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Abstract

In this paper, we investigate inverse spectral problems for vectorial Sturm-
Liouville equations via the matrix-valued Gelfand-Levitan equation. With this
approach, we prove some uniqueness theorems for the even problem, mixed
data problem and interior spectral data problem for vectorial Sturm-Liouville

equations. ...
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problem
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The inverse spectral problems for scalar Sturm-Liouville equations is a quite
interesting subject. One approach for these problems is via the Gelfand-Levitan
equation. With the Gelfand-Levitan equation, one can construct all elements
in isospectral set and prove some uniqueness properties. The other approach is
by the Weyl M-function, it is quite powerful for us to prove the uniqueness the-
orems. But however, these two approaches are not well-developed for vectorial
Sturm-Liouville equation as well as that for scalar Sturm-Liouville equations.
Although, these are some researchers studied the inverse spectral problems for
vectorial Sturm-Liouville equations by these two alternative methods, for ex-
amples, the reader can refer to (3), (5),(9) and (10). Unfortunately, neither the
matrix-valued Gelfand-Levitan equation nor the generalized Weyl M-function
for the vectorial Sturm-Liouville equation can completely solve the inverse spec-

tral problem for vectorial cases.
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Before go into details, we shall clarify some notations. Let Q(z) be a contin-
uous real symmetric n x n matrix-valued function on [0, 1], A and B be both real
symmetric n X n matrices. A real number )\ is call an eigenvalue of multiplicity
k of the following n-vectorial Sturm-Liouville equation

y () + (M, — Q(x)y(x) =0, 0 <z < 1, (0.1)

with boundary condition
(0.2)

if the equation (0.1)-(0.2) has a non-trivial solution corresponding to A = Ao
and the geometric multiplicity of the corresponding eigenspace E(\g) is k. From
now on, we use the symbol (@, A, B) to denote the problem (0.1)-(0.2) and
0(Q,A,B) =2 {(An, kn)}, kn = dim(E(\y,)), the spectral set of the problem
(Q, A, B), in particular, we use op(Q) to denote the Dirichlet spectrum of the
Dirichlet problem (Q, 00, 00) and oa(Q) the Neumann spectrum of the Neu-
mann problem (Q, I,,0). Actually, if we let ®(x, \) denote the solution of the
matrix-valued differential equation

Y (@,\) + (M, — Q@)Y (x) =0, Y(0) = I, Y (0) = A, (0.3)

and D(A\) = ®'(1,)) + B®(1,\). Then eigenvalues {\,}2°, of the problem
(Q, A, B) consist of the zeros of det D()), and dim(E(\,)) = Nullity(D(\,)).
While we talk about ”isospectral problem ” in scalar Sturm-Liouville equation,
the definition is clear; but for the vectorial case, because of a technical reason,
we have some restriction. Max Jodeit and B. M. Levitan formulated a definition
as following

Definition 0.1 (see (3)). Denote Q;(x) a continuous symmetric n X n matriz-
valued function defined on [0,1] and A; and B; two n X n real-valued symmetric
matrices for i = 0,1. We say the two problems (Qo, Ao, Bo) and (Q1,.A1,B1)
are isospectral problem if the following conditions are satisfied

1. 0(Qo, Ao, By) = 0(Q1, A1, By),

2. given an eigenfunction ¢o(x, \) of problem (Qo, Ao, Bo), belonging to an
eigenvalue X\, there exists an eigenfunction ¢(x, X) of problem (Q1,.A1,B1),
belonging to A, such that

$0(0,N) = ¢1(0,A) (¢ (0,A) = ¢(0,\) for the Dirichlet problem ),

and the converse also holds.



We should note that, according to definition 0.1, problems (Qo, A, By) and
(U*QoU, U* AgU,U*ByU), where U is an unitary, maybe not isospectral prob-
lems, although these two problems can be viewed almost the same one. The

following is an example.

Lof 1/vV2 1/V2
0 3| |-1/vV2 1/v2
Then the Neumann problems (Qo, I,,0) and (Q1, I, 0) have the same Neumann

etgenvalues

Example 0.1. Let Qo(z) = and Q1 = U*QuU.

on(Qo) = on(Q1) = {n’m* + 1,n°m* + 3122,

but the eigenfunctions of problem (Qo, I,,0) are of the form
{(1,0)T cos(nmz), (0,1)T cos(nmrz)}o,
whereas the eigenfunctions of problems are of the form
{(1/v2,1/V2)T cos(nrzx), (1/V2,=1/v2)T cos(nmx)}S ;.

Hence, problems (Qo, I,,0) and (Q1,1,,0) are not isospectral problems accord-
ing to definition 0.1.

This example suggest that, to investigate all the triples (Q, B, B) with the
same prescribed spectrum, we shall have one more extensive definition, we may

formulate the definition as following

Definition 0.2. Let Q;(z), A; and B;, i = 1,2, are as that above. We say
(Qo, Ao, By) and (Q1,.A1,B1) are isospectral if o(Qo, Ao, Bo) = o(Q1,.A1, B1).

Generally, definition 0.1 is different from definition 0.2, but if all the eigen-
values of the problems (Q;, A;, B3;) are of full multiplicity n, then the two defini-
tions coincide, in this case, the techniques developed by Jodeit and Levitan can
be applied to inverse spectral problems for vectorial Sturm-Liouville equations.
In the last section of this paper, we will use this approach to prove the following
theorems

Theorem 3.1. Let Q(x) be a continuous symmetric even n X n matriz-valued
function defined on [0,1] and A € M, (R)isymmetric. Suppose that all eigen-
values of the problem are of full multiplicity. Then Q(x) is uniquely determined
by its spectrum o(Q, A, A).

Theorem 3.2. Let Q(x) be a continuous n X n matriz-valued function defined
on [0,1], A and B be both symmetric n x n matrices over R.. Suppose that Q(x)
is prescribed on [1/2,1]. Then Q(x) is uniquely determined by o(Q, A, B).



Proof. Let Qo(x) = q(x)I, such that op(Qo) = op(Q) = {(Ag,n)}52,. Let
Yo(x, A) be as that define in (??) and (?7?), then

YQO (x7 )‘) = yq(x7 )\)Ina

where y,(z, \) is the solution of

Y (2, 0) + (A= a(@))yg(w, ) = 0, 54(0,\) =0, (0, 0) = 1. (3.4)

We denote F(x,t) =372 >0 1 (o7 — = )v0,i(z, A)yg ;(; Ak), where

1
ai 0‘%,0
Y0,5(, Ak) = Yoo (z, Me)ej, oo = llyoi (=, Me)l3

and o2 = ||Yo(x, A\ )ejl|3, for j =1,2,3,...,n. then as we mentioned in section
2, there exists a unique K(z,t) which satisfies

K(z,t) + F(x,t) + /x K(z,s)F(s,t)ds =0,
0

and
mmM:nM%M+AK@ﬁmNAMt (3.5)

Since F(x,t) is a diagonal matrix-valued function, K(z,t) is also diagonal.
Hence Q(z) = 24K (2,2) + Qo(z) is also diagonal. then, By the uniqueness
theorem for scalar even Sturm-Liouville equation, we conclude Q(x) = Qo(z) =
q(x)I,. O
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