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It is shown that diffeomorphism are equivalent to time-one maps of one-time
periodic differential equations.  As an application, we show how this is related to
numerical schemes.
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1 Main Result

Counsider a system of autonomous ordinary differential equations in a domain
D c RV
i = f(z) (1.1)
wherez € D C R, f: D — D is C7, for some r > 1 and f(0) = 0.
Let (f, a) denote the flow of (1.1) with (0,4) = a. We assume that D
is bounded and the flow:
p:RxD->D

is well defined and €. Let
BC"={f|f:D— D is C'with |f]» < o0}

here ||- || is the usual €™ norm . The subset of all C" diffeomorphisms in BC"
will be denoted by D”. Observe that the time one map of the flow (1, ) is
in D". Before stating the main result , we would like to point out that if the
flow is being considered on a compact manifold, then the following theorem
is still true.
Theorem 1.1

Suppose that f € BC" and F € D", where r > 1 . Then there exists a
constant & > 0 such that if |F(:) — o(1,-)]l1 < 4, then there exists a C”
non-autonomous time periodic vector field g, g(t,z) = g(t + 1, z), such that
the flow (¢, a) defined by

& =g(t ) (1.2)

satisfies ¥(0,a) = a and (1, a) = F(a). In other words, F(a) is realized as

the time-one map of the flow of equation (1.2).



2 Numerical Schemes

In this section, we will consider the pth order discretization with step size
h > 0 of equation (1.1), where p > 1 and their realizations as maps defined

by flows. In general, such discretization have the following formats:
Znt1 = H(zn) =20+ h®(h,2,), n=0,1,2,--. (2.1)

where @ (h, ) is assumed to be C7 for some r > 1. For example, if ®(h, z} =
f(z), then the scheme given by H in ( 2.1 ) is the Euler’s method. In this
case, if ©(t,a) is the flow of (1.1) satisfying (0, a) = a then one has

p(h,a) = a+hf(a) + O(|R]),

this shows that
lp(h,a) — H(a)| = O(|h)?).

On the other hand, it can be easily scen that

192 (h,0) ~ H'(a)| = O(Jh).

Now consider the time rescaling variable t = h7 and denoting =’ = %,then

equation { 1.1 ) can be transformed into the following form
x’ = hf(z)

with flow {7, a). It is clear that H(a) = n(1,a) + O(Jh!?). Thus, if [h| < 0,
then as a consequence of theorem 2.1 , H{a) can be realized as the time-1

map of a l-periodic {in time 7) differential equation:
z' = hg(r, z).

In terms of the original time variable t, H(z) is realized as the time-h map

of the flow defined by the following equation:

¢
t=g(-,z)

h



For other numerical scheme, it is a consequence of the definition of pth order

approximation that H(a) satisfies the following condition for all z € D:
fo(h,a) — H(a)| < ClhP

where €' > 0 is a constant. Thus, H can be made as close as possible to the
flow itself by taking a small enough step size b > 0. However as stated in
theorem 2.1 that we need C' closeness for the theorem to be valid. Thus ,

we need the following lemma.

Lemma 2.1
Suppose that f(-), H(-) € BC", where r > 2. Then there exists hg, 1 > hg >
0 and C) > 0 such that

D) - A < (22)

forallz € D and h, hg > h > 0.

Theorem 2.2
Suppose that f(-), H(:) € BC", where v > 2. Then there exit hg, 1 > hg > 0

and a 1-periodic differential equation:

. t

such that f(z) = g(0,z) = ¢(1,z) and H can be realized as the time-h map
of the above periodic system.
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