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Estimation in Cox proportional hazard model with measurement error and

without extra information
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Summary: When covariate in survival data are subject to measurement error, the

estimation in Cox regression usually requires repeat measurements or extra information

about the measurement error to proceed. Without such information, it seems that the naive

analysis is the only choice. In this paper, we confirm the possibility of consistent estimation

under the scenario of no extra information. Without extra information, we need to construct

an additional constraint to determine the measurement error’s variance, thus we apply the

technique of over-parameterization to a weighted corrected score to obtain enough estimating

equations. Since these estimating equations are zero-unbiased, the resultant estimates are

consistent. A small simulation is conducted to assess the performance of our estimators.
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1 Notation and the conventional approaches when mea-

surement error’s variance is known

Denote the failure time, censoring time and noncensoring indicator by Ti, Ci and δi, respec-

tively. Where δi is 1 if Ti ≤ Ci and is 0 otherwise. Also let Zi denote the true covariate

of the ith individual and is assumed a scalar variable for simplicity. The Cox proportional

hazard regression model assumes that the hazard function of the life time distribution has

the form

λ(t; Zi) = λ0(t)e
βZi , t ≥ 0, (1.1)

where λ0(·) is an unspecified baseline hazard function.

Let Ri = {j : Tj ≥ Ti, Cj ≥ Ti} be the risk set at time Ti, then the standard inference

for the regression parameter is based on the partial likelihood

L(β) =
n∏

i=1

[
eβZi∑

j∈Ri
eβZj

]δi , (1.2)

which has the derivative—the partial score function

S(β) =
n∑

i=1

δi{Zi −
∑

j∈Ri
Zje

βZj∑
j∈Ri

eβZj
}. (1.3)

For the measurement error model, we assume the measurement error ei is additive and i.i.d.

N(0, σ2) distributed. Let Xi = Zi + ei denote the observable surrogate. The naive analysis

ignores the measurement error and uses

S0(β) =
n∑

i=1

δi{Xi −
∑

j∈Ri
Xje

βXj∑
j∈Ri

eβXj
}. (1.4)

for solving estimate of β. As in other regression problems, the naive approach results biased

estimate as expected.

A corrected score of (1.3) is

S1(β) =
n∑

i=1

δi{Xi + βσ2 −
∑

j∈Ri
Xje

βXj∑
j∈Ri

eβXj
}, (1.5)
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which was proposed by Nakamura (1992). Since no unbiased corrected score exist, Nakamura

proposed (1.5) as an approximate unbiased estimating function and also provided further

correction of (1.5) based on 2nd order correction. However, some recent work discover that

(1.5) is asymptotically unbiased. Augustin (2004) showed that (1.5) is the corrected score

of the score function derived from the differentiation of Breslow’s likelihood (Breslow 1972,

1974).

Another unbiased estimating function can be derived through conditioning. The con-

ditional score in generalized linear model was developed by Carroll, Ruppert and Stefanski

(chp. 6, 1995). And the conditional score in the Cox proportional hazard model was de-

veloped by Tsiates and Davidian (2001), which is equivalent to the following estimating

function

S2(β) =
n∑

i=1

δi{Xi + βσ2 −
∑

j∈Ri,j 6=i Xje
βXj + (Xi + βσ2)eβ(Xi+βσ2)∑

j∈Ri,j 6=i e
βXj + eβ(Xi+βσ2)

}. (1.6).

It is known that these two conventional approaches–Nakamura first order corrected score and

conditional score are asymptotically equivalent, but the conditional approach may perform

better in finite samples ( Song and Huang, 2005).

2 Weighted and reweighted corrected score functions

Recall that the original partial score function when Z ′
is are observed is

S(β) =
n∑

i=1

δi{Zi −
∑

j∈Ri
Zje

βZj∑
j∈Ri

eβZj
}.

As noted in Nakamura (1992), the exact corrected score of S(β) does not exist. If we apply

weights “
∑

j∈Ri
eβZj” to each summand, than S(β) becomes

n∑
i=1

δi[Zi

∑
j∈Ri

eβZj −
∑
j∈Ri

Zje
βZj ]. (2.1)
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It is easy to show that (2.1) is also zero unbiased (Huang, 2004). Note that unlike S(β),

there is no fraction term in (2.1), and it is very easy to find a corrected version of (2.1). By

the normal assumption of ei, the estimating function

n∑
i=1

δi[Xi

∑
j∈Ri

eβXj− 1
2
β2σ2 −

∑
j∈Ri

(Xj − βσ2)eβXj− 1
2
β2σ2 − βσ2eβXi− 1

2
β2σ2

] (2.2)

is a corrected version of (2.1) and has conditional expectation (2.1) when condition on Z ′
is

and R′
is. Though (2.2) is zero-unbiased, it is less efficient since it estimates the weighted

partial score but not the original partial score. Hence we divide each summand in (2.2)

by
∑

j∈Ri
eXj− 1

2
β2σ2

which is a predictor of
∑

j∈Ri
eβZj . After simplication, our proposed

estimator when σ2 is known will be the root of the equation

S3(β) =
n∑

i=1

δi[Xi −
∑

j∈Ri
Xje

βXj∑
j∈Ri

eβXj
+ βσ2 − βσ2 eβXi∑

j∈Ri
eβXj

]. (2.3)

2.1 Extended estimating function by over-parameterization

When σ2 is unknown, there are two unknowns β and σ2 in (2.2). We need another zero-

unbiased estimating function to determine their estimates. We use the idea of over-parameterization

(Huang, 2005) and extend the original model (1.2) to a 2nd order one, that is

L(β) =
n∏

i=1

[
eβZi+γZ2

i∑
j∈Ri

eβZj+γZ2
i

]δi . (2.4)

Then the partial scores for β and γ is

n∑
i=1

δi{
(

Zi

Z2
i

)
−
(∑

j∈Ri
Zje

βZj+γZ2
j /
∑

j∈Ri
eβZj+γZ2

j∑
j∈Ri

Z2
j e

βZj+γZ2
j /
∑

j∈Ri
eβZj+γZ2

j

)
}. (2.5)

Since (2.4) are zero-unbiased for true parameter β and γ = 0, hence

n∑
i=1

δi{
(

Zi

Z2
i

)
−
(∑

j∈Ri
Zje

βZj∑
j∈Ri

Z2
j e

βZj

)
/
∑
j∈Ri

eβZj}.

are zero-unbiased. Again, multiply the weight
∑

j∈Ri
eβZj to each summand, we have two

zero-unbiased estimating functions

S4(β) =

(∑n
i=1 δi[Zi

∑
j∈Ri

eβZj −∑
j∈Ri

Zje
βZj ]∑n

i=1 δi[Z2
i

∑
j∈Ri

eβZj −∑
j∈Ri

Z2
j e

βZj ]

)
(2.6)
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To find a corrected version of S4(β) function, the following lemma is helpful.

Lemma 1. Let Xi = Zi + ei, where e′is are i.i.d. normal r.v.’s with mean 0 and common

variance σ2, then we have

E(eβXi− 1
2
β2σ2 | Zi) = eβZi

E((Xi − βσ2)eβXi− 1
2
β2σ2 | Zi) = Zie

βZi

E((Xi − 2Xiβσ2 + β2σ4 − σ2)eβXi− 1
2
β2σ2 | Zi) = Z2

i e
βZi .

proof. By the moment generating function of ei, we have E(eβXi | Zi) = eβZi− 1
2
β2σ2

,

hence the first equation follows. The 2nd and 3rd equations can be derived by differentiae

the 1st equation with respect to β once and twice. 2

Denote these unbiased predictors of eβZi , Zie
βZi and Z2

i e
βZi by A0(Xi), A1(Xi) and

A2(Xi). That is A0(Xi) = eβXi− 1
2
β2σ2

, A1(Xi) = (Xi − βσ2)eβXi− 1
2
β2σ2

and A2(Xi) = (Xi −

2Xiβσ2 + β2σ4 − σ2)eβXi− 1
2
β2σ2

. Replace the functions of Zi in (2.6) by their predictors, we

have a set of zero-unbiased estimating functions for β and σ2,

n∑
i=1

δi[A1(Xi) + Xi

∑
j∈Ri,j 6=i

A0(Xj)−
∑
j∈Ri

A1(Xj)],

n∑
i=1

δi[A2(Xi) + (Xi − σ2)
∑

j∈Ri,j 6=i

A0(Xj)−
∑
j∈Ri

A2(Xj)]

Note that these functions come from estimating the weighted score functions. To gain

more efficiency, we reweight these estimating functions by dividing the estimated weights

“
∑

j∈Ri
eβXi− 1

2
β2σ2

”, it turns out that the proposed estimating functions when there is no

extra information are

S5(β, σ2) =
n∑

i=1

δi

(
A1(Xi) + Xi

∑
j∈Ri,j 6=i A0(Xj)−

∑
j∈Ri

A1(Xj)

A2(Xi) + (Xi − σ2)
∑

j∈Ri,j 6=i A0(Xj)−
∑

j∈Ri
A2(Xj)

)
/
∑
j∈Ri

A0(Xj).

(2.7)

Comparing the estimating functions (2.3) with (1.5) or (1.6), we found that they differ

only by some terms that can be neglected asymptotically. Thus (1.5), (1.6) and (2.3) are
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asymptotically equivalent and can yield consistent estimates when σ2 is known. For the case

when σ2 is unknown, we first note that (2.5) can be expressed as
∑

δi{
(

Zi

Z2
i

)
−E[

(
Zi

Z2
i

)
| Ri, Hi]}

where Hi denotes the event that a failure occurs at time Ti. These two estimating function

are both zero-unbiased and can be used to yield consistent estimates of β (though they

are different in finite sample). By the same reason for the consistency of (2.3), we known

that (2.7) are asymptotically zero-unbiased and can determine a consistent root of (β, σ2)

whenever Cov(Zi, Z
2
i ) is of full rank.

3 Simulation studies

Simulation studies were carried out to investigate the finite sample properties of the previous

estimators and verify the possibility of estimation without extra information. In addition

to the Nakamura 1st order corrected score estimate and conditional score estimate, we also

introduce the reweighted corrected score estimates (2.3) and (2.7) for the situation when

σ2 is known and unknown, respectively. Note that for the case when σ2 is unknown, only

estimator from (2.7) are available and can provide an estimate of σ2. The notations we used

are

β̂naive: the naive estimator which is the root of (1.4).

β̂1: The root of “(1.5)=0”, the Nakaruma 1st order corrected score estimate.

β̂2: The root of “(1.6)=0”, the conditional score estimate.

β̂3: The root of “(2.3)=0”, the reweighted corrected score estimate when σ2 is known.

(β̂4, σ̂
2): the root of “(2.7)=(0,0)’”, The reweighted corrected score estimate when σ2 is

unknown.

We chose identity function as baseline hazard, and denote n the sample size. The n is

chosen to be 300 and 600, censoring time Ci has distribution function 1 − e−
c

2.5 , and the

true covariate Zi is sampled from standardized U(0, 1) so it has mean 0 and variance 1. The
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results were exhibited in table 1.

As we expected, the naive estimator is not satisfactory due to its bias. The other

estimators β̂1, β̂2 and β̂3 work fine when σ2 is known. β̂2 and β̂3 are preferable than β̂1

according to bias and variance criterion. The reweighted corrected score estimator β̂3 seems

be an intermediate of β̂1 and β̂2 both in bias and variance. Howeverm, there are not much

differences among them. This is consistent with the fact that the three estimates β̂1, β̂2

and β̂3 are asymptotically equivalent. The estimator β̂4 is much variable than any other

estimators, this may due to estimating σ2 or multiple roots of (2.7). However, the accuracy

of β̂4 and σ̂2 had improved much if the sample size n is 600 when compare with the case

n = 300, this indicates that the estimates are consistent and can converge to the parameter

if n goes to infinity.

There are some important problems about solving (2.7) should be aware. One is the

multiple roots of (2.7). Typically, there are two solutions of σ̂2. When these two roots are

both positive, we chose the small one as estimate of σ2, so that estimate of β will close to

the naive estimate which corresponds to the case σ2 = 0. Besides, in some simulation case

especially for the case β = 0.7, we occasionally fail to find a root of (2.7) that is reasonable

and the numerical solution is too extreme to be an estimate. We will try to solve or mitigate

these problems in the near future.

4 Discussion and future work

From this report, we know that the analysis in survival data with measurement error and

without extra information is possible. The basic idea is to derived an additional unbiased

equation through over-parameterization. However, there are many problems remain to solve

before estimation without extra information to be practical. One of the problem is to find

an optimal additional unbiased equation, as we see in section 2, the additional estimation
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equation of (2.7) come from estimating Z2
i − E(Z2

i | Ri, Hi). The choice of Z2
i is only a

convenient one. The parameter σ2 came into the estimating function (2.7) naturally since

we used the 2nd moment of Xi to estimate Z2
i . There are other moments of Zi or functions

of Zi can be used and will also introduce the parameter σ2 into the 2nd equation of (2.7).

Hence, an obvious problem is to find a criterion to decide when the additional equation is

reasonable or optimal. Another problem may encounter is the multiple roots of (2.7), the

2nd equation row in (2.7) is in fact a quadratic function of σ2, thus we will expect there

are two solutions for estimates of σ2. How to chose one between them is also important. In

this report, we chose the one which is positive and closer to 0, and chose 0 if none of them

are positive. This procedure is reasonable, however, when one believe that the measurement

error is not severe.

Besides the measurement error model introduced here, there are other possible appli-

cations of estimation without extra information like laten variable model or random effect

model. For example, in a random effect regression model, let the predictor be αij + βZi,

where αij is the random effect and Zi is the observable covariate, then the “covariate” βZi

differs from the true predictor αij + βZi by a random term αij. If we treat αij as a random

measurement error, βZi as the observed covariate and αij + βZi as the true covariate, then

they look like a measurement error model. We think that the measurement error model

approach is applicable and our technique is useful at least in some way.

In summary, there are many unsolved problems about the technique of estimations

without extra information. And there are also interesting things worth to investigate like

the application or extension of measurement error model to other useful statistical models.

We will be pursued these problems in the 2nd year of the project.
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Table 1: Comparison of estimator’s performances.

n = 300, Z ∼ U(−1.732, 1.732), ei ∼ i.i.d.N(0, σ2)

β σ2 βnaive β̂1 β̂2 β̂3 β̂4 σ̂2

0.7 0.09 0.622 (0.0727) 0.695 (0.0851) 0.693 (0.0845) 0.693 (0.0847) 0.629 (0.450) 0.169 (0.131)

1.2 0.09 1.04 (0.0851) 1.21 (0.115) 1.20 (0.113) 1.20 (0.114) 1.18 (0.485) 0.105 (0.0850)

0.7 0.16 0.583 (0.0697) 0.705 (0.0931) 0.701 (0.0918) 0.702 (0.0923) 0.732 (0.259) 0.190 (0.161)

1.2 0.16 0.949 (0.0828) 1.23 (0.153) 1.21 (0.144) 1.22 (0.148) 1.16 (0.471) 0.136 (0.111)

n = 600, Z ∼ U(−1.732, 1.732), ei ∼ i.i.d.N(0, σ2)

β σ2 βnaive β̂1 β̂2 β̂3 β̂4 σ̂2

0.7 0.09 0.627 (0.0498) 0.699 (0.0583) 0.698 (0.0581) 0.698 (0.0582) 0.692 (0.279) 0.151 (0.193)

1.2 0.09 1.04 (0.0659) 1.20 (0.0884) 1.20 (0.0873) 1.20 (0.0878) 1.22 (0.177) 0.0915 (0.0613)

0.7 0.16 0.590 (0.0485) 0.712 (0.0638) 0.710 (0.0633) 0.711 (0.0635) 0.702 (0.233) 0.174 (0.158)

1.2 0.16 0.948 (0.0532) 1.22 (0.0892) 1.21 (0.0870) 1.21 (0.0882) 1.21 (0.192) 0.153 (0.100)

*The numbers in parentheses are the sample standard deviation of the estimates.

10


