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ABSTRACT. We study nonnegative radially symmetric solutions for a semilinear
heat equation in a ball with spatially dependent coefficient which vanishes at
the origin. Our aim is to construct a solution that blows up at the origin where
there is no reaction. For this, we first prove that the blow-up is complete, if the
origin is not a blow-up point and if there is no blow-up point on the boundary.
Then we prove that a threshold solution exists such that it blows up in finite
time incompletely and there is no blow-up point on the boundary. On the
other hand, we prove that any zero of nonnegative potential is not a blow-up
point for a more general problem under the assumption that the solution is
monotone in time.

1. Introduction. In this paper, we study the blow-up phenomena for the following
initial boundary value problem:

up = Au+ e]"uP,  w € >0,
u =0, e, t>0, (1.1)
U = Uug, TE Q

where p > 1, o > 0, Q is a bounded smooth domain in RY with N a positive integer
and ug is a nonnegative bounded smooth function in Q with ug = 0 on 0.

It is known that for each initial datum ug as above, (1.1) has a nonnegative
classical solution u for ¢ € [0,T) for some maximal existence time 1" € {0,00]. If
T < oo, then we have

limsup [lu(- t)l= (o) = o0
t—T
and we say that the solution u blows up in finite time with the blow-up lime T. For
a given solution u that blows up at ¢t = T" < 00, a point ¢ € O is called a blow-up
point if there exists a sequence {(xn,tn)} in Qr = O X (0,T) such that @, — «a.
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t, T 1" and u(z,,t,) — oo as n = oc. The set of all blow-up points is called the
blow-up set.

The phenomena of blow-up have attracted a lot of attention for past years. Most
literature are concerned with equations without spatially dependent coefficient. The
main concerns are about criteria of blow-up, locations of blow-up points, blow-up
rate and continuation after blow-up. For example, for the spatially homogencous
equation, we refer the reader to [2, 3, 5, 7, &, 9, 11, 12, 13, 17, 20, 21, 24, ¥6, 32]
and so on. The authors of [15, 29, 33] considered the Cauchy problem for spatially
inhomogenecous equation in (1.1). They obtained the existence and nonexistence of
global nonnegative solutions.

Notc that there is no reaction for the problem (1.1) at x = 0. It is interesting
to sec that whether z = 0 is a blow-up point when u blows up. Since there is no
reaction for the equation (1.1) at z = 0, it seems that z = 0 cannot be a blow-up
point. In fact, it is known that, for nonnegative radially symmetric solutions of
(1.1) with @ = Bg = {z € R¥;r := |z| < R}, # = 0 is not a blow-up point under
certain conditions (see [11]). A more general theorem in this direction shall be given
in section 4. In particular, we shall prove that x = 0 is not a blow-up point of (1.1)
under the assumption u; > 0.

On the other hand, for the Cauchy problem for the equation in (1.1), it is shown
in [6] that there are self-similar solutions with the origin as a blow-up point. This
surprising result contradicts our intuition, although the domain under consideration
is the whole space. An interesting question arises immediately, namely, what happen
if the domain is bounded. Our first aim of this paper is to construct a radially
symmetric blow-up solution of (1.1) with z = 0 as a blow-up point. More precisely,
when N = 3, without the assumption u; > 0, we shall construct a radially symmetric
solution of (1.1) that blows up at the origin, if p > ps := (N+2+20)/(N=2) = 5420
(when N = 3). Note that the range of p is super-critical in the Sobolev sense.

Let us now give a brief description of the main idea of this construction which
is originally used for the homogeneous equation: w; = Au + uP. Our solution that
blows up at the origin is characterized as the limit of an increasing sequence of global
classical solutions 0 < u; < ug < ug < --- such that cach ux belongs to the domain
of attraction of the stable stationary solution u = 0 and such that ©* = limg_, ug
lics on the boundary of this domain of attraction. The monotonicity of this sequence
and Kaplan type argument about the problem (1.1) yield the uniform boundedness
of «* on certain integrals and this limit function »* is indeed a time-global weak
solution. Furthermore, this solution is proved to be unbounded in L°¢-sense on
the time interval [0,00). See, e.g., [27]. Hence either «* blows up in finite time
(cf. [9, 25, 21]), or u* exists globally in timne and tends to infinity as ¢+ — oo.
Under certain restriction we prove that «* blows up incompletely in finite thne by
using the method of [9]. On the other hand, we prove that the solution cannot be
extended beyond the blow-up time as a weak solution, if # = 0 is not a blow-up
point. Therefore, we conclude that «* blows up at the origin. Sec [23, 21] for the
spatially homogeneous equation.

This paper is organized as follows. In section 2, we shall prove that the blow-up
is complete, if & = 0 is not a blow-up point and if there is no blow-up point on 9By
for a nonnegative radially symmetric solution for p > 1+ 20 /N. The construction
of a solution «* that blows up incompletely at the origin for N = 3 and p > 5+ 20
is carried out in section 3. Finally, in section 4 we shall prove that any zero of
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nonnegative potential is not a blow-up point for a more general problem (4. 1) than
(1.1) under the assumption u; > 0.

2. Criterion of completeness. In this section, we study the continuation beyond
the blow-up time. There are at least three different ways to consider continuation
of the solution after blow-up time. The first way of continuation is called the proper
extension (cf. [2]), the second one is 2 minimal L!-continuation introduced in [21]
and the third way is the L! —W(,dk solution introduced in [27] for example.

In the following, we set f(z,u) := |x|uP. Note that fu(L u) > 0 and f(x,0) =0.
First, we define the minimal L! -contmuatlon as follows.

Definition 2.1. The function @ is called the minimal L'-solution of (1.1) with
initial datum ug in the maximal existence time interval [0,7™), il therc exists a
sequence {igpn tnen C C(§2) with

0 < fipy € lige <ligs <---—rug In CQ)
and ug, # uo for all n such that classical solution 4, of (1.1) with initial datum
ug. exists for 0 <t < T* (¥n) and satisfies

T i, 1) = 3, Dl =0, VEE (0,7, (2.1)
Tim [|f(z.) ~ f@ Dl ooy =0 EDIT)(22)

Let v be a classical solution (1.1) with initial value ug which blows up at time

T and let @ be the minimal L!-solution with initial datum wg in [0,77) for some
T* > T. The well-posedness of the problem (1.1) implics tn(-,t) = u(-. t) for all
0<t<T. Wecall 4 as the minimal L -continuation of u. We say that the blow-up
is complete if T = T*; and is incomplete if T < T*. If T" = oo, we call 7 as an
L!-global minimal contmuatwn

Remark 1. The above definition of the completeness is the same as the standard
one using proper extension as in [2, 17] for spatially homogeneous equation. See
[21] for this fact.

Remark 2. For the equation u; = Au + uP, It is known ([2, 9]) that if 1 <

= (N+2)/(N —2), then the blow-up is complete for any initial datum. Howevm
in tho supercritical case p > ps, there is a solution whose blow-up is incomplete (ct.

[9, 21).
The following complete blow-up result for radially symmetric solutions was proved
in 21, 31] for the equation u; = Au+ uP.

Theorem 2.2. Letp > 1+20/N and u be a nonnegative radially symmetric solution
of (L.1) with @ = Bg. Assume x = 0 is not blow-up point and there is no blow-up
point on OBgr. Then the blow-up of the solution u is complete.

To prove Theorem 2.2, we first introduce the following energy functional. Sup-
posc u(t) € H} () N LPH() and define

g A Gl

If « is a classical solution, a simple computation yiclds

—J [ul(t / g (2, )2 dir. (2.4)
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Therefore, the functional J{u](¢) is monotone nonincreasing in ¢.

By using this energy functional, we can derive some a priori estimates for the
minimal L!-continuation. These estimates were first discovered by [2] for equations
without spatially dependent coefficient. In particular, the following proposition
vields the completeness of blow-up, if one can show that J{u](t) = —oc as ¢ — 7"

Proposition 1. Let p > 1+20/N. Suppose that the solution u of the problem (1.1)
blows up at time T € (0,00). Let @ (defined in [0,T*) with T* > T} be the minimal
L' -continuation of the solution w. Then we have @, € L% ((0.T); L*(2)).

Proof. We shall first prove the desired estimates for classical solutions 4, defined
on [0, T™). For notational simplicity, we shall suppress the tilde and index of .
Given 7 € (0,T/2) and ¢ € (0,T* — 7). By a simple calculation, we get
1d
2dt

By the Holder mequahty, we have

u 2de = ~2J[u (t)+—/ 2|7 lulPT! d. (2.5)

1d L=t 2 z ” 7 )
> P—1 (1 u*dr i 2
th/u dz > -2Jul(t) Tl (/Q |z dx) (/Qu dx> (2.6)
We set

p-1

T2
(/ |z| =7 ‘dx) > 0.

50'(1) > —2J[(t) + ag(t) =

Note that p > 1+ 20 /N ensures the constant a = «(N,p. o) is finite.

First, we suppose that J[u](tg) < 0 for some g € [0. T*). Note that this inequal-
ity also holds for all ¢ € (#g. T*), because of the monotonicity of J{u](1) in time. It
follows that

g(t) == /u dr and a=a(N.p,o
Q

Then (2.6) is equivalent to

g'(t) > 2ag(t)P*V/2 for all t€ [to. T*).
Thus by an integration we deduce that
w2y < fr-(2) = {alp = )(T* = )}~/ (2.7)

for all t € [to, T™).
Next, we assume that J{u](t) > 0 for all t € (0,7*). For 0 <4 <t < T, by

using (2.1}, we have
t 2
/ [/ us(e, s)d51 dr

It

/ [u(x,t) — u(x,t;)]2de
Q

< t——tl//uszo]dsd.r
QJy

- (t—tl)/f {/U[u,q(:r”s)] dJ:}dS

= (t—tl)/tt{‘(%ﬂ I(s) }ds

< (t—t)Jul(t).
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Hence we obtain that
e 2@ < lult)lpze) + (= t2) Y2 {Jfu) (k) }2. (2.8)
Thus, combining (2.8) with (2.7), we have proved

@y < A(D) = max{fr- ()0} forall e (©0.T7) (29)
where

P(t) = Ogigfg{\lu(tl)ilm» + (- )2 { I (8) %)

Given 0 < t; < to < T*. By integrating (2.5) from t; to fo, we deduce

1 2 to p— 1 to )
—|lulto +2/ Jul(s)ds > —— z|TuP T dxds.
ol +2 | J)ds 25 [ Ll
This inequality, (2.9) and the monotonicity of J[u](#) in ¢ yicld
p—1 to o phl 1 s . i o
—_— i ) lxrds < =A%t g — 1) Jul(t) p- 2.10)
p+1 ‘/t1 Q‘I\ U dxds = {2A (fo)+2('0 fl) ]LU](tJ)} ( 10)

Multiplying (2.4) by (to — ), integrating by parts and using (2.3), we obtain

to to
/ (to — D)lluel2ag dt = (to — t1)Jul (1) — Jul(t) dt

ti ty
‘ O
< (tp —t1)Jul(t) + —= wluPt dadt.
< (to — t)Jlul(t) + 57 | Qll‘. u a
Tt follows from (2.10) that
1

to
p+1 ) 2 o
/tl (fro =3 f)”“vt”iZ(Q) dt < I—)—:—l(/ro o= tl).][uj(tl) o mAZUU). (Z.l])

Now we apply (2.11) with ¢, =7 and to = T* — ¢ to obtain

T =e
/ H"t”%?m) dt < Cy

for some positive constant Cz = Co(llu()l 2@y, Il (7), €)-
Finally, by a limiting argument, we obtain the same results for the minimal
L!-continuation i of u. . O

Remark 3. For the equation ug = Au+uP, it is known that every blow-up solution
satishies J[u(t) — —oc as t = T, if1 < p < ps Sece [2] for the detail. This
divergence property of energy functional, however, is not true in gencral, when
p > ps as shown in [20, 21].

Now we are ready to prove Theorem 2.2,

Proof of Theorem 2.2. By assumption, the origin is not a blow-up point of u and
{here is @ € Bg such that a is a blow-up point of u. Let 7y := |a|. Then 71 € (0. F).
We claim that

lim {(T' -~ )8 (ry + EVT = DPu(ry + EVT — L)} = K (2.12)

uniformly on |¢| < € for any C >0, where 8:=1/(p—1) and & = Be.
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To prove this, we first consider a transformation v(r.t) := r%%u(r.t). Then v
satisfies the following one-dimensional problem:
k-1 b
vtzzrrr+vp+( v,—r—zv), re(0,R), t>0,

r
v(R,t) =v(0,t) =0. £ >0,
v(r,0) = vo(r) := rP7ug(r), r€ (0, R),

where k := N —280 and b := Bo(N —2— o). Since z = 0 is not a blow-up point of
u, it is clear that v blows up at the same time T as v does and r; is a blow-up point
of v. Morcover, r = 0 is not a blow-up point of v. Hence there exist rq € (0, R/3)
and € € (0.rg) such that B, 2. does not contain any blow-up points of ».

For any n € [ro. R), we define w := 1w, by

w(€,s) = (T - t)Po(r,t). €= ’T__"’t, s=—In(T~1).
Then w satisfies
e = e — gw& =l b (f i ;ei/ PRI JrI:;fo,‘“/ 2)2>
for £ € (—ne*/2 (R~ n)e’/?) and 5 > 50 := —InT.

Next, we introduce the following energy functional:

) 1, puw?  wrtl
Blu)(s) = /{ et - e de

where
p(€) = e/, £1(s) == (r. — )2, &(s) == (R —m)e/?, ro = ro —£/2.

By a similar argument to that of [22], we conclude that the w-limit sct of w,, with
7 = r; is included in the set of nonnegative bounded solutions of the problem

Uge ~ SUg = BU+UP =0, €20, Ug(0)=0.

It is also known from Theorem 1 of [11] that the only nonnegative bounded solution
of this one dimensional elliptic problem is cither & or 0. Thus the w-limit sct of wy,
is contained in the set {k,0}. Furthermore, the limit 0 is excluded in the w-limit
sct by using a nondegeneracy result of [13]. This proves (2.12). For more details,
we refer to [22] for b= 0 or [14, Proposition 4.1] for general b.

Now, for any ¢ > 0 small, by (2.12), there exists g € (0,T) such that

(1 =e)s(T—t)? < |z2fPulz.t) < 1+ )R(T )% on 8. x[to.T).
where
Sei={x eRY;ry — (T - )2 < || <11 + (T - 1)V?)
with the constant ¢ > 0 such that ¢(T — #9)/? < r/2. This gives us

[ elwdez [ afrwds
Br Se
> (2) (- ePw(T - )" FTm(s) 2 (T )70, (213)

for all ¢ € [ty, T'), where m(S,) is the measure of the annulus S, and C" is a constant
depending on &, ¢, € and r1. By a simple calculation, we get

/ utdwz/ I:c["u”der/ Audw:/ {:cl”u”d;r—/ lurldS. (2.14)
Br Br Br Br IBr



BLOWING UP AT ZERO POINTS OF POTENTIAL 167

Since u does not blow up near the boundary, from (2.13) and (2.14), we may assumne
without loss of generality that

1
/ ug dr > —/ lel7uP de. t €t T). (2.15)
Br 2 Br

On the other hand, it follows from the Holder inequality that

/Bﬂufdafzcn(/Bnutdch

for some positive constant Cz. Combining this with (2.13) and (2.13), we obtain
that

3 1 2 1 41
/ ‘uf dr > ZCR (/ || uP daf) > ZCRC'Z(I — 5)21’(7’ - I)'E—’lw teto.T).
4 Br Br

Integrating the above inequality from tq to 1', we get

i
/ / u? dxdt = 0.
to JBr

Thercfore, we conclude from Proposition 1 that the blow-up of u is complete. Hence
the theorem is proved. O

3. Construction of desired blow-up solutions. In this scction, we denote the
solution of (1.1) with initial value ug by u(z, t;up) or simply by u(t;up). We only
consider the case when Q = Bg. We define the following two spaces:

o= {v e LO(Q)N C() :v>0,v=00ndQand vis radially symmetric}.
A= {up € X : u(t;ug)is global and tl_i)m lw(t: o)l L=y = 0}
oc

Our firss aim of this section is to construct the threshold solution as in the
following proposition.

Proposition 2. Let N = 3, p > 54+ 2 and QO = Bgr. Let u, be the radially
symmetric solution of (1.1) with initial value pg, where p > 0 and g € X \ {0}
such that rg(r) is decreasing in a neighborhood of r = R. Then there exists W such
that the solution u* of (1.1) with the initial value uo = p"g exists globally as the
minimal L-solution but it is unbounded in L™ -norm.

The proof of this proposition is similar to that of [27] except for Lemma 3.3, but
we give the details of the argument for the reader’s convenience.

The first observation is the following lemma by the so-called Kaplan's arguinent
[16]. Let ¢ be the first eigenfunction with the first eigenvalue A1 > 0 for the Laplace
operator in § with zero Dirichlet boundary condition such that Hgllni =1

Lemma 3.1. Let p > 1+ ¢/N. If the solution u of (1.1) with initial datum g
exists globally in time, then

/ ugrdr < C(Qo,p.N). te (0.00).
Q

where C = C(Q, 0, p,N) is a constant independent of ug.
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Proof. Multiplying (1.1) by ¢; and integrating, and using p > 1+ ¢ /N, we obtain

d
—/ udL d;c:/AuqSl d:c+/ |c|”uP g1 dx
dt Jo Q Q
= —/\1/ uq)ld:c+/ lz|7uPd1 dz
) Q
P —{(p—1)
> -—)\1/ upy dr + (/ upy dr) (/ 1;r|_”/(p‘l)(pl d.r)
Q Q Q
>

. P
-1 / wpy dr + C'(Q,0,p. N) ([ 1Py d.r>
Q Q

By the standard Kaplan type argument, we conclude that the right-hand side of the
above inequality cannot be positive for all ¢ € (0, oc). The lemma is proved. O

Lemma 3.2. The set A is nonempty and relatively open in X.

Proof. We shall divide the proof into two steps.

Step 1. We claim that there exists g > 0 such that if [Ju(miue)lln~@ < €o
for some 7 > 0, then [lu(t;up)|lL() — 0 as t — oo. This also implics that A is
nonempty.

We first prove that 0 is an isolated stationary solution of (1.1). For this, we let
v be any solution of

—Av=|z|7P, €Q, v>0, z€Q, v=0 z€d0 3.1

such that ||v]| gy < 21 1= (MR- =1), I\/Iultiplying‘(:'j.i) by ¢; and integrat-
ing it over {2, we obtain

0= / ¢1(Av + |z|7vP)dx = / dro(|zlo?™ = Ay dr < 0,
Q Q

a contradiction. Thus 0 is an isolated stationary solution of (1.1). Note that, by
the Pohozaev argument [23], the problem (3.1) has no positive solution if p > 5420
and N = 3.

Next, for @ = Bpg, we let D = Byp and let ()\P.dpl’:’) be the hrst eigen pair
of —A in D with zero Dirichlet boundary condition. We also assume that ¢f is
nonnegative and [|¢P || < (p) = 1. Choosc 2 € (0,&;) sulficiently small snch that
gaP < ()\f)R_")FéT on D. Tt is easy to see that vy = £2¢7 is a supersolution of
(1.1). We define

£o = min vy ().
zeQ
Note that 9 > 0. Suppose now |ju(7;uo)llr=) < €o for some 7 > 0. By the
comparison principle, we obtain

llu(ts vo)llp=(ay < llv2llzee(e S €2 <&
for all + > 7. On the other hand, by the standard theory of dynamical system
with Lyapunov functional, the w-limit set of g is included in the set of stationary
solutions. Therefore, |ju(t;uo)||p=(y — 0 as t — oc.

Step 2. Show that A is relatively open in X.
Let ug € A. Then there exists 75 > 0 such that

”u(’T; uO)HLm(Q) < 50/2 V71> 75 (3.2)
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where eo > 0 is the constant given in Step 1. We claim that there exists a positive

constant § depending on [Ju(-. - ug)| Loo (2% (0,70)) such that imy_ e |80 )|y =

0, if [juo — ol pos () < 8, where @(z,#) is the solution of (1.1) with initial valuc dq.
In order to prove this, we only need to show that

llu = ] Lo (ax 0.7y < €0/2 (3:3)
for some 7 > To, if |Juo — GollL=(ay < 8. Because, if we know this, from (3.2), we
get

i, ML=y < €o-
Combining this with Step 1, we conclude lim;oc (-, )} poegoy = 0-
To obtain (3.3), we consider the equation for z 1= u — i

2z = Az + b(z.1, 2), re, t>0,
2(x.0) = ug(x) — Golx), « €L, (3-4)
z(x. 1) =0, x€ed 1>0.

where b(z, t. z) = |z|° {u(z, )" - [ulz,t) - 2]P}. We define
M = Ju(:, s uo)ll L= @xio,2ma])
Then
b(z,t,2) < pR?|z| max {M"“l, (M - 2P = )

for all z € Q, t € [0, 270]-
Let h be the solution of

ih v
&= (h). h(O) =4 (3.5)

Then h is a super-solution of (3.4) when [lug — ol Ly < 0, since
hy = Ah+~a(h) > Ah+b(z, . k), =€ Q1> 0.
h(()) > up — g in Q, h > 0.

Note that 4 (k) is Lipschitz continuous in h, the initial value problem (3.%3) for
h(t) is well-posed. Taking 6 >0 sufficiently small. we have

h(t)l < €9/2.
terf(%?é}io]l '( )! EO/

By the comparison principle, we obtain
max |lu(t;ug) — u(t; @ ey < max k()] < g0/2
b llu(t; uo) — ults do)llL=@ < tE[OI]l ()] < 2o/
Thus (3.3) is established and the lemma is proved. O
We next give two estimates for the case N =3.

Lemma 3.3. Let N=3,p>c+1 and @ = Bg. Let u be a nonnegative radially
symmetric global solution of (1.1) with ug > 0 and ug = 0. Then for each 7 >0
there exists a constant C = C(Q,0,p. N. 7, ug) > 0 such that

/ udr <C, t=>r, (3.6)
Br

t
/ / lz|ouf dzds < C(1+Mt), L2 (3.7)
o JBr
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Proof. We consider the transformation z(r.t) := |zlu(x, t) = ru(r.1). r = |x|. Then
z satisfies )

2y = Zpp +roTITPLP re(0,R),t>0,

z(0,t) = z(R.t) = 0, t>0. (3.8)
; z(r,0) = rup(r). r € (0,R).
Note that z(r.t) > 0 for all r € (0, R), ¢ > 0. It follows from the Hopf lemma that
zr(R,t) < 0 for all ¢ > 0. Given a fixed 7 > 0 (as long as z.(R,7) < 0). Then by
a standard reflection argumnent, using the fact that r°*' =7 is monotone decreasing
in v (duc to the assumption p > o + 1), we can find a small positive constant =,
depending on 7, such that z is monotone decreasing in r on [R — 2z, R] x [r. ).
Indced, the constant € can be chosen in such a way as long as ¢ € (0,7/2) and
z(r.7) <0 for r € [R ~ 2¢. R].

Now, given a fixed ¢ > 7. Then we have

R
/ u(x.t)dx 477/ rz(r, t)dr
JBr 0

Il

R-2¢ Rz R
477/ rz(r,t)dr + 47r/ rz(r.t)dr + 4r / rz(r, t)dr.
0

R—2¢ SR~z
Setting s = 2(R — ) — r and using [2(R —¢) — s]/s < C: := R/(R — 2¢) for all
s € [R — 2¢, R — ¢], from the monotonicity of z in r we have
R R—e
/ rz(r.t)dr < CE/ rz(r, L)dr.
R—¢ R—2¢
Thercfore, for any ¢ > 7 we deduce that

R—~¢g
/ u(z, t)dr < (1+ 05)47r/ rz(r.t)dr
Br 0

1l

(1 +C’E)/B u(x, t)dr

1+C.
Qo

IA

/ ulx, )y (x, t)d,
Br-.e

where ag := ming, . ¢; > 0. Consequently, (3.6) follows from Lemma 3.1.
Next, we prove the second estimate (3.7). Recall
d -
—_ upy dr = —Aq / upy dor + / |€|"uPpy da.
di Jpg Br JBr

By an integration from 0 to ¢, we have

t g
/ ugpy dz — / ngdy dr = — Ay / / ugy drds + / / [x|7uP @y deds
Br Bgr 0 JBgp 0 JBr

Combining this with Lemma 3.1, we obtain

t
/ uQy da;——/ ugpy dr > —Cl)\lt+/ / |x|7uP ¢y dxds.
Br Br 0

/B

Since ug and ¢; are positive, this immediately yields

t
/ / |$|”’U.p(]51 dxds < Cit +/ up, de < C1(1 + A /) Vi>0.
0 YBp Br
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Finally, we note that |z|7uP(z,t) = r°~P2P(r, 1) is monotone decreasing on Q. ==
[R — 2z, R] x [r.00), since p 2 0 +1 and z(r.t) is monotone decreasing on Q.. 'The
rest of the argument, is completely the same as that of the proof of (3.6). We omit
it. Thus the lemma follows. O

Proof of Proposition 2. Fix g € X \ {0} and define p* = sup{p > Oipg € A}.
We claim that pu* < co. Indeed, this follows from Lemma 4.1 and the observation
Jo(pg)r dzx = 1 foy 991dx — 00 as p — 00.

Let u,, be the solution of (1.1) with the initial datum pg for 0 < p < p*. From
the definitions of A and p*, u, exists globally in time. The comparison principle
implies that u, is monotone increasing in u. Hence we are able to define

w*(n.t) = lim uyu(2.t), x€te(0.oc)
Y4

by allowing the value +oo. We shall show that «* is a minimal L1-global solution.
That is u* satisfics the conditions (2.1) and (2.2) with T = oc.

Since z-(r,0) = (rg)'(r) < 0 in a fixed neighborhood of r = R, so we can choose
+ = 0 in the proof of of Lemma 3.3. Hence the estimate (3.6) in Lemma 3.3 holds
for a constant C independent of initial data wp. In particular, the estimate (3.1)
holds with a constant C independent of j € (0, p*) for any u, with jo € (0, %) and
any ¢ > 0. By Fatou’s lemma,

/u‘(-,t)dm:/ lim u#(~.t)dmSliminf/u,,(-.t)dzgC Vi>0
Q g Q

YR wo

Hence w,+ exists globally in time as an L-solution.
Using the monotonicity of the sequence u, in p, it follows from the monotone
convergence theorem and Lemma 3.3 that

¢ ¢
/ /'U.*(;L} s)dzds = / / lim wy(,s)deds
0 Ja o Janr W

& .
= lim / / uy(x, 8) deds < CL.
/et Jo Ja

Thus we obtain lim, ~. |(, — 2| L1 axo.0) = 0 for all ¢ > 0. Shuilarly, using
A 1 1LY (2% (0.1))
(3.7) and monotone convergence theorem, we deduce that

t t o ‘
/ / lz|° (u* (z, 8))P (2. 5) dzds :/ / |x|"< lim u,l(xs)) drds
0 JQ o Ja e

t
lim |&|7u® (2, 5) duds
/0 ,/Qu}u*m ub (@, s) dds

-t
= lim lz|7ul (x, 8) dds
wSut Jg Ja

<O+ M)

fl

Therefore, || (u*)P € LH(Q x (0,1)) for all £ > 0. We can also check that
uh/'lﬂ* el (8, = (@)W e axoy =0 ¥V E> 0

This is the condition (2.2).
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In order to prove that u* meets the condition (2.1), we consider the following
auxiliary problem

ug = Au+ 2|7 ()P tur. e, t >0,
u =0, €00, t>0, (3.9)
u(x,0) = p*g xz €.

Recall that |7 (u* )P~ u* € LYQ x (0,1)) for all L € (0.2¢), provided that N =
and p> o+ 1.

By the general theory of L'-semigroup of [1], the problem (3.9) admits an L*-
solution v € C([0, ¢]; L*(Q)) provided that |z} (u*)? € L} x (0,¢)). Furthermore,
it is an L!-contracting mapping. In the sequel, {em}tzo denotes the semigroup
generated by the heat operator with zero Dirichlet boundary condition. Then we
have
t
(E=DA 19 > () [P~ () dis,

o) = e Bty + / ‘
0
t
u,(t) = e pg + / e 2)% u,, ()P 2y () ds.
0

Thus, for all u € (0. u*), we have

t
Io00) = wpOlzsc = e =g+ [ el () - o) ]

L)

t;
< (" = el + [ 12l (W) o) e do
0

< (4 = )l aemy + / (P = w2l e ds.

By letting p — p*, the right-hand side of the above incquality converges to 0.
Hence u* = v. This implies that u* satisfies (2.1). Since v is L1-global in time, we
conclude that »* is a minimal L*-global solution.

Finally, we shall show that u* is an L*™ unbounded solution. Assumec on the
contrary that u* is uniformly bounded. Then from the standard dynamical system
argument with Lyapunov functional, the omega limit sct w(p*g) is included in the
set of nonnegative stationary solutions. Recall from [28] that (1.1) has no positive
stationary solution, since p > p; = 5+ 20. Thus w(u*g) = {0}. This implics
that u* — 0 as t — 0o. On the other hand, by Lemma 3.2, the set A is an open
subset of the set X. Then we can find p > p* such that ug € A, a contradiction.
Therefore, L>®-norm of u* diverges in finite or infinite time. This completes the
proof of Proposition 2. O

Proposition 2 does not give us any information whether the solution exists glob-
ally in time or blows up in finite time. Next theorem is the answer to this question.
The related result for the equation u; = Au + uP can be found in [9, 23] (sce also
[21] for more general results).

Theorem 3.4. Let Q2 = Br, N =3 and p > 5+ 20. Let u* be the function in
Proposition 2. Then u* blows up in finite time such that the origin is a blow-up
point.
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Before starting the proof, let us recall the well-known zero number propertics of
parabolic cquations [4]. We define

Z(f) = Zp,a)(f) = t{r € [0. R], f(r) = 0}
as the zero number of f € C([0, R]) on [0. R].
Lemma 3.5. Let V(r,t) be non-zero smooth radially symmetric solution of

vy = Av +a(lz], t)v, « € Br, t1 <t <t2,
v#£0., T €IBpr. ty <t <ty

where a(|x}.t) is continuous on Br x (t1,t2). Then
(i) Z(V(-,t)) is finite on (t1,12).
(i) t+ Z(V(-.t)) is monotone nonincreasing.
(iii) If Vo(r*,#*) = V(r*,t*) = 0 for some (", *), then

Z(V(,i)) >Z(V(S)) i1 < i<ttt <s<is.

In the following, we shall denote the singular steady solution of
N-1
Uy =Upp+ ——U, +7°U", 1 >0, (3.10)
T

by ®*(r) = c*r~?, where 8 := (0 +2)/(p— 1) and ¢” = B(N -2 - 3). We can
easily check that this is well-defined when p > (N +0)/(N -2).
Now we start to prove our main theorem.

Proof of Theorem 3.{. We divide our proof into two steps.

Step 1. We shall use the zero number argument as [9] to show that u* blows up
in finite time. For a contradiction, we suppose that the U*(r.t) = u* (. t) does not
blow up in finite time. Hence U™ is smooth for all ¢ > 0.

We first claim that

ZWU () —®*() 22 (3.11)
for any t > 0. Otherwise, there exists tg > 0 such that Z(U*(-.tg) — ®*(+)) is either
0 or 1. This means that U*(-. o) and ©*(-) have no interscction or one degencrate
intersection. The former case implies that Z(U* (-, ) — ®*(-)) = 0 for all t > tq, by
using (i) of Lemma 3.5. The latter case is also reduced to the former casc by using
(iii) of Lemma 3.5. By comparing ®*(| - | + |wol) and U*(-.#) for sufficicntly small
o], we have U* (||, t) < @*([o| + lzo]) for any ¢ € (t.o¢), r € Br. Hence U bt
is uniformly bounded for » € [0, R] and ¢ > fo. On the other hand, p > p, imply
that 0 is the only nonnegative stationary solution. Therefore, limg o w0 (x.t) = 0
for any x € Bg. This contradicts Proposition 2. Hence (3.11) is established.

Next, it is known that, when N = 3 and p > ps 1= 5+ 20, the equation (3.12)
has the following backward self-similar solution Up,:

Un(r,t) = (T = )" 2pm(r/VT —1). t<T. (3.12)
for any 1' > 0, where @y, is positive in [0, oo) such that
N -1 4 ,3
99;,1 + — 'é{) w;n + lyloﬁojvzn - 550771. =0, y>0,

(,C‘:n(()) =0, limyaoo[yﬁ‘é’m(?/)! =m

for a certain m € (0.c*). See [6] for o > 0 and 18, 19] for o = 0.
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We now consider the intersection between U* and U,,. Fix any ¢; € {(0,1). Siuce
UX(R.t;) < 0, there is a positive constant ¢ € (0, B/2) such that U (r,t;) < 0 for
all 7 € [R—e. R]. Set )

= min U*(r,4)/2, y2:= max U7(rt).
n ré[%fgl—s] (I’ 1>/ - TEIIIIQX‘;DEC,R] 4 (, tl)
Then 43 > 0 and 42 < 0. By (3.12), we can choose 7' > 0 sufficiently large so that
U (r,t1) <71 for all r > 0 and (Uy,)-(r,t1) > 2 for all » € [R—e, R]. On the other
hand, from the boundary condition of (1.1), we have U*(R.t) = 0, U,,(R,t) > 0
for any ¢ > 0. This implies that Z(U*(:,11) — Un(-, 1)) = 1. Combining this with
Lemma 3.5, we have

Z(U*(”t) - Um('ﬂ f)) <1, i 2t (3-13)

Note that Uy, (r.T) = mr=? for all ¥ > 0. Recall ®*(r) = ¢*r=% and (3.11). Let
r1 and 7o be the smallest and largest intersection points of U* and ¢* in (0. R).
By choosing t3 < 71" sufficiently close to 7', it follows that there must be at least
one intersection of U* and U,, in (0,r1) and (rqe. R), respectively. This implies
that Z(U*(-,t3) — Un(-.t2)) > 2, contradicting (3.13) and (i) of Lemma 3.5. We
conclude that u* blows up in finite time, say at 7".

Step 2. We prove that z = 0 is a blow-up point of ©*. Assume on the contrary
that x = 0 is not a blow-up point. Also, for contradiction we assumc that r = R
is a blow-up point of u*. Recall (3.%) with z(r,?) := ru*(r.{) and it follows from
the proof of Lemma 3.3 that 2, < 0 in [rg, R] x [0, Tp) for some r¢ € (0, R). wherc
[0. Tp) is the maximal existence time interval of z. Note that Ty = T. Then we have
z(r.t) = oo as t — Tp uniformly on [c, d], where we take ¢ = 7o and d = (ro+ R) /2.

7

Following [7], we consider the function

’ . omr—c¢ 14p
J(r,t) i= z.(r.t) + €h(r)z"(r.t), h(r):=sin (l ), T = -,
d—c 2
where € is a positive constant to be determined. By a simple computation, it is casy

to sce that J satisfies

Ji = Jpr —aJ < —ebhz".
where
@ = protiPP=l onep/p7 L
bi=(p— )t PPl 9qeh/2Y 7 — [n/(d - DI

Sinccl <y <p,p>0+1, R<ooand 2(r.t) = oo as L = Tp uniformly on [c. d].
we can find ¢y € (0, 7)) such that b > 0 in [¢,d] x [to,Tp). For this 9, we can choose
¢ > 0 small enough such that J < 0 on [¢,d} x {to}. Since J < 0 onr = c.d, it
follows from the maximum principle that J < 0 in [e,d] x {tg.1p). This gives the
inequality

f—; < —eh on [e,d] x [ts.10).
Integrating the above inequality from c to d for any ¢ € [to. Ty) and letting ¢ T T,
we reach a contradiction. Therefore, 7 = R is not a blow-up point of «”.
Now, we can apply Theorem 2.2 to conclude that u* blows up completely in finite
time. But, this contradicts Proposition 2. Therefore, = 0 is a blow-up point of
u* and we finish the proof of Theorem 3.4. O
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4. Non blow-up at zero point of potential. Consider the following more gen-
eral problem than (1.1):
ug = Au+glz)u? =€ Q1 >0,
u(x.0) =up(z), re€, (4.1)
u(z.t) =0, x €00, 1>0,
where {2 is bounded simooth domain, g is Hélder continuous in Q, g(x) > 0, g(x) £ 0,
p>1andug >0, ug # 0 is a smooth function with uglag = 0. We assume all zeros
of g(x) are included in €.
Assume that
ug(2,0) >0 forall xe€Q. (4.2)
Note that the condition (4.2) is valid if we assume that
Aug + g(z)uh >0 in Q.
We shall prove that u blows up in finite time and satisfies
s
lu(z, )l Loy < K(T — )77 (4.3)
for some K = K(p,q,9Q,T) > 0. More precisely, we prove the following theorem.
Theorem 4.1. Assume (4.2) holds. Then T < oo and u sabisfics (4.3) for some
K = K(p.q.Q.T) > 0. Moreover, any zero point of () is not a blow-up point.
Proof. Define
J =y —euP.
By a simple calculation, we have
Jy — AJ = q(z)f (w)J + ef" (W) Vu® > q(@) f(u)J
with f(u) = wP. Since v := v, is a nontrivial solution of
v = Av+qlx) f'{we, x€Q, t>0,
v(w, 0) = u (£, 0), r € Q,
v(z,t) =0, x €Nt >0,
from the maximum principle and the Hopf lemma, u; > 0 in Qx(0,7)and -{%ut <0
on 9 x (0,T), where v is the outward unit normal vector on the boundary. Set
tg = T/2. Then we can choose £ > 0 small enough such that wu (>, to) > =uP (. o)
for all 2 € Q. Thus we can easily check that J > 0 on the parabolic boundary of
Q x (tg, T) if € > 0 is sufficiently small. It follows from the maximum principle that
J > 0in Q x (tp. T). Consequently, we have
Uy — sul > 0 in Qx (t(),T).
By integrating this inequality for ¢, we conclude
WP(rt) > (p— De(T —t), t€ (b T).
This means that 1 < oo and (4.3) follows.

Next we show that any zero of g(xx) is not a blow-up point. The proof is by using
a comparison argument. Let us define

A
[o(@) + (1 = )7

where the constant A > K aund v(z) will be determined later.

w(r,t) =
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Let zo be any zero point of g(z). We may assume that {z : [x — x| < 2r9} € ©
“for some rg > 0. Then we define

v(z) = § cos? (M>, By :={z: |z — xo| < 1o},
2’}"()

where 6 is a positive constant. Note that w(w, 1) > u(x.l) forx € Bgand i € (0,7),
by (4.3) and using A > K. Also,

A
[o(2) + 7171
if we take A sufficiently large.

The incquality

w(r.0) = > uglx), |z — gl <rg

wy — Aw — g(x)w? >0

is cquivalent to

1—(p—DAP Yg(z) + Av(x) — P [Vof? >0
p—lue(@)+ (T —-1) ~
for all (z,t) € By % (0,T). We have this incquality if
12
1-(p~ 1A 1g(2) + Av(z) — .- [Vl >0 (4.4)
p—1 vx)

for all & € By. It is easy to see that Av/d and [|[Vo|?/v]/6 are bounded (independent
of &) in By for any positive constant 6. Furthermore, by fixing 4 and taking »
sufficiently small. we have (p — 1)AP~1q(x) < 1/3 for all & € By. For these fixed
A and rg, we can take § > 0 sufficiently small so that the last two terms in the
inequality (4.4) are bounded by 1/3 in By. Hence (1.4) holds and, by the comparison
principle, we conclude that

A ; .
w(z, t) = - — > u{z. t), | — 20| < ro. L € (0.77).
w(z) + (T - 1)]7T
In particular, = ¢ is not a blow-up point of «. 0O

Remark 4. The result of monotonicity in time implies the finite time blow-up for
the homogeneous equation can be found in Theorem 23.5 of [30]. For non blow-
up at any zero of potential ¢(z). different from the argument of [1%], we construct
supersolution that does not blow-up at any zcro point of ¢(x). This proof is much
simpler than that in the work [10] mentioned above. .
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ABSTRACT. We study nonnegative radially symmetric solutions for a semilinear
heat equation in a ball with spatially dependent coefficient which vanishes at
the origin. Our aim is to construct a solution that blows up at the origin where
there is no reaction. For this, we first prove that the blow-up is complete, if the
origin is not a blow-up point and if there is no blow-up point on the boundary.
Then we prove that a threshold solution exists such that it blows up in finite
time incompletely and there is no blow-up point on the boundary. On the
other hand, we prove that any zero of nonnegative potential is not a blow-up
point for a more general problem under the assumption that the solution is
monotone in time.

1. Introduction. In this paper, we study the blow-up phenomena for the following
initial boundary value problem:

w = Au+ |x|u?, x€Q. >0,
u =0, e o, t>0, (1.1)
U = Uug, e Q.,

where p > 1, ¢ > 0, 2 is a bounded smooth domain in RY with N a positive integer
and g is a nonnegative bounded smooth function in Q with ug = 0 on 0.

It is known that for each initial datum wug as above, (1.1) has a nonnegative
classical solution u for ¢ € [0,7) for some maximal existence time 1" € (0,00]. If
T < oo, then we have

limsup [|u(:, t)[lp=(o) = o©
t—T
and we say that the solution u blows up in finite tiine with the blow-up time T. For
a given solution u that blows up at t =T < 00, a point a € € is called a blow-up
point if there exists a sequence {(zn,tn)} in Qr = Q2 x (0,T) such that x, — a.
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