行政院國家科學委員會專題研究計劃成果報告

行政院	図	一安貝賈	予现的	九町	動 放	、木和石	<i>ī</i>	
******	******	*****	*****	****	****	****	*****	ķ
* *	數值方	法與壹	·週期	函妻	发的	研究		*
*								*
*****	*****	*****	****	****	***	****	*****	**
計劃類別: 🗸	個別計劃		各合型言	一劃		•		
計劃編號:NSC	91-211	5-M-032-	-002					
執行期間:91年	-8月1	日至 92 年	F7月 (31 日				
個別型計劃:計	·劃主持丿	、 :張慧	京					
, , , , ,	科會助理		•					
	科會助理	,						
	科會助理		•					
	·同主持ノ		***					
7	1.1 7-11/							
整合型計劃:總	!計劃主持	寺人:						
子	計劃主持	· 寺人:						
	, - ,							
註:整合型計劃	總報告與	具子計劃.	成果報	告請分	- 開網	角印各成	(一冊	
, 彙整一起								
専曲ナン・□	三十 中山	出外担川	4 +					
處理方式:□	기꼬아	可外提供	今ろ					
(請打∨) ▽]一年後	可對外提	供參	<u> </u>				
	兩年後百	丁對外提	供參者	<u> </u>				

(必要時,本會得展延發表時限)

執行單位:淡江大學數學系中華民國 92年10月31日

中文摘要:

在此報告中我們指出若一微分同胚函數與一自治式微分方程式之 週期壹函數夠接近的話,則其可視為一非自治式微分方程式之週期 壹函數. 我們並指出當我們用數值方法來估計自治式微分方程式之 解時,其所得結果往往為非自治式微分方程式之解之現象.

關鍵詞:

微分同胚, 週期函數, 週期式微分方程, 數值方法.

英文摘要:

It is shown that diffeomorphism are equivalent to time-one maps of one-time periodic differential equations. As an application, we show how this is related to numerical schemes.

關鍵詞:

diffeomorphism, time-one map, periodic differential equation, numerical scheme.

1 Main Result

Consider a system of autonomous ordinary differential equations in a domain $D \subset \mathbb{R}^N$:

$$\dot{x} = f(x) \tag{1.1}$$

where $x \in D \subset \mathbb{R}^N$, $f: D \to D$ is \mathbb{C}^r , for some $r \geq 1$ and f(0) = 0.

Let $\varphi(t,a)$ denote the flow of (1.1) with $\varphi(0,a)=a$. We assume that D is bounded and the flow:

$$\varphi: R \times D \to D$$

is well defined and C^r . Let

$$\mathcal{BC}^r = \{ f \mid f : D \to D \text{ is } C^r \text{with } ||f||_r < \infty \}$$

here $\|\cdot\|_r$ is the usual C^r norm. The subset of all C^r diffeomorphisms in \mathcal{BC}^r will be denoted by \mathcal{D}^r . Observe that the time one map of the flow $\varphi(1,\cdot)$ is in \mathcal{D}^r . Before stating the main result, we would like to point out that if the flow is being considered on a compact manifold, then the following theorem is still true.

Theorem 1.1

Suppose that $f \in \mathcal{BC}^r$ and $F \in \mathcal{D}^r$, where $r \geq 1$. Then there exists a constant $\delta > 0$ such that if $||F(\cdot) - \varphi(1, \cdot)||_1 < \delta$, then there exists a C^r non-autonomous time periodic vector field g, g(t, x) = g(t + 1, x), such that the flow $\psi(t, a)$ defined by

$$\dot{x} = g(t, x) \tag{1.2}$$

satisfies $\psi(0, a) = a$ and $\psi(1, a) = F(a)$. In other words, F(a) is realized as the time-one map of the flow of equation (1.2).

2 Numerical Schemes

In this section, we will consider the pth order discretization with step size h > 0 of equation (1.1), where $p \ge 1$ and their realizations as maps defined by flows. In general, such discretization have the following formats:

$$x_{n+1} = H(x_n) = x_n + h\Phi(h, x_n), \quad n = 0, 1, 2, \cdots.$$
 (2.1)

where $\Phi(h, x)$ is assumed to be C^r for some $r \ge 1$. For example, if $\Phi(h, x) = f(x)$, then the scheme given by H in (2.1) is the Euler's method. In this case, if $\varphi(t, a)$ is the flow of (1.1) satisfying $\varphi(0, a) = a$ then one has

$$\varphi(h, a) = a + hf(a) + O(|h|^2),$$

this shows that

$$|\varphi(h, a) - H(a)| = O(|h|^2).$$

On the other hand, it can be easily seen that

$$\left|\frac{\partial \varphi}{\partial a}(h, a) - H'(a)\right| = O(|h|).$$

Now consider the time rescaling variable $t=h\tau$ and denoting $x'=\frac{dx}{d\tau}$, then equation (1.1) can be transformed into the following form

$$x' = h f(x)$$

with flow $\pi(\tau, a)$. It is clear that $H(a) = \pi(1, a) + O(|h|^2)$. Thus, if $|h| \ll 0$, then as a consequence of theorem 2.1, H(a) can be realized as the time-1 map of a 1-periodic (in time τ) differential equation:

$$x' = hq(\tau, x).$$

In terms of the original time variable t, H(x) is realized as the time-h map of the flow defined by the following equation:

$$\dot{x} = g(\frac{t}{h}, x)$$

For other numerical scheme, it is a consequence of the definition of pth order approximation that H(a) satisfies the following condition for all $x \in D$:

$$|\varphi(h,a) - H(a)| \le C|h|^p$$

where C>0 is a constant. Thus, H can be made as close as possible to the flow itself by taking a small enough step size h>0. However as stated in theorem 2.1 that we need C^1 closeness for the theorem to be valid. Thus, we need the following lemma.

Lemma 2.1

Suppose that $f(\cdot)$, $H(\cdot) \in \mathcal{BC}^r$, where $r \geq 2$. Then there exists h_0 , $1 > h_0 > 0$ and $C_1 > 0$ such that

$$\left|\frac{\partial \varphi(h,a)}{\partial a} - H'(x)\right| \le C_1|h| \tag{2.2}$$

for all $x \in D$ and $h, h_0 > h > 0$.

Theorem 2.2

Suppose that $f(\cdot), H(\cdot) \in \mathcal{BC}^r$, where $r \geq 2$. Then there exit $h_0, 1 > h_0 > 0$ and a 1-periodic differential equation:

$$\dot{x} = g(\frac{t}{h}, x)$$

such that $f(x) \equiv g(0,x) \equiv g(1,x)$ and H can be realized as the time-h map of the above periodic system.

References

[1] Chow S.N., Li C. & Wang D., Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press (1994).

- [2] Fiedler B. & Scheurle J., Discretization of Homoclinic Orbits, Rapid Forcing and Invisible Chaos, *Memoris of the AMS.*, **570**, 1-77,(1996).
- [3] Kloeden P. & Lorenz J., Stable Attracting Sets in Dynamical Systems and in Their One-step Discretization, SIAM. J. Numer. Anal., 23, 986-995, (1986).
- [4] Lorenz J., Numerics of Invariant Manifolds and Attractors, Contemporary Math. Vol 172, 185-020,(1994).
- [5] Stoer J. & Bulirsch R., Introduction to Numerical Analysis, Springer-Verlag, N.Y. (1980).
- [6] Scheurle J., Discretization of autonomous Systems and raped Forcing, IMA Volumes in Math. and its Appl., Vol. 63,329-340. (1995)
- [7] Chan W.C. & Wang D.Z. Numerical Computation of Homoclinic Orbits for Flows, Int. J. Bifurcat. Chaos., Vol. 10, No., 12, 2841-2844 (2000)