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THEREREEedx (G) = 1 [Compositio Math. 106 (1997), Theorem 6.2]. It
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Let K be a field, and G be a finite group. Inverse Galois problem looks into
Galois extensions of K with Galois group G. Buhler and Reichstein [BR] defined
the essential dimension of G over K when char K=0 to measure the complexity of
such extensions. They determined explicitly all finite groups G with edg (G) = 1
[Compositio Math. 106 (1997), Theorem 6.2]. We will prove a generalization of

this theorem when K is an arbitrary field.

Key words: Essential dimension, compression of finite group actions, Galois the-

ory, finite subgroups of SLy(K).
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Let K be a field, and G be a finite group. Inverse Galois problem looks into
Galois extensions of K with Galois group G. Buhler and Reichstein [BR] defined
the essential dimension of G over K when char K =0 to measure the complexity of
such extensions.

Let L/Ly be a finite separable extension and FEy be an intermediate field,

K C Ey C Lg. The extension L/Lg is said to be defined over Ej if there exists an



extension E such that Ey C E C L, [E : Ey] =[L: Lo] and L = E - Ly.
If transcendental degree of L over K, trdegy L is finite, the essential dimension

of L over Lg, denoted by ed(L/Lg) is defined as
edi(L/Lg) = min{trdegy F | L/Ly is defined over Ey}

If G is a finite group and G — GL(V) is a faithful representation where
dimgV = n < co. The essential dimension of G over K, edi(G) is defined to be
edx (V)/K(V)Y) where K (V) is the function field of the affine space V over K. It
can be proved that this notion is independent of the representation[BR, Ka].

Buhler and Reichstein determined explicitly all finite groups G with edx (G) =
1 [Compositio Math. 106 (1997), Theorem 6.2]. We will prove a generalization of

this theorem when K is an arbitrary field.
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It is obvious that edx(G) = 0 if and only if G = {1} the trivial group. In
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Theorem 6.2 [BR] the group G with edx (G) = 1 was studied.

Theorem 1. (Buhler and Reichstein [BR]) Let K be a field such that charK =0
and K contains all roots of unity. If G is a nontrivial finite group, then edx (G) = 1

if and only if G is isomorphic to Z/nZ or D,, where m is an odd integer.

We generalized the above theorem when K is an arbitrary field. The answer

is the following five theorems.

Theorem 2. Let K be an arbitrary field. Suppose that G is a nontrivial finite

group with edk (G) = 1.

(1) If charK = 0, then G is isomorphic to the cyclic group Z/nZ or the dihedral

group Dy, of order 2m.



(2) If charK = p > 0 and p # 2, then G is isomorphic to the cyclic group
Z/nZ, the dihedral group D,,, or the group G(n,p").

(3) If charK = 2, then G is isomorphic to the cyclic group Z/nZ, the dihedral
group D,,, the group G(n,2") or the group SLy(F,) where q is some power
of 2.

The group G(n,p") or G(n,2") will be defined when p { n, s | r where s :=
[Fy(Ca) « Fpl.

The group G(n,p") first as a subgroup of SLs(K) where K is an algebraically
closed field with charK = p > 0. Another definition of G(n,p") as an abstract group
will be given in the form of generators and relations. Finally the group G(n,p")
will be characterized as a subgroup of SLy(K) (where K is an algebraically closed
field with charK = p > 0), which is a semi-direct product of an elementary abelian
p-group with a cyclic group.

Now suppose that K is an algebraically closed field with charK = p > 0.
Regard K as a vector space over IF,,. Since ¢, € K, K is also a vector space over
F,(¢n) (and therefore over F,(¢2)). Choose a vector subspace V of K over F,((2)
so that [V : F,] = r. (Note that r = [V : F,(¢?)][F,(¢?) : F,].) Choose a basis

ai,...,ap of Vover F,. Define oq,...,0,, 7 € SLy(K) by

(1 oy (G a
(o 1) = (5 &)

where a is any element in K if n > 3, whilea =0if n =1 or 2.

Define G(n,p") to be the subgroup of SLs(K) generated by o1,... 0., T, i.e.
G(n,p") = {01,...,0, 7). Note that G(1,p") is an elementary abelian p-group
and G(2,p") is a direct product of an elementary abelian p-group with Z/27Z.

Define Q = (01,...,0,) C G(n,p"). It is clear that @ is a normal subgroup of

G(n,p") and @ is an elementary abelian p-group. A typical element in @ is of the



form

=0 1)

for some v € V. It is easy to verify that

r. ((1) i’) (1) = ((1) C21-v>'

The next step is to define G(n,p") as an abstract group. Choose a basis
Biy... B of V over Fy(¢2) (thus r = st where s = [F,(¢2) : Fp]). Let f(X) =
X*—as X1 —as_1X572—...—ay € F,y[T] be the minimum polynomial of (? over
F,. (Note that f(X) is an irreducible factor of the cyclotomic polynomial ®,,(X)
or ®,/5(X) over F,.) Define 3;; = Q%(j_l)ﬁi where 1 < 5 <'s. Then f;; is a basis

of V over IF,,. It is not difficult to show that G(n,p") is generated by

1 ﬁij Cn a
o 1) Lo ¢t
where 1 < i <t 1< j < sandr = st. Moreover, the group G(n,p”) may be

defined by generators o;; and 7 (with 1 < ¢ <¢, 1 < j < s) and the relations are

given by
n
o, =T7"=1, 0408 = 00,

7'0'@'7'71:0'1',]'+1 for 1<i1<t, 1<j<s—1,

— a; .
TOGsT = H Ui;- for 1 <i<t.
1<j<s

Thus, as an abstract group, G(n,p") is independent of the choice of a.
Theorem 3. Let K be an arbitrary field and G = Z/nZ be the cyclic group of order
n.

(1) If charK t n, then edx(G) = 1 if and only if ¢, + ¢, € K when n is an
odd integer, or (, € K when n is an even integer.

(2) If charK =p >0 and p | n, then edx(G) =1 if and only if n = p.



Theorem 4. Let K be an arbitrary field and G = D,, be the dihedral group of order
2n.
(1) If charK = 0, then edx(G) = 1 if and only if n is an odd integer and
Gt (it €K
(2) If charK =p > 0 and p # 2, then edx(G) = 1 if and only if n is an odd
integer, C, + ¢t € K when ptn, orn=p whenp|n.
(3) If charK = 2, then edx(G) = 1 if and only if ¢, + ;! € K when n is an

odd integer, or |K| > 4 with n = 2 when n is an even integer.

Theorem 5. Let K be an arbitrary field with charK = p > 0. If G is the group
G(n,p"), then edix (G) = 1 if and only if n is an odd integer, ¢, € K and [K : F,] >

r.

Theorem 6. Let K be an arbitrary field with charK = 2. If G is the group SLs(F,)

where q is some power of 2, then edix (G) =1 if and only if K D F,.

As an application of the above theorems, we will prove that, when K is a field
with charK = 2, if K doesn’t contain Fy4, then edx(Ay) = edg(As) = 2, while
edrg(As) = edx(As) = 1 if K D Fy. Similarly, since Z/4Z is contained in the
symmetric group Sy and edg (Ss) = 2, we find that edx(Z/47Z) = 2 if charK # 2
and -1 ¢ K; edx(Z/4Z) = 1 if charK # 2 and /—1 € K; edg(Z/AZ) = 2 if
char K = 2. (This result was proved in [BF] Theorem 7.6 in the case charK # 2 by
a different method.) It is not difficult to verify that edg(Z/5Z) = edq(Z/6Z) = 2

by the same way.
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