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Abstract

A computing algorithm developed by Huf-
fer and Lin (2001) is employed to evaluate
the null distribution of the circular correla-
tion coefficient detection statistic discussed in

Pakula and Kay (1986).

Keywords: Circular correlation coefficient;
Spacings.

1 Introduction

The serial correlation coefficient and circular
correlation coefficient are statistics for detect-
ing the presence of a signal in noise. The
goal of this project is to compute the null
distribution of the circular correlation coeffi-
cient detection statistic (see Pakula and Kay,

1986). Let X3, Xo,..., X, Y1,Ys, ..., Y, be
the iid. N(0,1) random variables. De-
fine W, = X; + jY; for t = 1,...,n where

j =+/—1. Then Wy, W, ..., W, is the com-
plex white Gaussian noise. (This represents
“noise” at time t = 1,2,...,n.) Moreover,
the circular correlation coefficient is defined
as
R — 2=t WiWen

CXL W

where W, 1 = W (this makes it “circular”),
W is the complex conjugate, and |W;|? is



the squared length. Therefore, the detection
problem can be addressed: A signal is de-
tected if |R.|*> > 2, where z is chosen so that
P(|R.|? > z) = .05 under the null hypothesis
of “white noise”. Hence, our computational
goal is to find P(|R.* > z) = .05 for arbi-
trary z under the null hypothesis.

2 Connection with Spac-
ings

Our approach to this problem is mainly based

on the connection with spacings via a her-

mitian form in complex normal random vari-

ables. Let W = (W, W, ..., W,). Then

Z?:l Wt* Wt+1
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where j = /=1, S™ = (S1,52, .., Sn1)s
and Zy,...,Z, are ii.d. exponential ran-
dom variables. Define 7' = "', Z; and
Z = (Zy,%Zy,...,Zy,. Thus, (1) can be ob-

tained by applying the fact that
Z/T L8,

One can separate R, into its real and imagi-
nary parts to have R. = (U, V')". The result

R, 4 anej%rt/nst(n—l)

t=1

then becomes

(v

where ¢, = cos(k - 2m/n), sp = sin(k - 27 /n)
for k=1,...,n, and A is the matrix

Ci Co» ... Cp
ST SS9 ... S, |

Hence, the problem in which we are interested
can be further rephrased as to compute the
probability P(|AS™ V2 > 2).

The current problem differs in several ways
from the ones tackled by the earlier other al-
gorithms proposed by Huffer and Lin (1997b,
1999, 2001):

) £ A8,

e The entries of A are irrational (except in
some special cases).

e The region of interest is circular instead
of being rectangular.

e The problem possesses rotational sym-
metry because

|As(n—1)‘2 _ ’I\As(n—l)’2

for any 2 x 2 orthogonal matrix I'.

3 The Basic Recursion

For r > 1, let A be an r x (n + 1) real ma-
trix. Suppose ¢ = (c1,¢2,...,Cuy1) satisfies
Sitle; = 1. Let A; be the r x (n+1) matrix
obtained by replacing the i-th column of A
by Ac. Then

n+1
P(AS™ e B) =Y ¢, P(A;8™ € B) (2)
=1



for any measurable set B C R".

Based on the basic recursion, our algorithm
reduces the distribution of | R.|*> down to sim-
pler distributions, each involving only two

spacings. Define (with j =+/—1)
Tin(z) = P(IST"™) + 21k /nST V2 < 2).

This can be expressed as a one-dimensional
integral and computed numerically.

For brevity and write T}, (2) = T'(k), sup-
pressing the dependence on n and z.

The last page gives expressions for the cu-
mulative distribution function of | R.|?* for sig-
nals of lengths n = 9 and n = 15. These are
MAPLE expressions which can be read di-
rectly into MAPLE.

References

Choudhuri, N., Bayesian bootstrap credible
sets for multidimensional mean functional.
Ann. Statist. 26 (1998) 2104-2127.

Gasparini, M., Exact multivariate
Bayesian bootstrap distributions of mo-
ments. Ann. Statist. 23 (1995) 762-768.

Huffer, F., Divided differences and the joint
distribution of linear combinations of spac-
ings, J. Appl. Prob. 25 (1988) 346-354.

Huffer, F., and C.T. Lin, Approximating
the distribution of the scan statistic using
moments of the number of clumps, J. Amer.
Stat. Assoc. 92 (1997a) 1466-1475.

Huffer, F., and C.T. Lin, Computing the
exact distribution of the extremes of sums of

consecutive spacings. Comput. Stat. Data
Analysis 26 (1997b) 117-132.

Huffer, F., and C.T. Lin, An approach
to computations involving spacings with ap-
plications to the scan statistic. In Scan
Statistics and Applications (edited by J.
Glaz and N. Balakrishnan) (1999) 141-163.
Birkhauser, Boston.

Huffer, F. W. and Lin, C. T. (2001). Com-
puting the joint distribution of general linear
combinations of spacings or exponential vari-
ates, Statistica Sinica 11, 1141-1157.

Lin, C.T., The computation of probabil-
ities which involve spacings, with applica-
tions to the scan statistic, Ph.D. Dissertation
(Dept. of Statistics, Florida State University,
Tallahassee, FL, 1993).

Pakula, L., and Kay, S. M., Detection per-
formance of the circular correlation coefficient

receiver, IEEFE Trans. Acoustics, Speech, and
Signal Processing 34 (1986) 399-404.

Watson, G. S.; On the joint distribution
of the circular serial correlation coefficients,
Biometrika 43 (1956) 161-168.



The cdf of |R|?
For n = 9:

(2/9+44/9*cos(1/9%Pi)-2/3*cos(2/9*Pi) ) *T (1)
+(44/9*cos (2/9*%Pi)+2/9-38/9*cos (1/9%Pi) ) *T(4)
+1/3*T(3)

+(-2/3*%cos (1/9%Pi)+2/9-38/9*cos (2/9%Pi) ) *T(2) ;

For n = 15:

(644/15*%cos(1/5*%P1)+199/15)*T(3)
+(-644/15*%cos(1/5*%Pi)+521/15) *T(6)
+(-28*cos(1/15%Pi)-964/15*cos(2/15%Pi)

-488/15*cos(1/5*%Pi)+13/15)*T(2)
+(28*cos(2/15*%P1i)+484/5*cos (1/5*P1i)

-713/15-964/15%cos (1/15%Pi) ) *T (4)
+(964/15*cos(2/15%Pi)+28*cos (1/15*Pi)

-624/5*cos(1/5*xPi)+223/15)*T(7)

+(=77/5+908/15*cos (1/5%P1i)
+964/15%cos(1/15*Pi)-28%*cos(2/15*Pi) ) *T (1)
+1/5*T(5) ;

A typical term in conventional notation:

(24 ean(5) - 2eo(2) )
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