(sn)) = γn. Let

τn := max{t < sn : g(w̄(t))− p(ū(t)) = 0}.

By step (2), v(τn) ≤ 0 is uniformly bounded below for all n. Steps (2) and
(3) also imply that ȳ(s) must enter the regions {0 < u < u∗, w > w∗} and
{u > u∗, 0 < w < w∗} infinitely many times. It follows that

tn := min{t > sn : z̄(t) = 0} <∞ and ū(tn) ≥ u∗.
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Without loss of generality, we may assume lim(w̄(tn) − w̄(sn)) ̸= 0 (by suitable
selecting γn). Since w̄′(s) = z̄(t+n ) = 0 ̸= ∞, we have limn→∞(tn − sn) ̸= 0.
Integrating

dv′(s) = cv + h(u(s))(g(w(s))− p(u(s)))

from s = τn to s = tn gives

e−
c
d
tnv(tn) =e

− c
d
τnv(τn) +

∫ tn

τn

e−
c
d
sh(u(s))(g(w(s))− p(u(s)))ds

≥v(τn) +
∫ tn

sn

e−
c
d
sh(u(s))(g(w(s))− p(u(s)))ds

≥v(τn) +
c

d
(e−

c
d
sn − e−

c
d
tn)h(u∗)γn.

The last term of the above inequalities is positive for sufficient large n since
limn→∞ γn = ∞ and limn→∞(tn − sn) ̸= 0. It follows that v(tn) > 0, and which
contradicts that ȳ(s) dose not enter region S, see Figure 4. Thus M < ∞ and
the proof is complete.

S̄
P̄

R̄ Q̄

u

v

g(w)− p(u) = 0

g(w)− p(u) = γ
n

s = τ
n

s = s
n

s = t
n

Figure 4: Phase plane for the proof of step (6) of Lemma 3.2.

Next, we show that the coordinates functions v̄(s) and w̄(s) of ȳ(s) are also
bounded.

Lemma 3.3. There exist positive constants Ki, i = 1, 2, 3, 4 such that the coor-
dinate functions of ȳ(s) satisfying

−K1h(ū(s)) < v̄(s) < K2ū(s) and −K3ℓ(w̄(s)) < z̄(s) < K4w̄(s) (3.1)

for all s ≥ 0.
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Proof. Since ȳ(s) approaches to (K, 0, 0, 0) along the direction of e3 as s→ −∞,
the construction of Σ implies that the components of ȳ(s) satisfying

0 < ū(s) < K, v̄(s) < 0, w̄(s) > 0 and z̄(s) > 0, for s→ −∞.

Therefore, we may assume 0 < ū(0) < K, v̄(0) < 0, w̄(0) > 0 and z̄(0) > 0. Then
(3.1) holds for s = 0 provided each Ki is sufficient large. In the following four
steps, we prove that (3.1) holds for s > 0.

(1). We claim that there is a K1 > 0 such that −K1h(ū(s)) < v̄(s) for s > 0.

Suppose the claim is false, then for any K1 > 0 there is an s1 > 0 such that

v̄(s1) = −K1h(ū(s1)) and v̄′(s1) ≤ −K1h
′(ū(s1))ū

′(s1).

If v̄(s) < −K1h(ū(s)) for s > s1 and K1 is large enough, then the boundedness of
ū(s) and w̄(s) implies that

dv̄′ = cv̄ + h(ū)
(
g(w̄)− p(ū)

)
≤ h(ū)

(
− cK1 + g(w̄)− p(ū)

)
< 0

for s > s1. This yields

ū′(s) = v̄(s) < v̄(s1) = −K1h(ū(s1)) < 0

for s > s1, which contradicts the positivity of ū(s). Therefore, there exists an
s2 > s1 such that

v̄(s2) = −K1h(ū(s2)) and v̄
′(s2) ≥ −K1h(ū(s2))u

′(s2).

However, this fact also leads to the following contradiction:

0 ≤cv̄(s2) + h(ū(s2))(g(w̄(s2))− p(ū(s2))) + dK1h
′(ū(s2))v̄(s2)

≤h(ū(s2))
(
− cK1 + g(w̄(s2))− p(ū(s2))− dK2

1h
′(ū(s2))

)
< 0,

provided K1 is large enough. Hence the claim follows.

(2). We claim that there is a K2 > 0 such that v̄(s) < K2ū(s) for s > 0.

Suppose the claim is false, then for any K2 > 0 there is an s1 > 0 such that

v̄(s1) = K2ū(s1) and v̄′(s1) ≥ K2ū
′(s1).

Then, at s = s1, we have the following contradiction:

0 ≤ cv̄ + h(ū)[g(w̄)− p(ū)]− dK2v̄ ≤ (cK2 − dK2
2)ū+ h(ū)(g(w̄)− p(ū)) < 0,

provided K2 is large enough. Hence the calim follows.

(3). We claim that there is a K3 > 0 such that z̄(s) > −K3w̄(s) for s > 0.
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Suppose the claim is false, then for any K3 > 0 there is an s1 > 0 such that

z̄(s1) = −K3ℓ(w̄(s1)) and z̄
′(s1) ≤ −K3ℓ

′(w̄(s1)).

If z̄(s) < −K3ℓ(w̄(s)) for all s > s1, then the boundedness of ū(s) and w̄(s)
implies that

z̄′ = cz̄ + ℓ(w̄)q(ū) < ℓ(w̄)(−cK3 + q(ū)) < 0 for s > s1,

provided K3 > 0 is large enough. This yields

w̄′(s) = z̄(s) < z̄(s1) < 0,

which contradicts the positivity of w̄. Hence, there is an s2 > s1 such that

z̄(s2) = −K3ℓ(w̄(s2)) and z̄
′(s2) ≥ −K3ℓ

′(w̄(s2))w̄
′(s2).

However, this fact also leads to the following contradiction:

0 ≤ cz̄(s2) + ℓ(w̄(s2))q(ū(s2)) +K3ℓ
′(w̄(s2))z̄(s2)

≤ ℓ(w̄(s2))(−cK3 −K2
3ℓ

′(w̄(s2)) + q(ū(s2)) < 0.

provided K3 > 0 is large enough. Hence the claim follows.

(4). We claim that there is a K4 > 0 such that z̄(s) < K4w̄(s) for s > 0.

Suppose the claim is false, then for any K4 > 0 there is an s1 > 0 such that

z̄(s1) = K4w̄(s1) and z̄′(s) ≥ K4w̄
′(s).

Then, at s = s1, we have the following contradiction:

0 ≤ cz̄ + ℓ(w̄)q(ū)−K4z̄ = w̄(cK4 −K2
4) + ℓ(w̄)q(ū)

)
< 0,

provided K4 > 0 is large enough. Hence the claim follows, and the proof is
complete.

According to Lemma 3.1∼Lemma 3.3, ȳ(s) is positively invariant in the set D
defined by

D := {0 < u < K, 0 < w < M, −K1h(u) < v < K2u, −K3ℓ(w) < z < K4w}.
Now we define the Lyapunov function V (u, v, w, z) on D by

V (u, v, w, z) = αβ
(
dv − cu− h(u∗)

dv

h(u)
+ ch(u∗)H(u)

)
−(

z − cw − ℓ(w∗)
z

ℓ(w)
+ cℓ(w∗)L(w)

)
, (3.2)

where α > 0, β < 0,

H(u) :=

∫ u

u∗

dx

h(x)
and L(w) :=

∫ w

w∗

dx

ℓ(x)
.

It is easy to verify that V (y) is bounded below on D . Moreover, the derivative of
V along any trajectory y(s) of (2.1) lying in D is equal to

dV

ds
= −αβ(h(u)− h(u∗))(p(u)− p(u∗)) + αβh(u∗)

dv2h′(u)

h2(u)
− ℓ(w∗)

z2ℓ′(w)

ℓ2(w)
.
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4 Proof of the Main Results

First, we recall the following LaSalle’s Invariance Principle.

Proposition 4.1. (LaSalle’s Invariance Principle, cf. [16]) Consider the following
initial value problem:

y′ = f(y), y ∈ Rn. (4.1)

Let D ⊆ Rn be an open set in Rn. Suppose y(s) is a solution of (4.1) which is
positively invariant in D . If there is a continuous and bounded below function
V : D → R such that the orbital derivative of V along y(s) is non-positive, i.e.,

dV

ds
= ∇V (y) · f(y) ≤ 0,

then the ω-limit set of y(s) is contained in I, where I be the largest invariant set
in {y ∈ D : dV/ds = 0}.

Proof of Theorem 1.1.

According to the discussion in Section 2, we only need to prove part (ii) of the
theorem. By Lemma 3.3, ȳ(s) is positively invariant in D . It’s obvious that the
Lyapunov function V (y) defined by (3.2) is continuous, bounded below and has
non-positive orbital derivative along ȳ(s). By the LaSalle’s Invariant Principle, the
ω-limit set of ȳ(s) is contained in the largest invariant subset of {y ∈ D : dV/ds =
0}, which is the singleton (u∗, 0, w∗, 0). It follows that ȳ(∞) = (u∗, 0, w∗, 0). On
the other hand, since ȳ(0) lies in the unstable manifold of (K, 0, 0, 0), we have
ȳ(−∞) = (K, 0, 0, 0). By Lemma 3.1, ū(s) and w̄(s) are positive for all s. Thus,
there is a nonnegative traveling wave solution of (1.1) connecting the equilibria
E1 and E2.

Next, according to equation (2.6), the characteristic equation of the lineariza-
tion of (2.1) at (u∗, 0, w∗, 0) is given by

P (λ) = dλ4 − (dc+ c)λ3 + (c2 − ξ∗)λ
2 + cξ∗λ+ ζ∗

= λ2(λ− c)(dλ− c)− ξ∗λ(λ− c)− αβg(w∗)h(u∗)h
′(u∗)g

′(w∗).

By Proposition 2.1, P (λ) always has two roots with positive real parts and two
roots with negative real parts. Regarding P (λ) as the constant shift of the poly-
nomial λ2(λ − c)(dλ − c) − ξ∗λ(λ − c) which has two distinct positive real roots
and two distinct negative real roots. Since −αβg(w∗)h(u∗)h

′(u∗)g
′(w∗) > 0, It’s

easy to see that there exists a σ∗ > 0 such that P (λ) has two distinct nega-
tive real eigenvalues when |αβ| < σ∗; repeated negative real eigenvalues when
|αβ| = σ∗; and a complex conjugate pair of eigenvalues with negative real part
when |αβ| > σ∗. Hence, by the Stable Manifold Theorem, we prove the assertion
of the theorem for the behavior of traveling wave solutions for large s. The proof
is complete.
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5 Applications and Hopf Bifurcation

In this section, we will apply our main theorem to systems (1.2)-(1.5). We further
investigate the existence of traveling wave train solutions for systems (1.3) and
(1.4) via the mechanism of Hopf bifurcation. These results generalize the works
[17, 21].

5.1 Applications to System (1.2)

After rescaling (see [6]), we may consider system (1.2) in the form{
ut = duxx − u(w − (1− u)),
wt = wxx − αw(b− u),

(5.1)

where α > 0 and b > 0 are positive constants. Then

h(u) = u, g(w) = w, ℓ(w) = αw, p(u) = 1− u q(u) = b− u,

K = 1, u∗ = b, w∗ = 1− b.

Therefore, the assumptions (A1)∼(A4) hold if b < 1. By Theorem 1.1, we have
the following results.

Theorem 5.1. Assume 0 < b < 1. If c > 2
√
α(1− b), then there is a nonnegative

traveling wave solution of (5.1) connecting the equilibria (1, 0) and (u∗, w∗).

Note that the result of Theorem 5.1 is consistent with the work of [6].

5.2 Applications to System (1.3)

After rescaling (see [17]), we may consider system (1.3) in the form ut = duxx −
u

1 + u
(w − a(b− u)(1 + u)),

wt = wxx − w(1− ru

1 + u
),

(5.2)

where b > 0, a > 0 and r > 0 are positive constants. Then

h(u) =
u

1 + u
, g(w) = w, ℓ(w) = w,

p(u) = a(b− u)(1 + u), q(u) = 1− ru

1 + u
,

K = b, u∗ =
1

r − 1
, w∗ = a(b− 1

r − 1
)(1 +

1

r − 1
).

Therefore, the assumptions (A1)∼(A4) hold if

b < 1 and
b+ 1

b
< r. (5.3)

By Theorem 1.1, we have the following results.
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Theorem 5.2. Assume (5.3). If c > 2
√
(rb− 1− b)/(1 + b), then there is a

nonnegative traveling wave solution of (5.2) connecting the equilibria (b, 0) and
(u∗, w∗).

Next, we investigate the phenomena of Hopf bifurcation for the following re-
duced system 

u′ = v,

dv′ = cv +
u

1 + u
(w − a(b− u)(1 + u)),

w′ = z,

z′ = cz + w − ru

1 + u
.

(5.4)

According to equation (2.6), we know that

ξ∗ = −h(u∗)p′(u∗) = −a
r
(b− 1− 2

r − 1
),

ζ∗ = −ℓ(w∗)h(u∗)q
′(u∗)g

′(w∗) =
ab(r − 1)− a

r
.

If b > 1 and r > (b+ 1)/(b− 1) then ξ∗ < 0 and ζ∗ > 0. Substituting λ = ki into
equation (2.6), we have

k4 − c2 − ξ∗
d

k2 +
ζ∗
d

= 0 and k2 = − ξ∗
1 + d

.

Then, a pair of pure imaginary eigenvalues of (2.6) exists if the parameters satisfy
the following condition:

c2 =
ξ∗

1 + d
− (1 + d)

ζ∗
ξ∗
. (5.5)

Let us fix the parameters d, a, b and consider λ, ξ∗ and ζ∗ as functions of r. Then,
differentiating equation (2.6) with respect to r gives

dλ

dr
=

ξ̇∗λ
2 − cξ̇∗λ− ζ̇∗

4dλ3 − 3λ2(cd+ c) + 2(c2 − ξ∗)λ+ cξ∗
. (5.6)

Substituting λ = ki into equation (5.6), we obtain

dλ

dr

∣∣∣
λ=ki

= − (ξ̇∗k
2 + ζ̇∗) + cξ̇∗ki

(3k2(cd+ c) + cξ∗) + (2k(c2 − ξ∗)− 4dk3))i

Re
dλ

dr

∣∣∣
λ=ki

= −cξ∗
(ξ∗ξ̇∗(3− d)

(1 + d)2
− 2ζ̇∗ +

(ξ∗ − 2c2)ξ̇∗
1 + d

)
= −cξ∗

(4ξ∗ − 2c2(1 + d)

(1 + d)2
ξ̇∗ − 2ζ̇∗

)
. (5.7)
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Since ζ̇∗ = a(b+ 1)/r2 > 0, ξ∗ < 0, if ξ̇∗ > 0, i.e.,

ξ̇∗ =
a

r2
(b− 1− 2(2r − 1)

(r − 1)2
) > 0 or r >

b+ 1 +
√
2(b+ 1)

b− 1
,

then Re
dλ

dr

∣∣∣
λ=ki

< 0. Therefore, we obtain the following results.

Theorem 5.3. Assume b > 1. If r >
b+ 1 +

√
2(b+ 1)

b− 1
, then as r crosses the

curve

c2 =
ξ∗(r)

1 + d
− (1 + d)

ζ∗(r)

ξ∗(r)

in the (r, c) plane, the system (5.4) undergoes a Hopf bifurcation at the equilibrium
(u∗, 0, w∗, 0) and there is a small amplitude periodic solution, which corresponds
to a small traveling wave train solution of system (5.2).

Remark 5.4.

(1). Since we construct the Lyapunov function more generally, the result of The-
orem 5.2 extends the result of Theorem 2.2 of [17].

(2). Here we point out the difference between our result of Theorem 5.3 with
Theorem 2.3 of [17]. In [17], there is a typing error for r(β) (see p. 149).
Hence our result of Theorem 5.3 provides the correct region of parameters
for Hopf bifurcation.

5.3 Applications to System (1.4)

After rescaling (see [21]), we may consider system (1.4) in the form
ut = duxx − au(b− u)− u2w

1 + u2
,

wt = wxx − w(1− ru2

1 + u2
),

(5.8)

where a > 0, r > 0 and b > 0 are positive constants. Then

h(u) =
u2

1 + u2
, g(w) = w, ℓ(w) = w,

p(u) = a(b− u)
1 + u2

u
, q(u) = 1− ru2

1 + u2
,

K = b, u∗ =
1√
r − 1

, w∗ = a(b− 1√
r − 1

)
r√
r − 1

.

Therefore, the assumptions (A1)∼(A4) hold if

b < 3
√
3 and

b2 + 1

b2
< r. (5.9)

By Theorem 1.1, we have the following results.
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Theorem 5.5. Assume (5.9). If c > 2
√
(rb2 − 1− b2)/(1 + b2), then there is a

nonnegative traveling wave solution of (5.8) connecting the equilibria (b, 0) and
(u∗, w∗).

Next, we investigate the phenomena of Hopf bifurcation for the following re-
duced system 

u′ = v,

dv′ = cv − au(b− u) +
u2w

1 + u2
,

w′ = z,

z′ = cz + w(1− ru2

1 + u2
).

(5.10)

According to equation (2.6), we know that

ξ∗ = −h(u∗)p′(u∗) = −a
r
((2− r)b− 2√

r − 1
),

ζ∗ = −ℓ(w∗)h(u∗)q
′(u∗)g

′(w∗) = 2
a

r
(r − 1)(b− 1√

r − 1
).

By elementary computation, we have

ξ∗ < 0 ⇔ (r − 2)b+
2√
r − 1

< 0, (5.11)

ξ̇∗ > 0 ⇔ 2b >
3r − 2

(r − 1)
√
r − 1

(5.12)

ζ̇∗ > 0 ⇔ 2b
√
r − 1 + r − 2 > 0 ⇔

√
r − 1 >

√
b2 + 1− b. (5.13)

If r > (b2 + 1)/b2 then ζ̇∗ > 0. Assume b > 3
√
3, then there exists

(b2 + 1)/b2 < r1(b) < r2(b) < 2

such that ξ∗ < 0 holds if 0 < r1(b) < r < r2(b). Furthermore, there exists
0 < r3(b) < r2(b) such that ξ̇∗ > 0 when r > r3(b). Similarly, let us fix the
parameters d, a, b and consider λ, ξ∗ and ζ∗ as functions of r. According to (5.7),
if

rℓ(b) := max{r1(b), r3(b)} < r < rr(b) := r2(b) (5.14)

then Re
dλ

dr

∣∣∣
λ=ki

< 0. Therefore, we obtain the following results.

Theorem 5.6. Assume b > 3
√
3. If rℓ(b) < r < rr(b) , then as r crosses the curve

c2 =
1

1 + d
− (1 + d)

ζ∗(r)

ξ∗(r)

in the (r, c) plane, the system (5.10) undergoes a Hopf bifurcation at the equilib-
rium (u∗, 0, w∗, 0) and there is a small amplitude periodic solution, which corre-
sponds to a small traveling wave train solution of system (5.8).
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Remark 5.7. In [21], the authors only consider system (1.4) in special case :
d1 = 0. Therefore, in Theorem 5.5 and Theorem 5.6, we provide the new results
for the case d1 ̸= 0.

5.4 Applications to System (1.5)

After rescaling, we may consider system (1.5) in the simple form{
ut = duxx − au(b− u)− w(1− e−mu),

wt = wxx − w(1− r(1− e−mu)),
(5.15)

where a > 0, b > 0, r > 0 and m > 0 are positive constants. Then

h(u) = 1− e−mu, g(w) = w, ℓ(w) = w,

p(u) =
au(b− u)

1− e−mu
q(u) = 1− r(1− e−mu),

K = b, u∗ =
−1

m
ln(1− 1

r
), w∗ = rau∗(b− u∗).

It can be verified that if mb < 2 and r(1−e−mb) > 1 then assumptions (A1)∼(A4)
hold. By Theorem 1.1, we have the following results.

Theorem 5.8. Assume mb < 2 and r(1− e−mb) > 1. If c > 2
√
r(1− e−mb)− 1,

then there is a nonnegative traveling wave solution of (5.1) connecting the equi-
libria (1, 0) and (u∗, w∗).

Appendix I: Proof of Proposition 2.4.

To start with the proof of Proposition 2.4, we first illustrate the following claim
which hold obviously and will be used in the proof.

Claim I.

(1). If z = 0, u ̸= u∗, then z
′ = ℓ(w)q(u) has the same sign with −w · (u− u∗).

(2). If z = 0, u = u∗, then z′ = 0 and z′′ = ℓ(w)q′(u)v has the same sign with
−v.

(3). If v = 0, g(w)− p(u) ̸= 0, u ̸= 0, then dv′ = h(u)(g(w)− p(u)) has the same
sign with g(w)− p(u).

(4). If v = 0, g(w)− p(u) = 0, u ̸= 0, then v′ = 0 and dv′′ = h(u)g′(w)z has the
same sign with z.

(5). If v ̸= 0, g(w)− p(u) = 0, then

(g(w)− p(u))′ = g′(w)z − p′(u)v > 0, if z ≥ 0, v ≥ 0, (z, v) ̸= (0, 0);

(g(w)− p(u))′ = g′(w)z − p′(u)v < 0, if z ≤ 0, v ≤ 0, (z, v) ̸= (0, 0).
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Now we establish the exit set W−. Since W− is a subset of ∂W , it’s required
to analyze the dynamics of (2.1) on each portion of ∂W .

For the portion ∂R \ P , let’s set ∂R = R0 ∪R1 ∪R2 ∪R3 with

R0 ={(u, v, w, z) : u = 0, g(w)− p(u) ≤ 0, v ≤ 0},
R1 ={(u, v, w, z) : u = u∗, g(w)− p(u) ≤ 0, v ≤ 0},
R2 ={(u, v, w, z) : u < u∗, g(w)− p(u) = 0, v ≤ 0},
R3 ={(u, v, w, z) : u < u∗, g(w)− p(u) < 0, v = 0}.

Then, we investigate the behavior of solutions on each Ri in the sequel.

On region R0, we consider the following two subsets.

(1). Assume u = 0 and v < 0. Since v < 0, we know that u+ < 0 and this
implies this set belongs to W−.

(2). Assume u = 0 and v = 0. In this case, (0, 0, w, z) will stay at W for any
(w, z) ∈ R2. Thus, (0, 0, w, z) ∈ J2.

On region R1, we consider the following four subsets.

(1). Assume u = u∗, w = w∗ and v < 0. If z ≤ 0, we have

(g(w)− p(u))′ = g′(w)z − p′(u)v ≤ −p′(u)v < 0.

Then any trajectory of solutions will enter the region R. On the other hand,
if z > 0 then w+ > w∗ and this implies that any trajectory of solutions will
enter the region P .

(2). Assume u = u∗, w < w∗ and v < 0. In this case, it’s easy to see that any
trajectory of solutions will enter region R.

(3). Assume u = u∗, w = w∗ and v = 0. If z = 0 then it’s obvious that
(u∗, 0, w∗, 0) /∈ W−. If z > 0 then w+ > w∗, v

′ = 0, (g(w) − p(u))′ =
g′(w)z > 0 and

dv′′ = cv′ + h′(u)v(g(w)− p(u)) + h(u)(g(w)− p(u))′

= h(u)(g(w)− p(u))′ > 0.

Thus, v+ > 0, u′ > 0 and u+ > u∗. Therefore, any trajectory of solutions
will enter the region S. If z < 0, similar to case of z > 0, we can obtain
w+ < w∗ and u+ < u∗. Hence, any trajectory of solutions will enter the
region R.

(4). Assume u = u∗, w < w∗ and v = 0. In this case, we have

dv′ = cv + h(u∗)(g(w)− p(u∗)) < cv + h(u∗)(g(w∗)− p(u∗)) < 0.

Thus v+ < 0. Since u′ = v < 0, then u+ < u∗ and g(w) − p(u∗) < g(w∗) −
p(u∗) = 0. Hence, any trajectory of solutions will enter the region R.

31



On region R2, we consider the following two subsets.

(1). Assume 0 < u < u∗, g(w) − p(u) = 0 and v < 0. If z > 0 then u < u∗ and
g(w)− p(u) = 0 imply that w > w∗. Hence, any trajectory of solutions will
enter the region P . If z = 0 then

z′ = cz + l(w)q(u) > 0 + l(w)q(u∗) = 0,

and this implies z+ > 0 and w+ > w∗. Hence, any trajectory of solutions
will enter the region P . If z < 0, it is easy to check that

(g(w)− p(u))′ = g′(w)z − p′(u)v < g′(w)z < 0.

Hence (g(w) − p(u))+ < 0 and any trajectory of solutions will enter the
region R.

(2). Assume 0 < u < u∗, g(w) − p(u) = 0 and v = 0. If z ≥ 0, by the same
arguments as (1), any trajectory of solutions will enter the region P . If
z < 0, we have

(g(w)− p(u))′ = g′(w)z < 0 ⇒ (g(w)− p(u))+ < 0,

dv′ = cv + g(w)− p(u) = 0,

dv′′ = cv′ + h′(u)v(g(w)− p(u)) + h(u)(g′(w)z − p′(u)v)

= 0 + 0 + h(u)g′(w)z + 0 < 0.

Hence v+ < 0, and any trajectory of solutions will enter the region R.

On region R3, we have 0 < u < u∗, g(w)− p(u) < 0 and v = 0. Thus,

dv′ = cv + h(u)(g(w)− p(u)) = 0 + h(u)(g(w)− p(u)) < 0.

Hence, any trajectory of solutions will enter the region R.

For the portion ∂S \Q, let’s set ∂S = S1 ∪ S2 ∪ S3 with

S1 ={(u, v, w, z)|u = u∗, g(w)− p(u) ≥ 0, v ≥ 0},
S2 ={(u, v, w, z)|u > u∗, g(w)− p(u) = 0, v ≥ 0},
S3 ={(u, v, w, z)|u > u∗, g(w)− p(u) > 0, v = 0}.

Then we investigate the behavior of solutions on each Si.

On region S1, we consider the following four subsets.

(1). Assume u = u∗, w = w∗ and v > 0. If z ≥ 0 then

(g(w)− p(u))′ = g′(w)z − p′(u)v ≥ −p′(u)v > 0.

Hence, the any trajectory of solutions will enter the region S. On the other
hand, if z < 0 then w+ < w∗ and this implies that any trajectory of solutions
will enter the region Q.
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(2). Assume u = u∗, w > w∗ and v > 0. In this case, it’s easy to see that any
trajectory of solutions will enter region S.

(3). Assume u = u∗, w = w∗ and v = 0. If z = 0, it’s obvious that (u∗, 0, w∗, 0) /∈
W−. If z > 0 then w+ > w∗, v

′ = 0, (g(w)− p(u))′ = g′(w)z > 0 and

dv′′ = h(u)(g(w)− p(u))′ > 0.

Thus, v+ > 0, u′ > 0 and u+ > u∗. Then, any trajectory of solutions will
enter the region S. If z < 0, similar to case of z > 0, we can obtain w+ < w∗
and u+ < u∗. Hence, any trajectory of solutions will enter the region R.

(4). Assume u = u∗, w > w∗ and v = 0. In this case, we have

dv′ = cv + h(u∗)(g(w)− p(u∗)) > cv + h(u∗)(g(w∗)− p(u∗)) = 0,

and this implies v+ > 0. Since u′ = v < 0, then u+ > u∗ and g(w)− p(u∗) >
g(w∗) − p(u∗) = 0. Hence, any trajectory of solutions will enter the region
S.

On region S2, we consider the following two subsets.

(1). Assume u > u∗, g(w) − p(u) = 0 and v > 0. If z < 0 then u > u∗ and
g(w) − p(u) = 0. Thus w < w∗, and any trajectory of solutions will enter
the region Q. If z = 0 then

z′ = cz + l(w)q(u) < 0 + l(w)q(u∗) = 0,

and this implies z+ < 0 and w+ < w∗. Then any trajectory of solutions will
enter the region Q. If z > 0, it is easy to check that

(g(w)− p(u))′ = g′(w)z − p′(u)v > g′(w)z > 0.

Hence (g(w) − p(u))+ > 0 and any trajectory of solutions will enter the
region S.

(2). Assume u > u∗, g(w)−p(u) = 0 and v = 0. If z ≤ 0, by the same arguments
as (1), any trajectory of solutions will enter the region Q. If z > 0, we have

(g(w)− p(u))′ = g′(w)z > 0 ⇒ (g(w)− p(u))+ > 0,

dv′ = cv + g(w)− p(u) = 0 and dv′′ = h(u)g′(w)z > 0.

Hence v+ > 0, and any trajectory of solutions will enter the region S.

On region S3, we have u > u∗, g(w)− p(u) > 0 and v = 0. Thus,

dv′ = cv + h(u)(g(w)− p(u)) = 0 + h(u)(g(w)− p(u)) > 0.

Hence, any trajectory of solutions will enter the region S.
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For the portion ∂P \R, let’s set

∂P = P0 ∪ P1 ∪ P12 ∪ P2 ∪ P3 ∪ P13 ∪ P123,

where

P0 ={(u, v, w, z)|u = 0, w ≥ w∗, z ≥ 0},
P1 ={(u, v, w, z)|u = u∗, w > w∗, z > 0},
P12 ={(u, v, w, z)|u = u∗, w = w∗, z > 0},
P2 ={(u, v, w, z)|u ∈ (0, u∗), w = w∗, z > 0},
P3 ={(u, v, w, z)|u ∈ (0, u∗), w ≥ w∗, z = 0}
P13 ={(u, v, w, z)|u = u∗, w > w∗, z = 0}
P123 ={(u, v, w, z)|u = u∗, w = w∗, z = 0}.

Now we investigate the behavior of solutions on each Pi.

On region P0, we consider the following three subsets.

(1). Assume v < 0. Since v < 0, we have u+ < 0 and this implies this set belongs
to W−.

(2). Assume v = 0. In this case, (0, 0, w, z) will stay at W for any (w, z) ∈ R2.
Thus, (0, 0, w, z) ∈ J2.

(3). Assume v > 0. Since v > 0, we have u+ > 0. Then part (1) of Claim I
implies z+ > 0 and w+ > w∗. Thus, the trajectory of solutions will enter
the region P .

On region P1, we have g(w)− p(u) > 0. Then we consider the following three
subsets.

(1). Assume v < 0. Since v < 0, we have u+ < u∗ and this implies the trajectory
of solutions will enter the region P .

(2). Assume v = 0. Then part (3) of Claim I implies v+ > 0 and u+ > u∗. Thus,
the trajectory of solutions will enter the region S.

(3). Assume v > 0. Since v > 0, we have u+ > u∗. Thus, the trajectory of
solutions will enter the region S.

On region P12, we have g(w)− p(u) = 0 and w+ > w∗. Then we consider the
following three subsets.

(1). Assume v < 0. Since v < 0, we have u+ < u∗ and this implies the trajectory
of solutions will enter the region P .

(2). Assume v = 0. Then part (4) of Claim I implies v+ > 0 and u+ > u∗,
and part (5) of Claim I implies [g(w)− p(u)]+ > 0. Thus, the trajectory of
solutions will enter the region S.
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(3). Assume v > 0. Since v > 0, we have u+ > u∗. Then part (5) of Claim I
implies [g(w) − p(u)]+ > 0. Thus, the trajectory of solutions will enter the
region S.

On region P2, we have w+ > w∗. Hence, the trajectory of solutions will enter
the region P .

On region P3, part (1) of Claim I implies z+ > 0 and w+ > w∗. Hence, the
trajectory of solutions will enter the region P .

On region P13, we have g(w)− p(u) > 0. Then we consider the following three
subsets.

(1). Assume v < 0. Since v < 0, we have u+ < u∗. Then part (2) of Claim I
implies z+ > 0. Hence, the trajectory of solutions will enter the region P .

(2). Assume v = 0. then part (3) of Claim I implies v+ > 0 and u+ > u∗. Thus,
the trajectory of solutions will enter the region S.

(3). Assume v > 0. Since v > 0, we have u+ > u∗. Thus, the trajectory of
solutions will enter the region S.

For the portion ∂Q \ S, let’s set

∂Q = Q0 ∪Q1 ∪Q12 ∪Q2 ∪Q3+ ∪Q3− ∪Q13+ ∪Q13− ∪ P123,

where

Q0 ={(u, v, w, z)|u ≤ u∗, w = 0, z = 0},
Q1 ={(u, v, w, z)|u = u∗, w < w∗, z < 0},
Q12 ={(u, v, w, z)|u = u∗, w = w∗, z < 0},
Q2 ={(u, v, w, z)|u > u∗, w = w∗, z < 0},
Q3+ ={(u, v, w, z)|u > u∗, 0 < w < w∗, z = 0}
Q3− ={(u, v, w, z)|u > u∗, w < 0, z = 0}
Q13+ ={(u, v, w, z)|u = u∗, 0 < w < w∗, z = 0}.
Q13− ={(u, v, w, z)|u = u∗, w < 0, z = 0}.

Now we investigate the behavior of solutions on each Pi.

On region Q0, the trajectory of solutions are invariant in V and included in
J10.

On region Q1, we have g(w)− p(u) < 0. Then we consider the following three
subsets.

(1). Assume v > 0. Since v > 0, we have u+ > u∗ and this implies the trajectory
of solutions will enter the region Q.
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(2). Assume v = 0. Then part (3) of Claim I implies v+ < 0 and u+ < u∗. Thus,
the trajectory of solutions will enter the region R.

(3). Assume v < 0. Since v < 0, we have u+ < u∗. Thus, the trajectory of
solutions will enter the region R.

On region Q12, we have g(w) − p(u) = 0, w+ < w∗. Then we consider the
following three subsets.

(1). Assume v > 0. Since v > 0, we have u+ > u∗ and this implies the trajectory
of solutions will enter the region Q.

(2). Assume v = 0. Then part (4) of Claim I implies v+ < 0 and u+ < u∗,
and part (5) of Claim I implies (g(w)− p(u))+ < 0. Thus, the trajectory of
solutions will enter the region R.

(3). Assume v < 0. Since v < 0, we have u+ < u∗. Then part (5) of Claim I
implies (g(w)− p(u))+ < 0. Thus, the trajectory of solutions will enter the
region R.

On region Q2, we have w+ < w∗. Hence, the trajectory of solutions will enter
the region Q.

On region Q3+, part (1) of Claim I implies z+ < 0 and w+ < w∗. Hence, the
trajectory of solutions will enter the region Q.

On region Q3−, part (1) of Claim I implies z+ > 0. Then the trajectory
will not enter Q immediately. Furthermore, the trajectory will not enter P or R
immediately since u > u∗. Thus we consider the following four subsets.

(1). Assume v < 0. Since v > 0, the trajectory can not enter S immediately.
Thus, the trajectory of solutions can not exit W immediately, and included
in J12.

(2). Assume v ≥ 0 and g(w) − p(u) < 0. Since g(w) − p(u) < 0, the trajectory
can not enter S immediately. Thus, the trajectory of solutions can not exit
W immediately, and included in J12.

(3). Assume v = 0 and g(w)−p(u) > 0. Then part (3) of Claim I implies v+ > 0.
Thus, the trajectory of solutions will enter the region S.

(3) Assume v = 0 and g(w) − p(u) = 0. We have (g(w) − p(u))′ = 0 and
(g(w) − p(u))′′ = g′(w)z′. By part (1) of Claim I, (g(w) − p(u))+ > 0. On
the other hand, dv′ = dv′′ = 0 and dv′′′ = h(u)g′(w)z′ > 0. Then v+ > 0,
and the trajectory of solutions will enter the region S.

On region Q13+, we have g(w) − p(u) < 0. Then we consider the following
three subsets.
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(1). Assume v > 0. Since v > 0, we have u+ > u∗. Then part (2) of Claim I
implies z+ < 0. Thus, the trajectory of solutions will enter the region Q.

(2). Assume v = 0. Then part (3) of Claim I implies v+ < 0 and u+ < u∗. Thus,
the trajectory of solutions will enter the region R.

(3). Assume v < 0. Since v < 0, we have u+ < u∗. Thus, the trajectory of
solutions will enter the region R.

On region Q13−, we have g(w) − p(u) < 0. Then we consider the following
three subsets.

(1). Assume v > 0. It’s obvious g(w) − p(u) < 0. Thus the trajectory can not
enter S immediately. Since v > 0, then u+ > u∗ and the trajectory can
not enter P or R immediately. Furthermore, the part (2) of Claim I implies
z+ > 0 and the trajectory can not enter Q immediately. Therefore, the
trajectory of solutions can not exit W immediately and included in J11.

(2). Assume v = 0. Then part (3) of Claim I implies v+ < 0 and u+ < u∗. Thus,
the trajectory of solutions will enter the region R.

(3). Assume v < 0. Since v < 0, we have u+ < u∗. Thus, the trajectory of
solutions will enter the region R.

According to previous results, the proof of this appendix is complete.

Appendix II: Proof of Lemma 2.17.

First, we prove the following claim.

Claim II.

(1). If y ∈ ŷ5y1, then y · s will exit W from the boundary of R or P .

(2). If y ∈ ŷ1y2, then y · s will exit W from the boundary of region R, P , or S.

(3). If y ∈ ŷ2y3, then y · s will exit W from the boundary of region S.

(4). If y ∈ ŷ3y4, then y · s will exit W from the boundary of region Q.

(5). If y ∈ ŷ4y5, then y · s will exit W from the boundary of region R.

Proof. (1). The assertion of (1) follows directly by Lemma 2.10.

(2). Let y(0) = G(θ) ∈ ŷ1y2 with θ ∈ (θ1, θ2), then u(0) > u∗, v(0) < 0, w(0) >
0 and z(0) > 0. For θ ∈ (θ1, θ2), let s1(θ) be the first time that u(s;G(θ)) = u∗
and s2(θ) be the first time that v(s;G(θ)) = 0. By Lemma 2.11, s1(θ) and s2(θ)
are finite.

If s1(θ) < s2(θ), similar to Lemma 2.10, y(s;G(θ)) will enter region R or P .
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If s1(θ) ≥ s2(θ) then v(s) < 0 for s ∈ (0, s2), v(s2) = 0 and u(s2) ≥ u∗.
Thus v′(s2) ≥ 0. If v′(s2) > 0, then g(u(s2)) − p(w(s2)) > 0. It follows that
u(s+2 ) > u∗, v(s

+
2 ) > 0, g(w(s+2 )) − p(u(s+2 )) > 0 and y(s+2 ) entering region S.

If v′(s2) = 0, then g(w(s2)) − p(u(s2)) = 0, v′′(s2) = h(u(s2))g(w(s2))z(s2) and
(g(w)− p(u))′(s2) = g′(w(s2))z(s2). By Lemma 2.9, w(s2) > 0 and z(s2) > 0. It
follows that v′′(s2) > 0 and (g(w)−p(u))′(s2) > 0. Thus we also have u(s+2 ) > u∗,
v(s+2 ) > 0, g(w(s+2 ))− p(u(s+2 )) > 0 and y(s+2 ) entering region S.

(3). We are going to show that g(w)− p(u) > 0 for y ∈ ŷ2y3. By Mean Value
Theorem, we have

g(w)− p(u)

ε
=g′(w0)w − p′(u0)(u−K)

=g′(w0) (−ψ(λ2)c2 − ψ(λ3)c3)− p′(u0) (−c1 − c2 − c3) +O(ε),
(5.16)

for some u0, w0, where (u0, w0) tends to (K, 0) as ε tends to 0. Since v = 0,

−c1 =
λ3
λ1
c3 +

λ2
λ1
c2 +O(ε). (5.17)

Substituting equation (5.17) into equation (5.16), we have

g(w)− p(u)

ε
=

(
− g′(w0)ψ(λ2)− p′(u0)

λ2 − λ1
λ1

)
c2

+
(
− g′(w0)ψ(λ3)− p′(u0)

λ3 − λ1
λ1

)
c3 +O(ε). (5.18)

By (2.5) and (2.4), we have

−g′(0)ψ(λ2)− p′(K)
λ2 − λ1
λ1

=− λ2

(
dλ2 − c+ h(K)p′(K)

1

λ1

)
/h(K).

>− λ2

(
dλ1 − c+ h(K)p′(K)

1

λ1

)
/h(K) = 0,

which implies that

−g′(w0)ψ(λ2)− p′(u0)
λ2 − λ1
λ1

> 0

for ε sufficient small. Since z > 0, λ3ψ(λ3)c3 < −λ2ψ(λ2)c2 + O(ε), which leads
to

g(w)− p(u)

ε
>c3

{(
− g′(w0)ψ(λ2)− p′(u0)

λ2 − λ1
λ1

) λ3ψ(λ3)

−λ2ψ(λ2)

+
(
− g′(w0)ψ(λ3)− p′(u0)

λ3 − λ1
λ1

)}
+O(ε). (5.19)
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From (2.5) and (2.4), we have

λ3ψ(λ3)
(
− g′(0)ψ(λ2)− p′(K)

λ2 − λ1
λ1

)
− λ2ψ(λ2)

(
− g′(0)ψ(λ3)− p′(K)

λ3 − λ1
λ1

)
=
d2λ2λ3
h(K)

(λ1 − λ3)(λ1 − λ2)(λ2 − λ3) > 0,

which implies the following term

λ3ψ(λ3)
(
−g′(w0)ψ(λ2)−p′(u0)

λ2 − λ1
λ1

)
−λ2ψ(λ2)

(
−g′(w0)ψ(λ3)−p′(u0)

λ3 − λ1
λ1

)
is positive for sufficient small ε. Thus, g(w)− p(u) > 0 for y ∈ ŷ2y3.

If y(0) ∈ ŷ2y3 then u(0) > u∗, v(0) = 0 and g(w(0)) − p(u(0)) > 0. Hence,
v′(0) > 0, v(0+) > 0, and y(s) enters region S immediately.

(4). Let y(0) ∈ ŷ3y4. Obviously, u(0) > u∗. Denote by ci the coefficient of ei
in (2.10) then z(0) = −λ2c2ψ2−λ3c3ψ3 and w(0) = −c2ψ2− c3ψ3. Since z(0) = 0,
c3 > 0 and λ3 < λ2, we have w(0) > 0. It follows that z′(0) < 0 and z(0+) < 0.
Thus y(s) enters region Q immediately.

(5) Let y(0) ∈ ŷ4y5. According to Lemma 2.5, y0 ∈ Ω implies that y0 · s will
enter region R, which is an open set. Since the whole ŷ4y5 is very close to y0, it
follows that y(s) will also enter region R.

The proof of Claim II is complete.

Basing on the results of Claim II, now we proof that the set F (Σ) is not simply
connected.

Proof. Following the idea of Dunbar (see Appendix II of [7]) with a slight modi-
fication, we prove the results as following.

Let Λ =: P ∪ Q ∪ R ∪ S. For any fixed w, the projection of the sets of Λ
on the uvz space is shown in Figure 5 for w < w∗, Figure 6 for w = w∗, and
Figure 7 for w > w∗. The coordinate v of each figure is then “compressed” in
the subspace v = 0 respectively by a strong deformation retraction, as shown in
Figure 8. Synthesizing the three cases of Figure 8 in uwz space yields Figure 9,
where the deformation retraction of ∂Λ is the boundary of the two wedges

{u > u∗, g(w)− p(u) < 0, z > 0} and {0 < u < u∗, g(w)− p(u) > 0, z < 0}.

The deformation retraction of F (∂Σ) must lie in the boundary of the two wedges.
The results of Claim II imply that the boundary ∂Σ will be mapped to a closed
curve visiting R, P , S, andQ in turns at least once. It follows that the deformation
retraction of F (∂Σ) surrounds the straight line {u = u∗, w = w∗, z ∈ R} in uwz-
space, and cannot be homotopic to a point in W− since W− dose not contain the
point (u = u∗, w = w∗, v = 0, z = 0). Hence, F (Σ) is not simply connected. The
proof is complete.
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u

vz

u∗

S̄

Q̄

R̄

p−1(g(w))

Figure 5: The projection of Λ on the u-v-z-space for the case w < w∗. All the
dash lines lie on the plane z = 0.

u

vz

u∗

S̄

P̄

R̄

Q̄

Figure 6: The projection of Λ on the u-v-z-space for the case w = w∗. All the
dash lines lie on the plane z = 0.
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u

vz

u∗

S̄

P̄

R̄

p−1(g(w))

Figure 7: The projection of Λ on the u-v-z-space for the case w > w∗. All the
dash lines lie on the plane z = 0.

uuu

zzz

u∗u∗u∗

S̄

S̄

P̄R̄

R̄Q̄ Q̄ & R̄Q̄ & R̄ Q̄ & S̄Q̄ & S̄

P̄ & R̄P̄ & R̄ P̄ & S̄P̄ & S̄

w < w∗
w = w∗ w > w∗

p−1(g(w)) p−1(g(w))

Figure 8: Compression of Figure 5, Figure 6 and Figure 7 in the subspace v = 0
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(u∗, w∗, 0)

z
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R̄

R̄

R̄

R̄

P̄

P̄
P̄

S̄

S̄

S̄

S̄

Q̄

Q̄
Q̄

g(w) = p(u)

Figure 9: The deformation retrace of Λ in the u-w-z space
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