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Empirical likelihood with application to data
sets with large proportion of zeroes

Shun-Yi CHEN (with Jiahua CHEN and J. N. K. RAO)

Abstract: If a population contains many zero values and the sample size is not very large, the traditional
normal approximation based confidence intervals for the population mean may have poor coverage proba-
bilities. This problem is substantially reduced by constructing parametric likelihood ratio intervals when
an appropriate mixture model can be found. However, in the context of survey sampling, a general pref-
erence is to make minimal assumption about the population. The authors have therefore investigated the
coverage properties of nonparametric empirical likelihood confidence intervals for the population mean.
Under a variety of hypothetical populations, the empirical likelihood intervals often outperformed para-
metric likelihood intervals by having more balanced coverage rates and larger lower bounds. The have also
used data from the Canadian Labour Force Survey-2000 to illustrate the empirical likelihood method.

1. INTRODUCTION

We discuss the problem described in Kvanli, Shen & Deng (1998, hereafter KSD). In accounting
practice, a sample of about 100 claims is often obtained for re-counting. Most of the claims will
be found legitimate, but a small portion of claims may be excessive. There is hence a need to
construct a confidence interval (CI) for the average (or total) amount of excessive claims. The
lower confidence bound is often used, for example, by the government to compute the amount of
money owed to the government. The accuracy of the lower bound is of particular importance.

Often, a CI of a parameter can be constructed based on the asymptotic normality of the corre-
sponding point estimator. Thus, the true coverage of the CI hinges on the precision of the normal
approximation. When the population distribution is highly skewed, the normal approximation be-
comes unreliable unless the sample size is very large. The non-coverage below the lower bound and
above the upper bound could be totally unbalanced. In this situation, one may instead construct
a CI via the likelihood function. The coverage probability of a likelihood interval is usually based
on a chi-square approximation to the distribution of the likelihood ratio statistic. Likelihood based
inferences are known to have many optimal properties under some regularity conditions. However,
the optimal properties naturally depend on the appropriateness of the parametric model and the
precision of the chi-square approximation.

When a population contains many zero values, commonly used parametric models such as nor-
mal, Poisson or Gamma distribution, have to be modified. KSD discussed the use of mixtures of
0 and one of the commonly used parametric models in this situation. They demonstrated that
with appropriate choice of the mixture models, the resulting Cls lead to more accurate coverage
probabilities compared to the ones obtained by the traditional, normal approximation based in-
tervals. They also observed that the accuracy is dependent on the correctness of the parametric
model chosen.

As pointed out in Cochran (1977), the preference in survey sampling is to make, at most,
limited assumptions about the population distribution, without specifying a parametric form.
In this spirit, we explore the possibility of constructing accurate Cls without making explicit



parametric assumptions. We use the nonparametric empirical likelihood (EL) method to construct
such intervals.

The EL methodology was first discussed in the context of survey sampling by Hartley & Rao
(1968). Its application to survey sampling has been further explored in Chen & Qin (1993), Chen
& Sitter (1999), Zhong & Rao (2001), and Wu & Sitter (2001). Some important work on empirical
likelihood can be found in Owen (1988, 1990, 1991), and Qin & Lawless (1994, 1995). The recent
book by Owen (2001) contains a comprehensive account of recent developments in EL methodology.

The EL function has properties similar to the parametric likelihood. Most notably, under very
mild conditions, the EL ratio statistic has a chi-square limiting distribution. At the same time, it
does not require a parametric model assumption. The CI has a data-driven shape, and remains
inside the natural bounds of the parameter space.

In this paper, we give a brief account of the ELL method in general, and its application to the
problem discussed in KSD in particular. The EL method is straightforward, but its finite sample
performance in the intended application can only be predicted by theory and determined through
simulation. Therefore, we examine the performance of the EL interval under a variety of scenarios
and also using data from the Canadian Labour Force Survey-2000. In general, we found that the
EL intervals have overall coverage properties similar to parametric likelihood (PL) intervals based
on the normal mixture model. However, the EL gives the best lower bounds relative to competing
methods. Its non-coverage probabilities below the lower bound are consistently closer to the target
value (2.5% for the usual 95% CI). In addition, the EL lower bound is often the largest one on
average. Thus, it is particularly advantageous to use the lower bound of the EL interval. The
comparison of the upper bounds of the PL intervals and EL intervals is mixed. However, the
differences, if any, are usually small.

We introduce the EL method and the KSD method in Sections 2 and 3 respectively. Extension
of the ELL method to stratified random sampling is given in Section 4. Simulation results are
presented in Section 5. We also use these methods in Section 5 to analyze data from the Canadian
Labour Force Survey-2000. Some concluding remarks are given in Section 6.

2. EMPIRICAL LIKELIHOOD METHOD FOR THE MEAN

Let Y7,Y5,...,Y, be a sample of independent and identically distributed (iid) random variables
with the common distribution F(y). Let p; be the probability of observing Y;. The empirical
log-likelihood function is defined as

eln(F) = logp; 0<p;<1; » pi=1. (1)
=1 i=1

Without further restrictions on the choice of F'(y), the log-likelihood (1) is maximized when p; =
n~ ! and the resulting maximum empirical likelihood estimate of F'(y) is the well known empirical
distribution function Fy,(y) = n~ 'Y | I(Y; < y) where I(-) is the indicator function. Let 7 =
T(F) = E(Y), the mean of Y. Then the maximum empirical likelihood estimate of 7 is Y,, =
nl Y

We can also construct a “profile” empirical log-likelihood function of 7. Let us maximize el,, (F)
under (1) and an additional restriction

n
ZPiYi =T
i1

for each given 7. The maximization can be done with surprising simplicity. The maximum is
attained when

pi = {1+ AYi =)}, (2)



where A is the Lagrange multiplier that solves the equation

ST 0 @
i:11+/\(Yi—7')7 ’
The solution to (3) exists whenever 7 falls inside the convex hull generated by Y3, ...,Y;,. Hence,

substituting (2) in (1), we get the profile empirical log-likelihood
eln(1) = —Zlog{lJr/\(Yi —7)} —nlogn. (4)
i=1

In this paper, we use the same notation, el, for the empirical log-likelihood (1) and the resulting
profile empirical log-likelihood (4). However, its meaning should be clear from the associated
argument(s). The profile EL ratio function is defined as

ern(T) = 221og{1+A(Y,- -} (5)

Letting 79 be the true mean, and assuming that the third moment of ¥ exists, Owen (1990)
showed that

ern(10) — X%

in distribution as n — oo, where x7 denotes the chi-square variable with one degree of freedom
(df). Hence, an approximate 100(1 — «)% CI for T is given by

{riern(r) <x7 41} (6)

where x7_, ; is the (1 — a)-th quantile of the chi-square distribution with one df. The interval (6)
is the 100(1 — @)% empirical likelihood CT for the mean 79 = E(Y). Appendix A.1 gives a simple
algorithm for calculating the empirical likelihood CI (6).

When a population contains a large proportion of zero values, the EL. method described above
can be applied directly. In the context of a finite population, we assume that the current population
is a member of a sequence of evolving finite populations such that the proportion of zeroes in the
sequence is fixed and hence does not change with the sample size n. This condition is equivalent to
saying that the chi-square approximation works better in practice when the proportion of non-zero
values is not too small. We also assume that the sample fraction is small so that the iid assumption
on the sample y1, .. ., y, is approximately valid.

KSD did not explicitly examine finite population situations, but the assumption of fixed pro-
portion of non-zero values is implicit in KSD as they required iid structure. Unlike the mixture
models suggested in KSD, the chi-square limiting distribution of the empirical likelihood ratio
statistic remains valid without any parametric model assumption. Hence, the method provides
another useful solution to the problem discussed in their paper.

3. MIXTURE MODELS

The mixture models discussed in KSD have density functions of the form

Ty 1,0,p) = pfry; 1, 0)1(y # 0) + (1 = p)I(y = 0),

where p is the population error rate and fi(y; i, 0) is a parametric density function with conditional
mean p and nuisance parameters . The unconditional mean of Y is therefore 7 = pu. The problem
of interest is to construct a CI for the mean 7.



Suppose Y7, ...,Y;, are iid random variables with common density function f(y;u,@,p). The
log-likelihood function is then given by

L, 0,p) = Y _log f(ui; 1,0, p).
=1

The likelihood ratio function for testing ™ = 7¢ is defined as

n(70) = 2{sup ln(p,0,p) — sup In(p,0,p)}. (7)

#,0,p w,0,p:7="70
When the density function fi(y;u, 6, p) satisfies some regularity conditions, which is the case for
most commonly used models, the likelihood ratio statistic has x7 limiting distribution based on
the result of Wilks (1938). Accordingly, a two-sided approximate 100(1 — «)% CI for 7 is given by

{Tora(m) <x3an}- (8)

Note that we need to assume that p is not equal to 0 or 1.

Despite the perceived simplicity of parametric mixture models, computations associated with
(8) are more complex than these for EL. When f; is a normal or an exponential distribution, KSD
provided detailed instructions for the related numerical solution. We give a very brief summary of
the numerical solution here. Under the normal mixture model, let k£ be the number of zero values
in the sample of size n and %, be the sample mean. The computation starts with an initial value
7(0) less than 7,. Given 7 = 7(9 the likelihood is maximized when p = p{® solves the cubic
equation

w— Ap* + Bu—C =0,
where
4 (2n — k)7(® 4 3T B S(n—k)+ (3n — k)T o nST©
n 2(n — k) ’ n 2(n — k)? ’ - 2(n—k)?
with 7= "7 1 y; and S = > | yZ. The likelihood ratio function (7) can then be computed at
7 and p. If it is smaller than x3 , ;, the lower bound of the CI is larger than 7. The lower

bound is obtained iteratively by increasing 7(% and so on until (7) is equal to Xia,r The upper
bound is obtained in the same way. To properly estimate the variance of the normal distribution
component, we further require n — k > 2.

Under the exponential model, we also start with an initial value 7(%). Given 7(9| the likelihood
is maximized when p = p(9, where

0 A+ VA>—1B
'u e S —
2

with A = 207 4+ T — k7)) /{2(n —k)} and B = T7(Y /{2(n—k)}. The rest of the computations
are similar to these for the normal mixture model.

The likelihood ratio function (7) for the parametric mixture method can be extended to em-
pirical likelihood by changing f1(y;; u,0) to ;, i = 1,...,n — k, where §; > 0, Z?;lk p; = 1 and
Z?;lk Piy; = = 7/p. It can be shown that the resulting EL ratio function is identical to ery(7)
given by (5). Therefore, the mixture model formulation of EL is not providing any additional

information.
4. EXTENSION TO STRATIFIED RANDOM SAMPLING

Simple random sampling is an important building block for more complex sampling designs. How-
ever, it is rarely applied directly. Often, the population is divided into several strata, and indepen-
dent simple random samples are drawn within strata. Interestingly, the EL. method can be applied
to the stratified case; see Zhong & Rao (2000) and Chen & Sitter (1999) for details.



To simplify the discussion, we consider populations with two strata, denoted by 1 and 2, with
weights W1 and Ws. Further, we assume that the sampling fractions within strata are small so that
the dependence between the sampled values can be ignored. The following development can be
applied to more than two strata without additional technical difficulties. Generalization to more
complex designs is possible, but may not be straightforward. However, such generalizations are
not the focus of this paper.

Suppose that the sample sizes in strata 1 and 2 are m and n with observations z1, zs, ..., Ty,
and y1, Y2, - - - , Yn, respectively. The log-empirical likelihood function can then be written as
m n
elm,n(pla e Pmsq, -, qn) - ZIOng + Zlogqj (9)
i=1 =1

The corresponding restrictions are given by

m k23

Zpi =1 qu‘ =1 (10)

i=1 j=1

1

Of course, we also require p;, ¢; > 0. The empirical likelihood is maximized when p; = m ™" and

-1
Qj =N .

To obtain the profile empirical log-likelihood for the overall population mean 7, we need only
maximize (9) subject to (10) and an additional constraint

Wi Zpﬂi + Wa Z q;y; =T.

i=1 m=1
The profile empirical log-likelihood (of 7) is maximized at
T = WiZym + Waln,

where Z,, and 7, are the sample means. In this case, p; = m~! and ¢; = n~! for all 4, 5.
It appears that the computational problem associated with the profile log-likelihood of T is very
complex. However, a very simple solution in fact exists. Starting with an appropriate value ¢, we

solve
m n

Ty —T1 Y; — 72
Z 1+m*1W1t(a:,~ —Tl) ’ Z 1+’I’L71W2t(yj —Tg)

=1

to obtain 71(f) and m(¢). Since the functions in the above equations are monotone in 7; and 7
respectively, the computation can be done easily. The profile empirical log-likelihood at 7(¢t) =
Wit1(t) + Wara(t) is then given by

elmn{T(t)} = =) log{l+m "Wit(w; —p1)} — > log{l+n "Wak(y; — p2)}
i=1 j=1
—mlogm —nlogn.

The corresponding profile EL ratio function is
ermn{T(t)} =2 log{l+m "Wit(z; — 1)} +2> log{l+n 'Wat(y; — p2)}.  (11)
i=1 j=1

To compute its value at a given point 79, we need only solve the equation 7(t) = 79 for the
corresponding value of ¢. The function 7(¢) is monotone in ¢. Hence, a linear search can be used
to find the solution. Appendix A.2 gives details of the above algorithm.



We have shown in Appendix A.3 that the profile EL ratio function at the true parameter point
To converges in distribution to x2. More precisely, we have the following theorem.
THEOREM 1. Suppose z;,1 = 1,...,m and y;,7 = 1,...,n are two sets of iid random variables
and m/n — p € (0,1) as n — co. Assume E(|X[*) < oo and E(|Y?) < co. Let 10 = W1 E(X) +
WoE(Y). Then erp n(10) as defined by (11) has chi-square limiting distribution with one degree
of freedom.

Using Theorem 1, an asymptotic 100(1 — &)% CI for 7 = W1 E(X) + W2 E(Y') can constructed
as

{r:ermn(r) <xian}-

Due to the monotonicity between ¢ and 7 discussed earlier, this set is indeed an interval. Its
coverage properties are investigated by simulation in Section 5.3.

5. SIMULATION STUDY AND AN APPLICATION

We first consider the simplest case when the sample consists of essentially iid observations. In
this case, we compare the traditional normal approximation based method, the KSD method, and
the EL method through simulated data (Section 5.1). Second, we compare the KSD method and
the EL method using data from the Canadian Labour Force Survey-2000 (Section 5.2). Third,
we consider the situation when the population is stratified. In this case, the KSD method needs
substantial extension and is not included in the simulation. Instead, a simple method, proposed
by Godambe & Thompson (1999), is compared to the proposed EL method.

5.1. Simple random sampling

The simulations in this section mimic the simulations done in KSD. We generated data from
mixture models with ¢ = 5, 02 = 16 and error rate parameter p varying from 0.05 to 0.25 in
increments of 0.05. The sample size is n=100. The nominal confidence level is taken as 95%. For
each p and the parametric mixture model specified, 10,000 simulation runs were generated. Thus,
the simulation error associated with the coverage probability is less than 0.5%. We recorded the
proportion of runs with the true mean smaller than the lower bound, and the proportion of runs
with the true mean larger than the upper bound. We also computed the average lower bound and
the average upper bound for each method.

When the sample size increases to n = 200, all methods improved, but the conclusions are not
changed. Therefore, we have not reported our results for n = 200.

Due to the requirement n —k > 2 for the normal mixture model, we threw away simulation runs
with fewer than 2 non-zero observations. This is not a problem in practice. In addition, we only
allowed non-negative observations to fit the context of the targeted application. These restrictions
made the true population mean of the sample inflated, but we adjusted the population mean when
computing the coverage probabilities. We used an Splus function to compute the inflated mean for
each configuration of n, p, , and o2. For example, when n = 100, p = 0.05, i = 5 and o2 = 16,
the population mean becomes 0.3001629 instead of py = 0.25. Based on 10,000 simulation runs,
the overall sample mean is 0.30096 which is a close match. The inflation is not as severe when n
or p is larger.

In Table 1, we report the results for the four methods of finding CIs, based on simulation runs
generated from normal mixture models. Both non-coverage rates and average bounds are reported.
The average length of a CI is the difference between the average upper bound and the average lower
bound.

It follows from Table 1 that the CI constructed by the traditional (normal approximation)
method has poor coverage probability in all situations. The coverage probability improves gradually
as the number of non-zero observations increases. When the exponential mixture model is applied
to normal mixture data, the problem of over-coverage becomes severe. Also, it gives longer than



necessary Cls. In applications, if the lower bound is used as the standard for refund, the amount
of refund is seriously lower than it should be. Using the correct normal mixture model or the EL
method produce very similar results. The overall coverage of using the normal mixture model is
slightly better when the number of non-zero values is low. The comparison is reversed when the
number of non-zero values increases. In both cases, the difference is not significant. However, we
note that the EL method produces intervals with a more balanced coverage. Its average lower
bounds are larger in general. However, the difference is not statistically significant.

Why is the method based on the exponential model consistently producing intervals with higher
than the nominal coverage rate? This phenomenon is also evident in the simulation results of KSD.
By assuming the exponential model for the non-zero part of the data, we have in effect assumed
that the population variance is equal to the square of its mean. In the above model, the true mean
4 and variance o2 are 5 and 16 respectively. Using the exponential model is equivalent to assuming
that the mean and variance are equal to 5 and 25 respectively. Thus, the assumed model gives
larger variance than the true variance which in turn gives wider Cls. As a result the intervals lead
to over-coverage.

Next, we generated simulation runs from the exponential mixture model. In this case, all the
observations are non-negative. However, we still require at least two non-zero observations in each
simulation run. Otherwise, the method based on the normal mixture model does not work. The
simulation results are reported in Table 2.

We note from Table 2 that the exponential mixture model based confidence intervals have close
to nominal coverage rates. Hence, it is evident that the appropriateness of the model assumption
is very important in using the KSD approach. When the lower non-coverage rate is of primary
concern, the EL, method works the best. The EL interval has non-coverage rates below lower bound
closer to the target value of 2.5%. In addition, its average lower bounds are consistently larger
than others. This is of particular importance in applications, as noted before.

The lower bound from the EL method is highly correlated to the desired lower bound from the
exponential model. Their correlation is about 0.9 for all cases. On the other hand, the correlation
between the bounds from the normal mixture model and the exponential mixture model is about
0.8. We also note that the upper tail of the exponential distribution is much heavier than the
normal distribution. Thus, the normal mixture model based method consistently under-estimates
the variance in the upper tail. This is clearly the reason behind the poor coverage probabilities
above the upper bound. On the other hand, it over-estimates the variance in the lower tail, resulting
in low non-coverage below the lower bound. The EL method picks the shape of the distribution
from the sample, so it is expected to work reasonably well in all situations. However, when there
are too few non-zero observations, the information in the upper tail of the distribution may not
be represented in the sample. As a result, the EL, method will still under-estimate the variance in
the upper tail simply by chance, unless some prior information about the upper tail is known.

Next, we consider the situation when none of the parametric model assumptions are true. In
Table 3, we report the simulation results when the runs are generated from a mixture of 0 and a
Gamma distribution with shape parameter 3 and scale parameter 5/3 such that the mean pu = 5.
Clearly, in this situation, the exponential model performs poorly. The normal mixture model and
the EL, method have similar overall coverage probabilities, and they are close to the target of 95%.
It is also clear that the EL intervals have more balanced non-coverage rates as well as larger average
lower bounds. Thus, we conclude that the EL method is better, albeit the advantage is not as
large as we would like to see.

5.2. Analysis of data from Canadian Labour Force Survey-2000
The simulations in Section 5.1 are based on artificial populations. It would be important to study

the performance of the methods on a real data set. For this purpose, we down-loaded a data
set provided by Statistics Canada through the TriUniversity Data Resources. This data set is



Table 1: Results on 95% confidence intervals under a normal mixture model

Lower and upper non-coverage rates

P Normal Exponential Normal Empirical

Approximation Mixture Mixture Likelihood
0.05 | 0.19 10.46 0.63 055 | 151 435 | 1.57 4.77
0.10 | 0.58 8.65 0.87 055 | 208 414 | 221 4.26
0.15 | 0.86 6.60 0.82 048 | 205 363 | 212 3.53
020 | 1.11 5.59 074 071 | 213 3.07 | 220 3.04
0.25 | 1.37 5.10 0.78 057 | 252 3.03 | 261 287
Average lower and upper bounds
P Traditional Exponential Normal Empirical

Approximation Mixture Mixture Likelihood

0.05 | 0.023 0.579 | 0.092 1.060 | 0.100 0.693 | 0.107 0.687
0.10 | 0.192 0.968 | 0.248 1.386 | 0.275 1.073 | 0.280 1.074
0.15 | 0.398  1.337 | 0436 1.743 | 0.479 1.433 | 0484 1.437
0.20 | 0628 1.697 | 0.646 2.105 | 0.705 1.785 | 0.710 1.790
0.25 | 0.870  2.042 | 0.868 2.455 | 0.943 2.121 | 0.948 2.128

Table 2: Results on 95% confidence intervals under exponential mixture model

Lower and upper non-coverage rates
P Normal Exponential Normal Empirical
Approximation Mixture Mixture Likelihood
0.05 | 0.09 1762 | 1.69 342 | 1.07 1032 | 1.88 11.14
0.10 | 0.23 12.64 | 1.79 3.02 | 1.29 740 | 202 7.13
0.15 | 047 10.99 | 205 332 | 1.29 680 | 216 6.22
0.20 | 051 9.09 2.04 304 | 1.35 567 | 221  5.06
025 | 063 8.49 1.92 311 | 1.32 561 | 200 4.77
Average lower and upper bounds
P Traditional Exponential Normal Empirical
Approximation Mixture Mixture Likelihood
0.05 | -0.020 0526 | 0.079 0.909 | 0.053 0.665 | 0.081 0.664
0.10 | 0103 0.893 | 0.213 1.188 | 0.177 1.121 | 0.215 1.048
0.15 | 0257 1.230 | 0.374 1.493 | 0.335 1.349 | 0.376 1.392
0.20 | 0430 1.552 | 0.551 1.797 | 0.508 1.664 | 0.553 1.718
0.25 | 0618 1.864 | 0.739 2.095 | 0.694 1.968 | 0.741 2.029




from the Canadian Labour Force Survey-2000. The website address is http://tdr.uoguelph.ca, but
there are some restrictions to data access. We took a 10% random sample of the data from the
province of Ontario for the purpose of illustration. We used the number of extra hours worked as
response variable y. Among the 17,415 sampled observations, we have 3,677 non-zero values. The
proportion of non-zero observations is 21%. The mean of the non-zero observations is 92.15 and
the corresponding standard deviation is 74. The histogram (not shown here) indicated that the
exponential mixture model of KSD may be appropriate. The mean of the entire data set is 19.46.

Due to the common practice of rounding off, there are a large number of tied observations in
the data set. If we sample 100 units from it, we may obtain several runs with all observed non-zero
values equal. A sample like this will disable the KSD method under the normal mixture model,
as the sample variance of non-zero values will be zero. To avoid this technical problem, we added
a uniform error to the non-zero values. We generated 10,000 random samples, each of size 100,
from this data set. Since the sampling fraction is less than 1%, we regarded each sample as a set
of independent observations.

The results of the simulation are summarized in Table 4. We note that the traditional normal
approximation interval is again the worst. Using exponential mixture model results in serious
over-coverage. As a result, its lower bound is the smallest, and its use will imply gross under-
estimation of the average extra-hours Canadian worked in a year. The intervals based on normal
mixture model and the empirical likelihood have very close overall coverage rates. However, the
EL intervals are more balanced than the normal mixture model intervals. Consequently, their
non-coverages below the lower bound are closer to the target of 2.5% for 95% ClIs.

5.8. Stratified random sampling

In this section, we consider the situation when the population is divided into two strata, and a
simple random sample is obtained from each stratum. Further, we assume that the strata sample
fractions are negligible so that the observations may be regarded as iid within strata.

We generated samples of size m = 60 and n = 140 from two distributions. The percentage of
non-zero observations ranged from 0.05 to 0.15. In general, we assumed that the second stratum
has higher percentage of zeroes which warranted larger sample size. With two distributions to
be selected, the number of choices is large. We considered only two distributions: mixture of 0
and normal, and mixture of 0 and exponential. We also allowed different distributions in the two
strata. Thus, we considered three different types of populations. The strata weights are chosen as
W1 =04 and W, = 0.6.

We studied the EL method and the method of Godambe & Thompson (1999) for stratified
sampling. The pivotal quantity, proposed by Godambe and Thompson, reduces to

T—T

JWESH/m o+ W3s3/n o+ (W2 /m + W3 n)(7 = 7)?

(12)

in the case of two strata, where 7 = W1 Z,,, + Wag,. The CI is based on the asymptotic normality of
the pivotal quantity (12). The resulting CI is simply an inflated traditional normal approximation
based interval (see Section 6).

Simulation results are given in Table 5 for the EL and the Godambe and Thompson (GT)
methods. Table 5 shows that the GT intervals have lower coverage probabilities in all cases
compared to EL intervals. In addition, EL intervals have more balanced coverages. The average
lengths of the two intervals are close, but EL intervals have larger lower bounds on the average.

6. CONCLUDING REMARKS

For simple random sampling, we considered four methods of constructing confidence intervals for
the population mean when the population contains many zero values. Intervals are based on the



traditional normal approximation, the parametric likelihood (PL) ratios of normal mixture model
and the exponential mixture model and the empirical likelihood (EL) ratio. Godambe & Thompson
(1999) proposed another method based on the asymptotic normality of the pivotal quantity

X -7
i (Xi = 1)

The resulting interval is still centered at X, but its length is increased by a factor of 14+ x7_,, 1/(2n)
relative to the length of the normal approximation interval. Thus, it has higher coverage probability
but it may not be useful when the population is highly skewed.

Many re-sampling methods aimed at improving the accuracy of the confidence intervals have
also been proposed. In general, re-sampling methods have the ability to eliminate the effect of
skewness which can be demonstrated through the Edgeworth expansion (see Hall, 1988). However,
when the sample contains only a few non-zero observations, re-sampling methods are not expected
to be helpful.

Our simulation results on the first three methods are consistent with Kvanli et al. (1998) in
general. The method of Kvanli et al. (1998) has much better coverage properties compared to
the traditional method based on the normal approximation. We also found that the EL method
has some additional advantages: (1) EL method produces more balanced coverage probabilities.
(2) EL method gives a larger average lower bound while maintaining the the non-coverage rate
below lower bound close to the target value of 2.5%. (3) Unlike the normal mixture model, the
method works whether the non-zero observations are tied or not. Appropriateness of the parametric
model assumptions is important for the method of Kvanli et al. (1998), whereas the EL method is
nonparametric.

ACKNOWLEDGMENTS

This research is partially supported by the Natural Science and Engineering Research Council of
Canada. We are thankful to the referees for constructive suggestions.

APPENDIX

In this section, we give a brief description of the algorithm for computing the CIs given by (6)
and a detailed description of the algorithm for computing the Cls under stratified simple random
sampling. Further, we sketch a proof of Theorem 1.

A.1 Algorithm for EL interval: iid case.

It is easy to verify that er,(7) is a concave function in 7 and is maximized when 7 = g,. Let Y{;)
be the largest observation of Y;’s. A simple algorithm for the upper bound is as follows:

1. Let t1 = g, b2 = Yin)

2. If |ta — 1| is small, stop. Otherwise, let 7 = (¢ + £2)/2.

3. Solve (3) by linear search and use (5) to get el, (7).

4. If erp (1) > X%,QJ, set to = 7; otherwise ¢; = 7. Go to step 2.

The algorithm for the lower bound is similar.
A.2 Algorithm for EL interval: stratified random sampling.
For any given 71 and 72 within the feasible range, we could compute the profile log-likelihood by
maximizing the empirical log-likelihood with the restrictions

m k23
E PiZi = T1; E q;Y; — 72
i=1 =1
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in addition to "
Sri=1 > g=1 p>0 g;>0
; =

Using the Lagrange multiplier method, we find that
elm,n(T1, T2) Zlog{l + Mz — 1)} — Zlog{l + Aa(y; — )} —mlogm —nlogn

with A1 and As being the solutions of
- -7 = Y; — T2
0; — = =0 13
;1+/\1$z_7—1) jzzllJr/\z(yj—Tz) (13)
We can then link the profile log-likelihood of T and el,,, (71, T2) by the following simple relationship:
el n(7) = sup{elm n(T1, 2) : Wiry + Ware =7}

To get a more explicit relationship between el,, »(7) and el (71, 72), we further utilize the
Lagrange multiplier method. Let

g(11, 2, 1) = el n(T1, 72) — (Wi + Wors — 7)),

where ¢ is the Lagrange multiplier. We first take the derivatives of g(71, 7, t) with respect to 71,
79 and ¢ and set them equal to zero. Note that A1 and Ay are functions of 71 and 72 in (13). The
first equation dg(m, 72,t)/011 = 0 reduces to

m

N, (s — A
Sy AEmS Ny
— 14+ Az — 1)

where | = 0\ /07 Since
and

we get Ay = Wit/m. Similarly, we get Ay = Wat/n from the second equation dg(r1,72)/d12 = 0.
Consequently,

elmn{T(t)} = elmn{n(t),2(t)}

= - Zlog[l + A {z — ()} - Zlog[l + Xo{y; — m2(t)} — mlogm — nlogn,

i=1 j=1

with 71 (¢), 72(t) defined by (13) by letting A\ = Wit/m and Aa = Wat/n.
According to the above analysis, we can compute the empirical profile log-likelihood function
of 7 by following a few simple steps. Suppose we want to compute el,, »(70) for a given 7.

1. Choose an initial value of ¢ = 0.

2. Let /\1 == Wlt/m and /\2 == Wgt/’l’L

11



3. Solve (13) for 7 and 7.

4. Compute the value of Wiy + Ware. If it is close to 79, then ely, n(70) = elmn(m,T2).
Otherwise, update the value of ¢t and go to step 2.

Note that the values of 1 and 75 are determined by ¢. Hence, they are functions of ¢. Their
derivatives are

dT1 Z (x; —11)2

dt = {1+ Wi(z; —m)t/m}?
and

dra __Wa s (ys = 72)°

dt n2 P {1+ Wy(y; — m2)t/n}2’

Consequently, 7(t) = W11 (t) + Wara(t) is monotone in ¢. Hence, the updating step can be easily
done.

If we are only interested in using the empirical profile likelihood of 7 to construct Cls, the
algorithm can be simplified. We need only solve el n(71(t), 72(t)) = x3_, 1 for two values of #.
The corresponding values of 7(t) will then be our lower and upper bounds of the CI. Again, it
can be easily verified that el {7 (t), 2(f)} is monotone in t. Solving this equation numerically
is simple.

A.3 Proof of Theorem 1:
The proof of Theorem 1 given here is not completely rigorous. We assume, without proof, that

T1(t) = T + Op(m™1?), a(t) = g + Op(n™?),

where Z,, and g, are the sample means, and ¢ solves Wi () + Wama(t) = 70 and O,(-) denotes
order in probability. Under this assumption, and the finiteness of the third moments of X and
Y, we can easily show that t/n = O,(n~'/2). Note that under the assumption that m/n has a
non-zero limit, n and m are of the same order. Hence, we need not distinguish between O(n) and
O(m). For notational simplicity, we put 71 = 71(¢) and 79 = 72(t). Consequently,

T; —T1
14+ m="Wit(z; — 1)

I
NE

1

.
Il

Il
.MS

-
Il
=

(a:i—ﬁ —-m Wltz —T1 (1)
Therefore, we get

I g — Tn) 24 Op(mfl)
= Wit 2 —1
— m - O )
Tm + e + Op(m™7)

where s2 =m™' 37" (@; — Zy,)?. Using similar notation, we also get

Wt
Tz—yn+—252+0( h.

Setting W1T1 —+ W2T2 = T0 — WlE(X) —+ WZE(Y), we get

Wi{zm — E(X)} + Wolyn — E(Y)}
Wiss /m + WasZ /n

L= + O0p(1).
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Hence

erma{T(t)} = 2) log{l+Wit(z; —71)/m}+2) log{l + Wat(y; — 2)/n}
i=1 j=1
2Wit i( ) W2t? m( 2
- T; — T — T; — T
m =1 ' m2 =1 '
2Wat Wit? &
+ n2 (y; — 72) — nzg Z(?Jg — 73)° + 0p(1)
Jj=1 j=1

_ Wn{zn — E(X)} + Wiy, — E(Y)}?
- W2s2/m + W2s2/n op(D),

where 0,(1) denotes that the term goes to zero in probability as n — co.
The conclusion then follows from the fact that Wi {Z,, — E(X)} + Wa{g, — E(Y)} is asymp-
totically normal with mean 0 and variance Wim™'o7 + Win~'o,.
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Table 3: Results on 95% confidence intervals under Gamma mixture model

Lower and upper non-coverage rates

P Normal Exponential Normal Empirical

Approximation Mixture Mixture Likelihood
0.05 | 0.40 9.92 0.83 0.79 | 1.94 427 | 195 4.58
0.10 | 0.77 7.86 098 058 | 225 323 | 226 3.40
0.15 | 0.99 741 091 038 | 209 417 | 226 4.06
0.20 | 0.84 6.27 0.68 048 | 210 380 | 225  3.58
0.25 | 1.32 5.48 091 053 | 235 349 | 255  3.29
Lower and upper bounds
P Traditional Exponential Normal Empirical

Approximation Mixture Mixture Likelihood

0.05 | 0.021 0.496 | 0.079 0.913 | 0.087 0.593 | 0.093 0.591
0.10 | 0.166  0.827 | 0.214 1.195 | 0.236 0.926 | 0.239 0.922
0.15 | 0.072 0.876 | 0.376 1.500 | 0.414 1.230 | 0.420 1.241
0.20 | 0598 1.401 | 0.556 1.809 | 0.608 1.531 | 0.614 1.544
025 | 0749 1.753 | 0.745 2.108 | 0.810 1.820 | 0.818 1.835

Table 4: Results on 95% confidence intervals based on data from the Canadian Labour Force
Survey-2000

P Normal Exponential Normal Empirical
Approximation Mixture Mixture Likelihood
Lower and upper non-coverage rates
0.21 | 0.70 7.25 | 1.30 1.21 | 1.63 4.56 | 2.11 411
Average lower and upper bounds
0.21 | 0.824 28.996 | 10.958 34.577 | 11.189 30.691 | 11.621  31.386
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Table 5: Results on 95% empirical likelihood and Godambe and Thompson confidence intervals
under stratified random sampling

p1, p2: proportions of zero values in strata 1 and 2
i, pu: lower and upper non-coverage rates
Ci, Cy: lower and upper confidence bounds

Empirical likelihood interval Godambe and Thompson interval
P1 P2 PL DPu C) C, length j 2 Pu Cy Cy length
Normal, Normal
0.05 005|181 316 0.18 0.703 0518|053 6.89 0.131 0.635 0.504
0.10 005|233 339 0241 0797 0556 | 068 677 0188 0.731 0543
0.15 005|243 292 0308 0900 0592|098 684 0.255 0.836 0.581
0.10 010|234 315 0439 1.143 0704|102 6.17 0.382 1.073 0.691
0.15 010|324 324 0511 1241 0730 | 1.08 569 0455 1.178 0.723
Exponential, Exponential

0.05 005|166 681 0.145 0.712 0567 | 028 1230 0.071 0.592 0.521
0.10 005|224 597 0191 0.824 0633|034 1092 0117 0.688 0.571
0.15 005|196 625 0245 0937 0692|029 1044 0170 0.785 0615
0.10 010|231 570 0.353 1.162 0.809 | 058 943 0270 1.011 0.741
0.15 0.10 | 3.02 536 0415 1276 0861 | 057 832 0331 1.111 0.780
Exponential, Normal

0.05 005|204 515 0.159 0.717 0558 | 018 10.13 0.089 0.614 0.524
0.10 005|216 470 0212 0804 0592|036 939 0145 0.705 0.560
0.15 005|253 486 0.279 0909 0630|059 862 0214 0.813 0.600
0.10 0.10 | 250 452 0375 1.147 0772 | 054 833 0.298 1.031 0.733
0.15 0.10 | 323 429 0450 1.249 0799 | 058 783 0372 1.136 0.763
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