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Abstract

An n-by-n real symmetric matrix A4 is called completely positive if 4 can
be represented as BB' for some n-by-m {(entrywise) nonnegative matrix B,
where we use B to denote the transpose of B. The minimal value of m in
a BB representation of a given completely positive matrix 4 is called the
completely positive rank of 4 or simply the CP rank of 4 and is denoted
by #(A). In this project we prove that the CP rank of a 5-by-3 completely
positive matrix which bhas at least one zero entry is at most 6.

Key words: Completely positive matrix, CP rank, doubly nonnegative ma-
T trix.

I



1. DMotivation and Aims

An n-by-n symmetric matrix A is called completely positive if 4 can
be represented as BB* for some n-by-m (entrywise) nonnegative matrix B,
where we use B to denote the transpose of B. Alternatively, a completely
positive matrix can be defined as a matrix which can be written as 4 —
bibt + -+ bibt,, where each b; € R" is a nonnegative vector. Then b;’s
correspond to the columns of B in the original definition. The minimal value
of m in a BB representation (or the corresponding rank one representation)
of a given completely positive matrix A is called the completely positive rank
or simply the CP rank of 4 and is denoted by #(A). The main aim of this
project is to treat the following two well-known open problems on completely
positive matrices:

Problem 1. Determine which doubly nonnegative matrices are completely
positive.

Problem 2. Given a positive integer n, determine the value of max{#(A} :
A is n-by-n, completely positive}.

Below is the historical background of the above probleras.

[t is not difficult to see that an n-by-n real symmetric matrix A is com-
pletely positive if and only if the corresponding quadratic form Q(z) = z* Az
can be rewritten as @ = L? + .-+ L2, where L,,... L, are nonnegative
linear functionals on = = (z,...,z,)" In the 1960’s, P.H. Diananda, M.
Hall and M. Newman (see Ref. [10], [15]) began the study of completely
positive matrices from the point of view of quadratic forms. Their results
imply that if 4 is n-by-n, doubly nonnegative (i.e., nonnegative and positive
semidefinite), and n < 4, then we can always write 4 as BB*, where B is an
n-by-n, nonnegative matrix; in other words, A is completely positive. Hall
and Newman [15] also gave an example to illustrate that for n > 5, an n-by-n
doubly nonnegative matrix need not be completely positive. Moreover, they
also proved that if A is n-by-n completely positive, then it is always possible
to write A in the form BB‘, where B is n X m, nonnegative, with m < 27
They raised the question of determining the smallest such m when 7 is fixed.
This is Problem 2 of our project.



Probably, completely positive matrices first found their applications in
block design (see Hall [14]). In [13] Gray and Wilson also pointed out, that
completely positive matrices can find applications in statistics and in a math-
ematics model for energy demand. P. Diaconis [9] also pointed out that
completely positive matrices also arose in the study of the exchangeable
probability distribution of finite sample spaces. Because of the needs from
applications, clearly Problem 1 of our project is also a fundamental question.

The study of completely positive matrices has attracted the attention of
many famous mathematicians, including C.R. Johnson, T.J. Laffey, M. Hall,
R. Loewy, M. Neumann, A. Berman, D. Hershkowtiz, R. Grone, T. Ando,
etc. So far, more than twenty papers have appeared. (Please refer to our
reference list at the end.} In the eighties, completely positive matrices has
been a “hot” topic. The climax occurred in the early nineties, when un-
der the joint work several people {including Berman, Grone, Hershkowitz,
Kogan, etc.), the problem of characterizing completely positive graphs was
completely solved. We call a (undirected) graph G completely positive if ev-
ery doubly nonnegative matrix with graph equal to G is completely positive.
They proved that a graph is completely positive if and only if it does not
contain an odd cycle of length 5 or more.

In this project we have mainly focused ourselves on the following con-
jecture, made by Drew, Johnson and Loewy [12] in 1994. Clearly, if this
conjecture is true, then Problem 2 is completely settled.

Conjecture. If A is n-by-n completely positive, n > 4, then #(A) <

[n?/4].

As evidence for the conjecture, they proved in [12} that if A is n-by-
n completely positive, n > 4, and the graph of A is triangle-free (i.e., it
contains no cycle of length 3), then #(A) < [n?/4].

Two years later, Drew and Johnson [11] showed that the conjecture is
true for every completely positive matrix whose graph is completely positive.
More recently, Berman and Shaked-Monderer {7} proved that the conjecture
is also true for every completely positive matrix A for which the comparison
matrix M{A) is an M-matrix.

It is also worthwhile to mention the following two related results obtained
in (12]:



Theorem A. If 4 is a symmetric nonnegative matriz and G(A) 1s triangle-
free, then A is completely positive if and only of M(A) is an M -matriz.

Theorem B. If 4 is a symmetric nonnegative matriz, G(A) s connected
and M{A) 1s an M-matriz, then A is completely positive and

#(4) < max{|[V{G(A))[. BG4},

where E(G(A)) (respectively, V{(G(A))) denotes the edge set (respectively,
vertex set) of G{A), and for a set S we use |S| to denote its cardinality.

2. Results and Discussions

In this project we obtain the following main result, as new supporting
evidence for the above Conjecture:

Theorem. [f A is a 3-by-5 completely positive matriz which has ot least
one zero entry, then #(4) < 6.

The proof of the Theorem takes more than 11 pages. Below is a sketch
of the ideas of the proof:

Let A = (a;;) € CPs, the set of 5-by-5 completely positive matrices. We
want to prove that if A has at least one zero entry, then #(A4) < 6. Since
the property of being CP and also the CP rank are both invariant under
permutation similarity, we may assume hereafter that a;, = 0.

We denote by RY the set of all nonnegative vectors of R”.

We start _With any rank 1 CP representation of A, say, A = Z?:l bjb;;,
where b; € R, j =1,...,m. Note that for each j, 1 < 7 < m, either the first
or the second component of b; is zero. Let A; = {j: the second component
of b is 0}, and let Ay = {1,2,...,m}\A;. Also let 4, = 37, b8} and
Ay =} e, bib% Then we obtain a decomposition of A:

A=A, + Ay, where A; is CP, i = 1, 2, and the second
{respectively, first) row of A; (respectively, 4,) is zero.

(1)



Since the second row and column of 4, are zero, 4, is permutationally similar
to the direct sum of a 4-by-4 CP matrix and the 1-by-1 zero matrix. But
the CP rank of a 4-bv-4 CP matrix is at most 4, so it follows that we have
#{4,) < 4. For a similar reason, we also have #{.4;) < 4. Thus, bv a simple
argument we have #(4) < 8, but this is still far from our target.

We shall make use of the following observations.

By the support of a vector z, denoted by supp(z), we mean the set of
indices associated with the nonzero components of .

Observation 1. Let u, v € R}. If supp(v) C supp(u), then there exist
i, v € RY, satisfying wu' + vv* = 4a' + 99, such that supp(u) = supp(a},
and for some permutation matrix P, the vectors Pu, Pu, Pv and P9 can
be partitioned identically so that they have the following sign patterns:

[+ ] [+ [+ ] N
0
+
+ =]+ S+ SR e
Py=1t 1141, Pev= T3, Pu=|_"_|, and Po = |—/|,
+ 0 + +
il 0 . x
0 0 0 0
0 | | 0 | | 0 | L 0]

where the third group (in the partition) may be empty, the second group is
empty if supp(u) = supp(v), and the first group of P7 has at least one 0 and
may contain all ('s.

This can be done by applying a procedure, which first appeared in Hall
[14, proof of Lemma 16.2.1] in the context of a completely positive quadratic
form for the special case when u and v have the same support. We shall refer
to it as the generalized Hall procedure, or simply the GH procedure.



Suppose u = (uy,...,uy) and v = (vy,...,v,)". Then for any real number
f, we have

Uy U
Uy Ug Ur Uy e
1 2 U
wue! +wvvt=| | RhRy o
; : Uy Uz - Uy
Uy Un

cosfl -sind
sinf  cosf
supp(u), each of the vectors (uy, %), ..., (Un, vn)" is of one of the following
forms (+,+)¢, (+,0)¢ or (0,0)®. The action of Ry on these vectors is to
rotate all of them counterclockwise by the same angle 8. (In case supp{u) =
supp(v), we may also use a clockwise rotation.) We increase # from zero
gradually until it first happens that one (or more) of the vectors of the
form (+,+)" becomes one of the form (0,+)". Then the resulting vectors
all remain nonnegative, and vectors of the form (+,0)" now take the form

where [y denotes the rotation matrix { Since supp(v) <

(+, +)t Denote the corresponding value of 6 by 6y, and let @ = {4y, ..., @,)"
and @ = {0;,...,7,)" be the vectors given by:
Uy Up o Up U Uz o Uy
R, v e “ 4 i 7
1 V2 Un Uy U2 Un

It is easy to check that we have uu' + vv' = @4@! + 09%, and the vectors @, ¥
have the desired sign patterns.

Observation 2. Let 4 € CP, and let § € R™™ be such that § is invert-
ible and S~! > 0. Let B = SAS'. Then, if B € CP,, we have #(A) < #(B).

This is, of course, an obvious known observation {in which it suffices to
assume A € R™"). It will be used several times in this paper. Asin [1, proof
of Theorem 2.6] we shall use S that describes an elementary operation, or
more precisely S will have the form S = I, — aE};, where a > 0, 1 # j, and
E;; denotes the n-by-n matrix with 1 at its (¢, 7) position and 0 elsewhere.
It is easy to see that for such S, S~! exists and is nonnegative.

Observation 3. Let A = (a;;) € CPs be such that a;; = 0. Consider
a decomposition of A as given by {1). Suppose that for some i, 3 < 7 < 5,

0



and some a > 0, the matrix S = [5 — aF; satisfies 54,5 € CP5. Then
SAS* € CP;. (If we replace E and A, respectively by £, and A4, the
assertion still holds.) :

This is in fact quite obvious. The congruence we perform amounts to
multiplying row 2 by -« and adding it to row i, and doing the corre-
sponding column operation. This does not change A, at all, so we have
SASY = 545"+ 54,8 = A, + 54,8 Thus, SAS! is a sum of two matri-
ces in CP;. ‘

We shall also need the following lemmas:

Lemma 1. Let B = (b;) € DNN,, n > 2. Suppose that for some r #
s, L < r, s < n, the support of row v is nonempty and is o subset of the
support of row s. Then there exists o« > 0 such that for § = [, — aF,,,
B = S5BS*' € DNN,, and has the property that the support of its row s 1s a
proper subset of that of the corresponding row of B.

Lemma 2. Let .
Pui P2 iz P
p_ | Pr P ¢ 0
P13 0 pas pss
Pra 0 paq Dpyy

be a rank 3 DNN matriz with p1o > 0. Then #(P) = 3.

'To prove our theorem, we start with the decomposition (1}, and use Ob-
servation 3 repeatedly and systematically to obtain more 0’s in the (trans-
formed) matrices A, and A,. In view of Observation 2, if we can show at
the end of this process that the transformed matrix A has CP rank 6 or less,
then so does the original A. The remaining argument will take more than
seven pages. We omit the details.

3. Self-evaluation of Performance

This project has been carried out pretty well. As described above, we
successfully proved that the Conjecture due to Drew, Johnson and Loewy
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is true also for the case when A4 is a 5-by-5 completely positive matrix with
at least one zero entry. If it were true that every 3-by-5 doubly nonnegative
matrix was completely positive, then by applying a suitable congruence (see
our Lemma 1}, we could reduce a 5-by-5 completely positive matrix all of
whose entries are nonzero to a doubly nonnegative, and hence a completely
positive matrix with at least one zero entry. Then by cur main Theorem {and
Observation 2), it would follow that the conjecture was true for ail 4 ¢ CPs.
Unfortunately, for n > 5, not every n-by-n doubly nonnegative matrix is
completely positive. So we have not yet fully verified the conjecture for the
case when n = 5.

The work done in this project is included in a joint paper with Raphael
Loewy [20] and will appear in Linear Algebra and Its Applications.

Recently, we learned that Francesco Barioli has found a counter-example
of the above Conjecture for the case n = 6. So Problem 2 of our project
remains an open problem.

Because of the lack of time, we have not done much towards Problem 1.
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GRAPHS FOR CONE-PRESERVING MAPS REVISITED

Raphael Loewy

Department of Mathematics
Technion
Haifa 32000, Israel

and

Bit-Shun Tam

Department of Mathematics
Tamkang University
Tamsui, Taiwan 25137, R.O.C.

Abstract. Let K be a proper (ie., closed, pointed, full convex) cone in
R" and let A be an n-by-n real matrix that satisfies AKX C K. Let
(£, P{A, K)) denote the digraph with vertex set £ consisting of the ex-
treme rays of K such that (¥}, E2) is an arc if and only if By C ®(AE)),
where ®(S) denotes the face of K generated by S. We show that the
K-irreducibility or K-primitivity of A is completely determined by the
digraph (&, P(A, K)) together with a knowledge of when a given finite col-
lection {Ey,..., E;} of extreme rays satisfies Ey V-V E; = K. We treat
the problem of determining the exponent of a K-primitive matrix A. We
also touch upon the question of when a given digraph G allows (or re-
quires) the existence of a (K-irreducible or K-primitive} matrix A € 7(K)
such that (£,P(4, K)) = G, with K being fixed or not fixed. Some open
questions are also posed.

1. INTRODUCTION AND STATEMENTS OF MAIN RESULTS

We assume a basic knowledge of cones. For references, see [Bar 2].

Let K be a proper cone in R". Let n(X) denote the set of all n-by-n real matrices
A that satisfy AK C K. In [B-T] and [T-B], for any A € n(K), four directed graphs
associated with A are introduced by Barker and Tam as follow: Let £ denote the



set of all extreme rays of K, and let F' denote the set of all nontrivial faces of K.
If F,G € F', we say there is a P-arc from F to G if ®(AF) O G, and an Z-arc
from F to G if ®(({ + A}F) 2 G, where ®(S) denotes the face of K generated by
the subset S. Let P and Z denote the set of P-arcs and Z-arcs respectively. Then
(F',P) (respectively (F',Z)) denotes the directed graph with vertex set F* and arc
set P (respectively, T). If necessary, we write F'(K), P{A), P(4, K) etc. to indicate
the dependence on K, on A, and on A and K respectively. The digraphs (£, P) and
(£,1) are defined in a similar manner. If K equals the nonnegative orthant R?, then
£ = {D(e1),...,0(en)}, where e, ..., e, are the standard unit vectors of R®, In this
case, (P(e;), ®(e;)) is a P-arc if and only if a;; > 0; hence, we can identify (£, P)
with G(A”), where G{A) is the usual digraph associated with the square matrix A.

A matrix A € #(K) is said to be K-irreducible if A leaves no nontrivial face
of K invariant, A is K -positive if A(K\{0}) C int K and is K-primitive if there
15 a positive integer p such that AP is K-positive. If A is K-primitive, then the
smallest positive integer p for which AP is K-positive is called the ezponent of A and
is denoted by v(A). '

It is well-known (see, for instance, [B-R]) that a nonnegative matrix A is irre-
ducible if and only if its digraph G(A) is strongly connected; A is primitive if and
only if G(A) is strongly connected and the greatest common divisor of the lengths
of its circuits equals 1. In contrast, in [B~T] it is proved that, for any 4 € n(K),
the K-irreducibility (respectively, K-primitivity) of A is equivalent to the strong
connectedness of the digraph (F',Z) (respectively, (F', P)). The following diagram
summarizes the connections between the strong connectedness of the four digraphs:

(€, P} is strongly connected (F',P) is strongly connected

4 i
(£,T) is strongly connected = (F',7) is strongly connected

In the subsequent paper [T-B], it is proved that, loosely speaking, the phe-
nomenon of irreducibility of operators being determined by the extreme rays alone
is characteristic of simplicial cones. More specifically, the following are obtained:

Theorem A. K is simplicial if for any A € n(K), (£, P(A)) is strongly con-
nected whenever A is K-irreducible.

Theorem B. Suppose that K is a 2-neighborly proper cone. Then K is sim-
plicial if, for any A € 7(K)}, (£,Z(A)) is strongly connected whenever A is K-
irreductble.



Here we call a proper cone K 2-neighborly if, for any two extreme vectors z,, zs €
K, z1 + 72 € OK. Actually, Theorem B can be strengthened slightly by replacing
“K-irreducible” by “K-primitive”; the proof is just a minor modification of the
original proof for Theorem B as given in [T-B].

It is well-known that if K is a proper cone [respectively, polyhedral (proper)
cone| in R”, then w(K) is a proper cone [respectively, polyhedral cone] in the space
of n-by-n real matrices (see [S-V] or [Tam 3)).

In [Niu] Niu considered the exponents of K-primitive matrices on a polyhedral
cone K. We summarize his results in the following:

Theorem C. Let K be a polyhedral cone, and let A, B € w(K).

(1) (£,P(A)) = (&,P(B)) if and only if ®(A) = ®(B).

(1) If (£, P(A)) is a subdigraph of (£, P(B)) and if A is K-primitive, then so0 is
B and we have ¥{B) < v(A).

(iii) If ®(A) = ®(B), then A and B are both K -primitive or both not K -primitive,
and if they are, then ¥(A) = v(B).

Theorem D. Let K be a polyhedral cone with m extreme rays, and let A be
K-primitive. If the digraph (€, P) is strongly connected and s 1is the length of the
shortest circuit in (£, P), then v(A) < m + s{m - 2).

In Theorem D, by choosing K = R} one obtains n+ s(n — 2), the classical upper
bound for ¥(A} due to Dulmage and Mendelschn [D-M]. By setting s = n - 1, one
also recovers the exact general upper bound {(n — 1)% + 1, due to Wielandt [Wie] for
exponents of primitive matrices of order n.

In this paper we continue the study of (di)graphs of a cone-preserving map and
their connections with K-irreducibility and K-primitivity.

For an n-by-n nonnegative matrix A, clearly the digraph (£,P(A4)) and the
relative position of A in #(R}) (or equivalently, the face ®(A)) determines each
other (as they are each determined by the zero-nonzero pattern of A). Theorem C(i)
tells us that the same is true when the underlying cone K is polyhedral. However,
when K is a general proper cone, the situation is more complicated, as we will show
in this paper.

For a proper cone K, we use cly to denote the composite map dx-odg, where dg
denotes the duality operator of K. For the necessary background knowledge of the
duality operators (of K and of 7(K)), we refer the reader to [Tam 2,3]. Putting it in
another way, the set clg (®(z)) is equal to the smallest exposed face of K generated



by z; clg(®(z)) equals K if z € int K and equals the intersection of X with all the
hyperplanes which support K at z if z € 0K,

For convenience, we also use Ext K to denote the set of nonzero extreme vectors
of K.

Theorem 1. Let K be a proper cone, and let A,B € n(K). Consider the fol-
lowing conditions:

{a) ©(4) C &(B).
(b) (£,P(A)) is a subdigraph of (£, P(B)).
(¢} For allz € Ext K, ®(Az) C ®(Bx).
(d) For allz € K, ®(Az) C ®(Bz).
(e} (F',P(A)) 15 a subdigraph of (F', P(B)).
(f) Clﬂ’{K (@(A)) C clary((B)).

Conditions (b)-(e) are equivalent and they always imply condition (f) and are implied
by condition (e).

By a simple foce of (K) we mean a face of the form 7y ¢ for some faces F, G
of K, where g = {A € n(K) : AF C.G} (see [Tam 3]).
By Theorem 1 we immediately obtain

Corollary 1. Let K be a proper cone, and let A, B € n(K). Consider the
following conditions:

(a) ®(4) = 2(B)

(b) (£, P(4)) = (€, P(B).

(c) For allz € Ext K, ®(Az) = ®(Bz).
(d) For allz € K, ®(Az) = ®(Bz).

(&) (F,P(4) = (F,P(B)).

(f) clr K)@(A)) = clrixy (2(B)).

Conditions (b)-(e) are equivalent and they always imply condition (f) and are implied
by condition (a).

Remark 1. For the conditions (a}-(f) of Theorem 1, condition {a) implies con-
dition (d) for all pairs of matrices A, B € w(K) if and only if every face of #(K) can
be written as an intersection of simple faces (see [Tam 3, Corollary 4.7]).
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Among the four digraphs associated with A in 7(K), the digraph (£, P(A, K)) is
the simplest one, as it has the fewest vertices and arcs. Moreover, it reduces to the
usual digraph (but with the direction of arcs reversed) in the nonnegative matrix
case. It would be nice if one can capture the other three digraphs from (£, P(A4, K));
then we need only work with this digraph. The equivalence of conditions (b} and
(e) in Corollary 1 suggests that this should be feasible. Indeed, we need to have
only a knowledge of the inclusion relations between the faces of K, i.e., to know K
up to combinatorial equivalence.

Theorem 2. Suppose the digraph (F',P(I,K)), or equivalently the inclusion
relation between the faces of K, is given. Then from the digraph (F',P(A, K)) one
can determine the digraph (£, P(A, K)) and conversely. When either one of the two
aforementioned digraphs is known, one can also determine the digraphs (£,Z(A, K))
and (F',Z(A, K)) (but not conversely).

According to {Tam 3, Corollary 3.4, if A, B € n(K) satisfy cly(x)(®(4)) C
clrr)(®(B)), and if A is K-irreducible, then B is also K-irreducible. For K-
primitivity, we can prove a similar result. Making use of it, we can complete the
result of Theorem C, parts(ii) and (iii).

Theorem 3. Let K be a proper cone, end let A, B € n(K).

(1) If clyx)(®(A)) C clox)(®(B)) and A is K-primitive, then B is also K-
primitive and we have y(B) < v(A).

(ii) If cleqiy)(R(A)) = clogr)(P(B)), then A and B are both K -primitive or both
not K -primitive, and if they both are, then v(A) = v(B).

For a proper cone K, we say K has finite exponent if the set of exponents of
K-primitive matrices is bounded above; then we denote the maximum exponent
by v(K). This concept has some connection with the known concept of critical
exponent of a norm. In {B-L, p.66], an example of a norm in R? for which the
critical exponent does not exist is provided. Borrowing the example, one can readily
construct a proper cone in R® which does not have finite exponent. (See our Example
7.) However, if K is a polyhedral cone, then w(K) is also a polyhedral cone. As
such, 7(K) has finitely many faces. By Theorem C(iii), K-primitive matrices that
belong to the relative interior of the same face of 7{K) all have the same exponents.
Hence, there are finitely many values for y(A), as A runs through all K-primitive
matrices. This establishes the following:



Corollary 2. Every polyhedral cone has finite ezponent.

For simplicity, we call a strongly connected component of a digraph a strong
component. We call a strong component final if there is no arc that issues from the
strong component and enters another strong component.

Theorem 4. Let K be a proper cone and let A € n(K). In order that A is
K -irreducible it is necessary and sufficient that the following conditions are both
salisfied

(a) For any final strong component C of (€, P), the join of all extreme rays which
form the vertices of C s K.

(b) For any = € Ext K, if the vertez ®(z) has no access to a final strong
component of (£, P), then the cone generated by all vertices of (£, P) which have
access form ®(z) intersects int K.

Theorem 5. Let K be a polyhedral cone and let A € n(K). In order that A
is K -primitive, it s necessary and sufficient that for any final strong component
C of (£,P(A, K)), either C is a primitive digraph and the join of oll extreme rays
which form the vertices of C is K, or C is cyclically m-partite with ordered partition
1y Em for V(C) for some m > 1 such that the join of all extreme rays in some
(or, each) &, 1 < j<m, is K.

By Theorems 4 and 5 we can say that the K-irreducibility or K-primitivity of 4
is completely determined by the digraph (£, P(A, K)) together with a knowledge of
when a given finite collection {Ey, ..., E;} of extreme rays satisfies £1V-- VE; = K.

It is useful to introduce the concept of local exponent. For any A € n(K), not
necessarily K-primitive or K-irreducible, and any 0 # z € K, by the local exponent
of A at z, denoted by (A, z), we mean the smallest positive integer k& such that
AFz € int K. If no such k exists, we set v(A, z) equal co. Clearly, A is K-primitive
if and only if the set of local exponents of A is bounded above; in this case, v(A4)
is equal to the maximum local exponent. By the work of the early paper [Bar 1],
we also know that the K-primitivity of A is equivalent to the apparently weaker
condition (which is also the original definition adopted by Barker for K-primitivity)
that all local exponents of A are finite.

Theorem 6. Let A € n(K) and let 0 # z € K. Denote by £(®(x)) the set of all
extreme rays that lie in ®(z). Forany S C £, let A(S) denote the set {E € £: (G, E)
is a P-arc for some G € 8} and write A*(S) for A(A*(S)), k =2,3,.... Then
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Y(A, z) is finite if and only if there is a positive integer k such that the join of all
extreme rays that belong to A*(E(®(x)) equals K. If such k exzists, then the least
possible value of k is equal to v(A, ).

Theorem 7. Let K be a polyhedral cone, and let A be K-primitive. Suppose
that the digraph (£, P(A)) is strongly connected and cyclically p-partite with ordered
partition &y, ... & for & for some p > 1. For j = 1,...,p, let my,n; denote
respectively the cardinality of £; and the dimension of the polyhedral cone generated
by the vectors that belong to the extreme rays in £;. Also let s denote the length of
the shortest circuit in (€, P(A}). Then y(A) < max;<;j<,(pm; + s(n; - 2)).

In Theorems 4, 5 and 6, besides given the digraph (£,P(A)), we also assume
that it is possible to determine whether any given finite collection of extreme vectors
T1,...,Tp satisfy z1 -+ -+, € int K. Certainly, if K is given up to combinatorial
equivalence, then the latter can be determined. In fact, we have the following:

Theorem 8. Let K|, K, be proper cones each with a bijective duality operator.
Then K and Ks are combinatorial equivalent if and only if there exists a bijection
@ E(K1) — E(Ky) such that for any positive integer p and any E,,.. | E, €
E(Ky), Exv .-V E, =K if and only if o(E) V-V p(E,) = K,.

2. PROOFS

Proof of Theorem 1. (b)==-(c}: Consider any v € Ext K. If Az = 0,
then clearly ®(Az) = {0} € ®(Bx). Otherwise, we can write Az = y; +--- + y,,
where y1,---,y, € Ext K. Then, for j = 1,...,7, (®(z), ®{y;)) are P(A)-arcs,
and by condition (b) they are also P(B)-arcs, i.e., 11,...,y, € ®(Bz). So we have
Az € ®(Bz), or equivalently, ®(Az) C ®(Bz).

(¢) == (d): Consider any 0 # z € K. We can write £ = z; + - -+ + x,, where
zy,...,2, € Ext K. By condition (c), for each i = 1,..., s, there exists o; > 0 such
that Az; < o;Bz;, where ¥< denotes the partial ordering of R™ induced by K. Let
o = max{ay,...,a:}. Then & > 0 and we have Az < aBx, so ®(Az) C ®(Bz).

(d) = (e): Suppose (F,G) is a P(A)-arc. Take any z from ri F, the relative
interior of . Then F = &(z) and we have

G C ®(AF) = ®(Az) C ®(Bz) = B(BF).
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where the inclusion holds by condition (c). So (F,G) is also a P(B)-arc.
(e} == (b): Obvious.
This establishes the equivalence of conditions (b)—(e).
The implications (a) = (d) == (f) are known and are not difficult to show (see
[Tam 3]). n

Proof of Theorem 2. If we are given the digraph (F', P(A, K)) and (F', P(I,
K)), we can determine the digraph (€,P(4, K)) as follows: The set £ consists of
precisely all those elements £ € F’ for which there is no FF € F', F # E, such
that (E, F") is an arc of (F',P(I,K)). For any E\, E; € &, (B, E,) is an arc in
(£,P(A, K)) if and only if (Ey, Ep) is an arc in (F',P(A, K)). Conversely, sup-
pose we are given the digraph (£, P(A, K)). Consider any F € F'. We want to
determine all those faces G € F' for which (F,G) is a P(A, K)-arc, or equivalently,
®(AF) 2 G. 1f x € Ext F, then from the digraph (£, P(A, K)), we can deter-
mine all the extreme vectors of ®(Az). By elementary properties of faces (and of
a cone-preserving map), one can readily show that &(AF) is equal to ®(S), where
S = [JExt ®(Az), where the union is taken over all z € Ext F. (Note, how-
ever, that ®(AF) may contain extreme vectors that are not in S.) The vertex
®(AF) of (F',P(I, K)) can be captured by the following property: for any y € 9,
(P(AF),®(y)) is an arc of (F',P(I,K)), and there does not exist H € F' with
the same property such that (®(AF), H) is an arc of (F',P(I,K)). Then for any
G e F', (F,G) is a P(A, K)-arc if and only if (§(AF), G) is an arc of (F', P(I, K)).
So from the digraph (£,P(A4, K)) (and (F',P{I,K))) we can obtain the digraph
(F',P(A, K)). Similarly, from (£,P(A, K)) we can also determine the digraphs
(£.I(A,K)) and (F',Z(A, K)). [

Proof of Theorem 3. (i) First, we contend that for any positive integer 7,
we have A7 € clyx)(®(B?)). We proceed by induction on j. For j = 1, this
nolds by our assumption. Consider any j > 2 and suppose that we already have
ATV € clpry(®(B771)). By [Tam 3, Theorem 3.2, the latter condition implies that
we have A7z € clg(P®(Bi~'z)) for all z € K. Then, by [Tam 3, Theorem 3.3(b)
and Theorem 3.2], we have A%z € clg(®(AB'z)) C clg(®(Biz)) for all z € K,
and by [Tam 3, Theorem 3.2] again, we have A7 € clyx)(P(B)). This proves our
contention.

Now let -y be the exponent of A. Then A" is K-positive. But by our contention
we have A7 € cly(ky(B"), so necessarily B” is also K-positive. This proves that B
is K-primitive and v(B) < y(A).



Part (ii) clearly follows from part(i). |

[Before coming to the proofs of Theorems 4 and 5, I would like to point out that,
now | have some reservations on the validity of these results for a proper cone K.
(If K is polyhedral, I have no doubt that the results are correct.) In the proofs, we
assume that if () is any vertex in (£, P), then there is a path from ®(z) to some
vertex that belongs to a final strong component. If (£, P) is a finite graph, which is
the case if K is polyhedral, certainly there is no problem. But for a general proper
cone K, (£,P) may have infinitely many extreme rays. Maybe the assertion is still
correct, because K is of finite dimension. But it requires a proof. Next, it is well-
known that every finite strongly connected digraph is either primitive or cyclically
m-partite for some integer m > 2. I am not sure whether the corresponding result
still holds for an infinite strongly connected digraph, or in particular for a strong
component of (£,P). In (the statement and the proof of} Theorem 5 I have already
assumed that the answer to the latter question is in the affirmative. Also, in parts of
the proofs, [ need to consider the cone C generated by extreme vectors that belong
to the vertices of some final strong component. It is true that the cone C is invariant
under A. But I am not sure whether C has to be closed.]

Proof of Theorem 4. “Only if”: Suppose that there exists a final strong
component C such that the join of all extreme rays which form the vertices of C is
not equal to K. Let ' denote the cone generated by the extreme rays that form the
vertices of C. Consider any z € Ext C. Since A is K-irreducible, Az is a nonzero
vector of K and so it can be written as a positive linear combination of certain
extreme vectors of K. Notice that if one of the extreme vectors which appears in
this representation lies outside C, then in the digraph (£, P(A)) there must exist an
arc from ®(z) to some vertex not belonging to €, which contradicts the assumption
that C is a final strong component. Hence, each extreme vectors that appear in the
representation of Az belongs to C; so Az itself also belongs to C. Since this is true
for each extreme vector z of C, we must have AC C C.

Since the join of all vertices of C is not equal to K, we have C C dK. But C is
invariant under A, so ®(C) is a nontrivial A-invariant face of K. This contradicts
the assumption that A is K-irreducible.

“If” part: To prove that A is K-irreducible, it suffices to show that I + A is
K -primitive, or equivalently, to show that for any x € Ext K, there exists a positive
integer m such that (/ + A)™z € int K.

Consider any ®(z) € £. Clearly there exists a path in (£, P) from ®(z) to some
vertex ®(y) that belongs to a final strong component C of (£,P). Hence, there
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exists a positive integer p such that y € ®(A”z). Let C denote the cone gener-
ated by the extreme rays that form the vertices of C. As done in the proof of the
“only if” part, we have AC C C. Indeed, Alspan ¢ is irreducible with respect to
C, as (£(C), P(Alspanc, C)) equals C and C is strongly connected. So, there exists
a positive integer g such that (I + A)%y € ri C C int K, where the last inclu-
sion holds by our assumption on the strong components of (£,P). Thus, we have
({ + APz € int K, as desired. This completes the proof. B

By abuse of language, for any 7 C £(K), we shall use (7"} to denote &{|J E),
where the union is taken over all extreme rays £ € T.

The proofs of Theorem 5 and 6 depend on the following:

Lemma 1. Let K be a proper cone, and let A € n(K). IfF € Fand T C & are
such that F = ®(T), then ®(AF) = ®(A(T)), where A(T) has the same meaning
as defined in Theorem 6.

Proof. For any E € A(T), by definition, there exists £’ € T such that (E', F)
is a P(A)-arc, i.e., E C ®(AE'). But ®(T) = F, so we have E C ®(AF). This
establishes the inclusion A(T) C £(®(AF)), and hence also ®(A(T)) C P(AF).

To prove the reverse inclusion, let £, ..., Ex € T besuch that F' = FE,V---V E,.
Then

B(AF) = VI O(AE)
= VL. o(A{E})
= ®A{EL,...,E})
C ®(A(T)),

where the second equality holds as it is clear that for any E € £, A(E) = £(®(AE)).
This completes the proof. [ |

Proof of Theorem 5. “If” part: To prove that A is K-primitive, it suffices to
show that for any = € Ext K there exists a positive integer [ such that A'z € int K.
Consider any r € Ext K. As shown in the proof for the “if” part of Theorem 4,
there exists a positive integer p such that ®{APz) D ®(y} for some extreme ray ®(y)
which is a vertex of some final strong component C of (£,P). As in the proof of
Theorem 4 we use C to denote the cone generated by the extreme vectors that belong
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to extreme rays in C. As already done in the proof of Theorem 4, Algpan ¢ must
be C-irreducible. If the digraph C is primitive, then clearly Ajspan ¢ is C-primitive,
and so there exists a positive integer ¢ such that A% € ri C C int K, where the
last inclusion follows from our assumption on the final strong components of (£, P).
But then we have ®(AP*g) D ®(A%y) = K, i.e., AP 7z € int K, as desired. So
it remains to consider the case when C is cyclically m-partite with m > 1. By our
hypothesis, there is an ordered partition &, ..., &, for £(C) such that for some j,
1 < j < m, the join of all extreme rays in &£; is K. Since C is strongly connected,
there is a path in {£,P) from ®(y) to &(u) for some vertex ®{u) € &;. Hence,
there exists a positive integer ¢ such that ®(A%) O ®(u). From the known theory
of strongly connected digraph (see [B-R, ?)), there exists ro € 7, such that for
all 1 € Zy, r > 1y, there exists a directed walk of length rm in C from ®(u) to
any vertex of £;. But the join of all extreme rays in &; is K, so this means that
P(A™™u) = K. Thus, we have APte+omy ¢ int K, as desired.

“Only if” part: Assume to the contrary that there exists a final strong compo-
nent C of (£, P) which is m-cyclic and with the ordered partition &, ..., &, for £(C)
such that the join of all extreme rays in some &; is not equal to K. (If C is primitive,
then m = 1 and our argument still covers this case.) Take any ®(z) from &;. Since
C is a final strong component and is m-cyclic (and for any positive integer k£ and
any 8§ C &, A*(S) consists of precisely all those E € £ for which there is a directed
walk of length & from some vertex in § to E), clearly we have A™ (£{®(x)) C &;
for all positive integers r. By Lemma 1, this implies that A™z € ®(&;) C 3K for
all positive integers r, where the inclusion follows from our assumption on £;. This
contradicts the K-primitivity of A. n

Proof of Theorem 6. Consider any 0 # z € K. Applying Lemma 1 with
F =&z} and T = £(®(x)), we obtain ®(Az) = P(A(E(®(x)))). Proceeding induc-
tively and using Lemma 1 repeatedly, we can show that ®(A%z) = ®(A*(£(P(x))))
for all positive integers k. Thus, A*z € int K if and only if ®(A*(£(®(z)))) = K,
or if and only if the join of all extreme rays in A*(£(®(x))) equals K. Hence our
theorem follows. |

The proof of Theorem 7 depends on the following:

Lemma 2. Let K be a proper cone in R" (n > 2), and let A € n(K). Assume
that the digraph (£, P(A)) is strongly connected. If there 1is a positive integer | such
that A' is K -irreducible and there is a closed directed walk in (€, P) of length [, then
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A 15 K-primitive. If, in addition, K is a polyhedral cone with m extreme rays and
s 1s the length of the shortest circuit in (€, P(A)), then v(A) < m+ s(n — 2).

Proof. Suppose that ®(z,),...,®(z,) form the distinct vertices of a closed di-
rected walk of length [ in (£,P). (Note that ¢ < I, where the equality need not
hold.)

Claim: For any j, 1< j <g, A(”’l)’:}:j €int K.

Proof of Claim: Without loss of generality, consider j = 1. Since there is a
(closed) directed walk of length ! from ®(z;) to itself, we have ®(Alz)) D ®(x,).
Applying the powers of A successively to both sides, we obtain an increasing chain
of faces:

®(z,) C ®(Alz;) C ®(A¥2) C -

For any positive integer & for which ®(A%*~VDig) £ K| by the K-irreducibility of
Al, we have the strict inclusion ®(A%Vz;) C ®(A*z,) and hence dim (A" z,) >
dim ®(A*-11)11. But, to begin with, dim ®(z;) = 1, so we must have dim ®(A~ g} =
n, Le., ANy eint K,

Next, we show that for any z € Ext K, there is a positive integer p (depend-

ing on z) such that A’z € int XK. Consider any z € Ext K. Since (£,P) is
" strongly connected, there is a path, say of length w, from ®(z) to one of the
vertices ®(zy),...,®(z,); say, ®(z;). Then we have ®(A¥z) O &(zx;) and hence
Avtin=Ulp < int K. Since each nonzero vector of X can be written as a sum of ex-
treme vectors, from the above, 1t follows that for any 0 # z € K, there is a positive
integer p such that A”z € int K, i.e., all local exponents of A are finite. By [Bar 1]
it follows that A is K-primitive.

Last Part. Since A is K-primitive, all positive powers of A, and in particular
A’, must be K-irreducible. Now repeat the above argument by replacing the closed
directed walk of length [ by a circuit of shortest length. Then for any vertex ®(y) that
lies in the shortest circuit, we have A™ D%y ¢ int K and hence also AMH—2)sy ¢
int K, as m+ (n—2)s > (n — 1)s. Moreover, for any vertex ®(z) that lies outside
the shortest circuit, there is a path of length w < m — s from ®(z) to one of the
vertices that belong to the circuit. So we have

Am+(nﬁ2)s$ — Amfs—w(A(n—l)s (Aw.'L‘)) cint K.
This shows that y(4) < m + s(n — 2). n

Proof of Theorem 7. For each j = 1,...,p, let C; denote the polyhedral
cone generated by the vectors that belong to the extreme rays in &;. Clearly, if
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®(y) € &, then Ay can be written as a positive linear combination of extreme vee-
tors of K that belong to the extreme rays in A(®(y)) and hence in £,,, (where &,,,
is taken to be &); that is, Ay € Cj;,. Since this is true for each extreme vector
y of C;, we have AC; C Cj,;, and hence AP|gpane; € 7(C;) for j = 1,...,p. Note
that the digraph (£(C;), P(AP|span c;)) has vertex set &;, and for any E, E, € &,
(Ey, Ey) is an arc if there is a path in (£, P(A, K)) of length p from E; to E;. As
£; is one of the sets in the ordered partition of £, from the theory of strong con-
nected digraphs, we know the digraph (£(C;), P(APlspan ¢;)) is primitive. So each
AP|span ¢; is Cj-primitive. Now for each 7, applying Lemma 2 to AP|gan ¢; and not-
ing that the length of the shortest circuit in (£(Cy), P(AP|span ¢;,)) is at most s/p,
we obtain Y(AP|gpan ¢,) < my + (s/p)(n; — 2). Hence, for each j = 1,...,p, we
have (AP)™ /M=y = gpmitsit =2z ¢ i C; whenever ®(z) € £;. Since A is
K-primitive, by Theorem 5, we have ri C; C int K for each j. So the local exponent
of A at each extreme vector of K cannot exceed max;<j<p(pm; + s(n; — 2}), hence
we have 7(A) < max <;<,(pm; + s(n; — 2)). |

Proof of Theorem 8. “Only if” part: Obvious.

“If” part: Observe that if A is a subset of £(K;) maximal with respect to the
property that \/{E : E € M} # K, then the positive hull of the extreme rays in M
is a maximal face of K. Indeed, every maximal face of K| can be obtained in this
way. The same can also be said for K,. The given bijection ¢ between £(K,)} and
E(K,) clearly induces a bijection between the maximal faces of K, and thase of K.
Now since the duality operator dg, (also dx,) is bijective, each face of K (also, of
K,) is an intersection of maximal faces. (For a proof, use [Tam 3, Lemma 5.12].) In
other words, each face of K (respectively, of K5) is the positive hull of the extreme
rays belonging to an intersection of subsets of £(K)) (respectively, of £(K3)), each
maximal with respect to the property that the join of its extreme rays is not equal to
the whole cone. Hence, ¢ also induces a bijection between the faces of K and those
of K3. And, moreover, it is easy to see that the latter bijection also preserves the

inclusion relation. Therefore, the cones K; and K, are combinatorially equivalent,.
B

13



3. EXAMPLES, REMARKS AND OPEN QUESTIONS

The following example shows that if A € 7(K), then the K-irreducibility or K-
primitivity of 4 is not completely determined by the digraph (£,P(A, K)); it also
depends on K.

By a minimal cone we mean a polyhedral cone whose number of extreme rays
equals the dimension of the cone plus 1.

Example 1. Let K be a minimal cone in R® generated by extreme vectors
Ty, ..., %s that satisfy z; + 22 + 3 = 24 + x5 + 2. Let A be the 5-by-5 matrix
given by:

AZCl = X9+ I3, A:L‘g =x3+ 11, A:Eg =z + 3,
Azy = z5+ 176, and Azs = 25 + 4.

Then Azg = A(z; + xo + 23) — A(zg + 5) = 74 + z5. So A € n(K). By [Tam 1,
Theorem 4.1], the maximal faces of K are precisely the subcones generated by four
extreme vectors of K, two from each of the subsets {z,, z3, zs} and {x4, %5, z5}. So
the nontrivial faces of K are simplicial. In particular, ®{Az,), which is ®{zy + z3),
contains precisely the extreme vectors za, z3. Hence, in the digraph (£,P(A, K)),
there are arcs (®{x), ®(z;)) and (®(z;), ®(z3)) but no other arcs with initial vertex
®(z1). In this manner, we can determine all the arcs of (£,P(A4, K)). 1t turns out
that (£, P(A, K}) is given by the following diagram:

®(z1) P(z4)
/ \ / \
©(7g) —— ®(z3) ®(zs) (zs)
where we use ®(z;) — ®(z;) to denote a pair of arcs (®(x;), <I)($J)) and (@(z;), ®(z))).
One can also readily check that A is K-primitive with y(A) = 2. {This example also

shows that, when A is K-primitive, the undirected graph of (E,P(A, K)) need not
be connected.]

On the other hand, it is clear that one can also find a 6-by-6 nonnegative matrix,
whose digraph is the same as the above one. Since the digraph is not strongly
connected, any such nonnegative matrix is not even irreducible, not to say, primitive.

In [B-T, the paragraph following Proposition 1], an example is provided to show
that, in general, the K-primitivity of A does not imply the strong connectedness
of (£,P), indeed not even that of (£,7). Below we are going to borrow the said
example (but rewriting it and putting it in a more general form):
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Example 2. Let K be a minimal proper cone in R* generated by the distinct
extreme vectors xi, ..., s that satisfy the relation

2(5131 + T3 + $3) = 3(234 + .’12'5).

Let A be the 4-by-4 matrix given by:

Azy = (21 + 1) /2, Azy = (o +123)/2, Az = (23 +21)/2,
and Az = (x4 + 25)/2.

After a little calculation, we obtain Az; = (x4 + 25)/2; so A € 7(K). Indeed,
it is easy to check that A is K-primitive and v{A) = 2. Note that (£,P(A)) is
not strongly connected. In fact, the digraph (£,P{A)) has two strongly connected
components with vertex sets V; = {®(z,), ®(z2), P(z3)} and V5 = {®(z4), P(zs)}.
The induced subdigraph on V] is composed of loops at each of the vertices together
with the 3-circuit (®(xz1), ®(z2)), ((x2), ®(x3)), (P(z3), ®(z1)). The induced sub-
digraph on V5 is complete. There is no arcs from V; to V5, but there are arcs from
each vertex of V, to all vertices of 1.

Note that the matrix A is singular. If we take B = A + ¢1, then for £ > 0 suffi-
ciently small, B is nonsingular and K -primitive. Furthermore, we have (£, P(B)) =
(€,P({A)) and y(B) = (4).

Now let C be the 4-by-4 matrix given by:

Czy = (21 +22)/2, Cxa = (22 +23)/2, Cz3 = (23 +21)/2,
and Cxy = %(3]2 + Ig).

Then, after a little calculation, we have Czsy = 2z;. So C € n(K). In fact, it
is ready to see that C is K-primitive and 4(C) = 3. Also, the digraph (£, P(C))
has three strongly connected components with vertex sets {®(z1), (), ®(z3)},
{®(z4)} and {®(x5)} respectively. The subdigraph on {®(z,), ®(x3), ®(z3)} are the
same as before. The remaining P(C)-arcs are (®(x4), B(z2)}, (P(z4), B{xs)) and
(@(z5), (1)), |

It is clear that if GG is any digraph with m vertices, then we can always find an
m-by-m nonnegative matrix whose digraph is G. On the other hand, if K is a non-
simplicial polyhedral cone with m extreme rays, we need not be able to find some
A € m(K) such that (£,P(A, K)) is the prescribed digraph G. There are certain
constraints that have to be met in order that G is of the form (£, P(A, K)). For
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instance, if 1,...,x, and yy,...,y, are any vectors of K that satisfy ®(z; +--- +
zr) = @(y + - +y,), then for any A € 7(K) we must have ®(Az, + - + Az,) =
®(Ay + - + Ay,). Rewriting this in terms of digraphs, we have the following:

Remark 2. Suppose the digraph (F',P(I,K)) is given. Then for any A €
7(K}, the digraph of (€, P(A, K)) necessarily satisfies the following condition:

For any é(zy),...,®(z,), ®(y1),..., ®(y;) € &, if the smallest element F of F'
[“smallest” in the sense of inclusion, which can be determined from the digraph
(F',P(I,K))] with the property that (¥, ®(x;)) is a P(I,K)-arc for i = 1,...,7
is the same as the smallest element G of F' with the property that (G, ®(y;)) is a
P(I,K)-arcfori=1,...,s, then the smallest element F of F’ with the property that
(F,®{w)) is a P(I, K} arc for all ®(w) € & such that (®(x;), P(w)) is a P(A, K) arc
for some ¢ = 1,...,r is the same as the smallest element G with the corresponding
property, but with y,, ..., y, in place of z,,..., z,.

Question 1. Given a polyhedral cone K| determine all digraphs G which are of
the form (£, P(A, K)) for some A € 7(K).

(Question 1 can be considered as an “allow” question with K fixed. One may
also ask a similar question for which K is not fixed. But, as mentioned above, any
(finite} digraph is the digraph associated with some nonnegative matrix. So we
should exclude the simplicial cones.

Question 2. Determine all (finite) digraphs G which are of the form (€, P(A, K))
for some non-simplicial (polyhedral) cone K and some A € (K (also, K-irreducible
or K-primitive A).

Certainly, there are digraphs which are not of the form (£,P(A4, K)) for some
non-simplicial polyhedral cone K and some A € n(K}, for instance, any digraphs
with three or less vertices. Below is a less trivial example:

Example 3. Consider the digraph G which consists of two 3-circuits with one
vertex in common. If G is of the form (£, P(A, K)), then the only possible dimen-
sions for the non-simplicial cone K is 3 or 4. We treat both cases together. To be
specific, suppose (£, P(A4, K)) is represented by the following diagram:

D(z4) ® ()
< NN

P(z5) —r— D(x;) —— P(x3)
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Since there is only one arc with initial vertex ®(z4), namely, (®(z,4), ®(25)), we must
have A®(z4} = ©(z5). Similarly, we have A®(z,) = ®(z3), AD(z5) = Ad(z3) =
®(z,) and also AD(z1) = ®(z,) v ®(z,), which is a 2-dimensional simplicial face.
Note that the condition A®(z5) = A®(x3) = ®(z;) implies that A maps 25 and
T3 both into the extreme ray ®(z;); hence A must be singular. Certainly, AK is
the polyhedral cone generated by the images of the extreme vectors of K under A.
So from the above information on A, we have, AK = pos {1, T3, 75, 00T3 + a4},
assuming Az, = s + ayzy, where ay, oy > 0; hence, rank A = dim AK > 3. This
clearly disposes of the case when dim K = 3 (because A is singular). So K must be
a 4-dimensional minimal cone and we have ayzy + ayz4 € span{zy, z3,T5}; say,

Qo + Ty = 0T + 3%z + Q5. (3.1)

Then the latter is the unique (up to multiples} linear relation for the extreme vectors
Z1,...,Zs of the minimal cone K. Applying A to both side of (3.1), we obtain

ag)\gxg + Q4A4CL’5 = ¥ oZy + (V14T + (6}53)\3 + C¥5A5)$1, (32)

where Az, Az, Ay, As > 0. From (3.1) and (3.2), (as,05) is a nonzero multiple of
{e2h2, cighy); SO @3, s must be both positive or both negative. If as, as are both
negative, then we would arrive at a contradiction — namely, z; is not an extreme
vector of K if oy > 0, or K is not pointed if oy < 0. So they are both positive.
Then azAsz + asAs > 0, and again by comparing (3.1) and (3.2), we obtain a; < 0.
Then from (3.2), it follows that z; is a positive linear combination of s, x3, z4 and
75, which contradicts the assumption that z; is an extreme vector.

The following is another fundamental question:

Question 3. Let K, and K, be proper cones which are combinatorially equiv-
alent. Is it true that for any digraph &, if there exists A; € w(K)) such that
(£,P(A1, K1)) = G, then there always exists A, € 7(K>) such that (£, P(A,, K3)) =
G?7?

For any two square nonnegative matrices A, B of the same size, it is clear that
A and B have the same (usual) digraph if and only if so do A7 and BT. One may
suspect that the corresponding result also holds for cone-preserving maps. [Recall
that for a proper cone K and any matrix 4, A € 7(K) if and only if AT € 7w(K*).]
The following example shows that this is not true. It also shows that in general
(£,P(A,K)) = (£,P(B, K)}) does not imply ®(A4) = &(B).
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Example 4. Let K be a proper cone whose dual cone K* is not facially exposed.
Choose a non-exposed face ®(z) of K*. Let w € K* be such that ®(w) equals
clg-(®(z}), the exposed face of K* generated by z. Choose any z € int K. Take
A=2z" and B = zw”. Clearly A, B € n(K). By our choices of w and z, for any
y € K, we have z7y = 0 if and only if w"y = 0. Hence, we have ®(Ay) = ®(By)
for any y € K. By Corollary 1 this means that (£, P(A, K)) = (£,P(B,K)). If
B € ®(A), then there exists o > 0 such that A — aB = z(z — aw)T € =(K).
But the face ®{w) properly includes ®(z), so w ¢ ®(z) and hence z — aw ¢ K*.
Take y € K such that (z — aw)Ty < 0. Then (A — aB)y is a negative multiple
of z, which is a contradiction. So we must have B ¢ ®(A). Finally, take any
u € int K*. Then BTu = (zTu)w ¢ ®(z) = ®(ATw). By Corollary 1 again, we have
(€, P(AT, K*)) # (£, P(BT, K°)).

However, using [Tam 3, Corollary 5.9] (and the argument of the above example),
one can readily show the following:

Remark 3. Let K be a proper cone. In order that for any 4, B € w(K), we
have

(£,P(A,K)) = (£,P(B,K)) iff (£,P(AT,K*))=(£,P(BT,K*))

it is necessary and sufficient that the duality operator dg be bijective (which is the
case if K is polyhedral).

On the other hand, the conditions “every face of 7(K) can be expressed as an
intersection of simple faces” and “dr(xy is injective”, which appear in Theorem 1
and Corollary 1, are not yet well understood and there are still some open prob-
lems involving these conditions. We refer the interested reader to [Tam 3, Section 6.

We call two cones K, K, linearly tsomorphic if there exists a nonsingular lin-
ear transformation T from span K, to span K5, which maps K, onto K,. We
call the cones K, Ky combinatorially equivalent, if their face lattices F(K,) and
F(K2) are isomorphic (as lattices), or equivalently, the digraphs (F', P({, K)) and
(F',P(I, K,)) are equal (up to graph isomorphism). [l don’t know whether it is true
that if K, K, are combinatorially equivalent cones, then so are 7(K,) and «(K>).]

It is clear that linearly isomorphic cones are combinatorially equivalent, but the
converse is not true. Here is an example:
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Example 5. Let e;, § = 1,2, 3, denote the standard unit vectors of R>. Let K,
be the polyhedral cone in R? generated by the extreme vectors e, e, e3, 2e,+e;—ey
and e; 4+ 2e; — e3. We are going to show that there exists a vector u € R? such that
the polyhedral cone K, generated by the extreme vectors e;, e;, €3, 2e;+e;—e; and
u is not linearly isomorphic with K;. Clearly, any 3-dimensional polyhedral cones
with the same number of extreme rays are combinatorially equivalent. In particular,
the cones K;, K, are combinatorially equivalent. We want to construct u in such
a way that the extreme ray ®(u) is neighborly to ®(2e, + e — e3) and ®(ey). If T
is a linear isomorphism which maps K, onto K3, then 7" must carry extreme rays
to extreme rays. Certainly, T maps neighborly extreme rays to neighborly extreme
rays. So, there are eight choices for the action of T on the extreme rays of K.
the images of ®(ez), $(e3), Pe1), ©(2e; + ez - €3) under T, in this order, can be
Bleq), ®les), ler), D(2ey -+ ey — e3), or B(2e; + ey — €3), Per), Ples), Pley), or
D(es), Pley), B(2e; + ey — ez}, P(e; + 2e5 — €3), and so forth. It is not difficult
to show that once the action of T on ®(e2), ®(e3), Ple;) and P(2e; +e; — e3) are
known, 7" is uniquely determined up to multiples. We choose u in such a way that,
for each of the eight choices, Tu does not lie on the remaining extreme ray of Kj;
that is the one which is different from T'®(es), T®(e3), T®(e;) and TS(2e;+e3—e3);
then TK, # K;. Clearly, such u exists. Therefore, the cones K, and K, are not
linearly isomorphic.

Putting it in another way, Theorem A tells us that if K is non-simplicial, then
there always exists A € 7(K) such that A is K-irreducible and (£, P(A)) is not
strongly connected. One may wonder whether in this case there is also a K-primitive
matrix A such that (£, P(A)) is not strongly connected. The answer turns out to
be “no”,

A proper cone is said to be strictly convez if every boundary vector is extreme.

Remark 4. Let K be a strictly convex cone, and let 4 € n(K). If Ais K-
primitive, then (£, P(A)) is strongly connected.

To see this, consider any extreme ray ®(x) of K. We want to show that there is a
path in (&£, P) from the vertex ®(z) to any other vertex of £. Let p denote the least
positive integer such that APz € int K. Then z, Az, ..., AP"'z all belong to 8K, and
since K is strictly convex, all of them are, in fact, (nonzero) extreme vectors of K.
So there is a path in (£, P) passing through the vertices ®(z), ®(Ax),..., ®(AP 1)
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(and in this order). Note that there is a P-arc from ®(A”"!z) to any vertex of &,
as A(AP 'z) € int K. Hence, there is a path form ®(z) to any vertex of £&. This
proves the strong connectedness of (£, P).

Question 4. If A is a non-simplicial polyhedral cone, then does there always
exist a A-primitive matrix A4 such that (£, P(A4)} is not strongly connected 7

In {Bar, Theorem 2], it is proved that if K is a polyhedral cone with m extreme
rays, then for any A € 7(K), an equivalent condition for A to be K-primitive
is that A7 is K-irreducible for j = 1,2,...,2™ — 1. When the digraph (£,P) is
strongly connected, by Lemma 2, we can replace the latter condition simply by “A?
is K-irreducible, where s is the length of the shortest circuit in (£, P)”.

Remark 5. Let K be a proper polyhedral cone with m extreme rays. Lei
A € m(K) and suppose that (£, P) is strongly connected. Then A is K-primitive if
and only if A" ~2+2 {g K_positive.

It suffices to consider the “only if” part. Note that if s, the length of the shortest
circuit, equals m, then necessarily the digraph (£,P) is simply a circuit of length
m. But then A must map the set £ onto itself, i.e., 4 is an automorphism on K,
which contradicts the K-primitivity of A. So we must have s < m - 1. But we also
have n < m, where n = dim K. By Lemma 2 we have

YAy <m+sn-2)<m+{(m—1)(m—2)=m*—2m + 2.

Therefore, 4™ ~2m%2 {5 K _positive.

The above remark can be found in [Niu, Corollary 4]. But there is a gap in the
proof of its “only if” part. It is asserted that in this case (£,P) always has two
circuits of different lengths (thus, s < m — 1), but this is not true. The problem
at issue is related to the concept of a primitive digraph. By a primitive digraph we
mean, as usual, a strongly connected digraph G for which there exists a positive
integer kg such that for all positive integers & > kg, there is a directed walk of
length k in G from z to y for any vertices z, ¥ of . The smallest such positive
integer ko is called the exponent of G and is denoted by 4(G). It is known that a
strongly connected digraph is primitive if and only if the greatest common divisor
of its circuit lengths is equal to 1. It is easy to show that if (£, P(A))} is primitive,
then A is K-primitive and y(A4) < v(€,P(A)). So the natural question to ask is,
whether it is true that if A is K-primitive and (£, P(A4, K)) is strongly connected,
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then (£,P(A, K)) is a primitive digraph. If the answer is “yes”, then the gap
in Niu’s proof mentioned above can be removed, and moreover then we can readily
recover Theorem D by the classical Dulmage and Mendelsohn theorem. The answer,
however, turns out to be “no” as the following example shows.

Example 6. Let K be a minimal proper cone in R® generated by the extreme
vectors xy, . .., ¢ that satisfy z; + 29+ 235 = z4+x5+26. Let A be the 5-by-5 matrix
given by: ASC1 = 2.’1}4 —+ Ts, A$2 = &5 + Tg, A.’L‘g = ¥g, A.’B4 =¥ and A5135 = Ty + Tg.
Then

Aze = A(x) + 22 + 23) — Azy — Axs = T + 273.

So, clearly we have A € 7(K). It turns out that (£, P(A)) is the following symmetric
bipartite digraph with bipartition {{®(z}, ®(z2}, ®(z3)}, {@(xs), ®(zs)}, P(z6)}}:

@(3’)1) (I)(Jl?.n;)
(I)(IQ) (I)(.’L'E,) .
(1)(.’133) (I)(l'ﬁ)
[In the above diagram, we use ®(z;) —— ®(z;) to represent a pair of arcs (®(z;), ®(x;))

and (®(z;), ®(z;).] So, it is clear that the digraph (£, P(A)) is not primitive, and
moreover it has only one circuit length, namely, 2. Using Theorem 6, one can
determine the local exponent of A at z; as follows:
A(‘I’(.’EI) = {@(1'4),@(.1‘5)} with z4 + x5 € 0K,
A2(q)($1) = {@(ﬂ?l), (I)(.’L'g)} with Ty t+x2 € aK,
and A ®(z;) = {P(zy), B(w5), P(ze)} with x4 + z5 + g € int K.
So we have y(A,z;) = 3. Similarly, one can show that
v(A z2) = (A, z5) =2, 7(A,z5) =3, and y(A,z3) = y(A4,24) = 4.
Hence, A is K-primitive and y(A) = 4.

Recall that a positive integer x is called the critical ezponent of a normed space
(E, ||-]I) (or of the norm on E) if the equalities ||A%|| = || Al| == 1 imply that p(A4) = 1,
and if s is the smallest number with the indicated property. (Here A stands for a
linear operator on £ and |[A|| = supgs.ep [Az|l/||z]l.) In {B-L, p.67] an example
of a norm on R? is given such that with respect to this norm R? has no critical

exponent. Now we are going to show that one can construct an example of a proper
cone K in R® for which v(K) is infinite.
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Example 7. Let || - || denote the norm of R? given in [B-L, p.67]. Let K be
the proper cone in R* given by: K = {a(f) : @ > 0 and ||z]] < 1}. As show
in [B-L], for each positive integer &, we can find some 2-by-2 real matrix B; such
that ||Bgll = || BE|| = 1 but ||Bf*|| < 1. Let Ay = By @ (1). Then it is easy to
show that A, is K-primitive and v(A) = k. Since k can be arbitrarily large, this
shows that for this K we have v(K) = co. It is also of interest to note that the
K-primitive matrices Ay obtained in this example are, in fact, all extreme matrices
of the cone 7(K). The point is, each of them map infinitely many extreme rays of
K onto extreme rays.

Notice, however, that the proper cone K considered in Example 7 is not strictly
convex.

Question 5. Is it true that every strictly convex cone in R™ has finite exponent?

We do not even know the value of v(K,,) for the n-dimensional ice-cream cone
K,. Making use of the proof for the known fact that the critical exponent of an
n-dimensional euclidean space is n (see [B-L, Theorem 2.6.2]), one can readily show
that v(G) > n.

Question 6. Is the set {v(K) : K is a polyhedral cone in R"} bounded above?

As far as we know, the following question posed by Barker [Bar 1] in 1972, now
rephrased in terms of the concept of local exponent, is still open:

Question 7. Is it true that for any proper cone K and any K-irreducible matrix
A, the set {v(A4,z): v € K and v(4, z) is finite} is bounded above ?

Finally, we would like to point out that the tool of a minimal generating matrix,
which is used by some people in the study of polyhedral cones (see, for instance, [B-
F-H]), also has some connections with our study. Namely, if K is a polyhedral cone
and A € m(K), and if B is the nonnegative matrix with the maximum number of
positive entries that satisfies AP = PB, where P is the minimal generating matrix
for K (i.e., its column vectors form a set of distinct representatives of the extreme
rays of K'), then the usual digraph of BT is equal to our digraph (£(K),P(4, K)).
Since the strong connectedness of (£, P(A, X)) implies the K-irreducibility of A but
not conversely, we recover the known relation between the K-irreducibility of A and

22



the irreducibility of B.
The following are some other ideas I have not yet pursued:

L. I guess primitive digraphs are precisely the digraphs G which require the
property that for every proper cone K and every A € #(K), A is K-primitive
whenever (£(K),P(A,K))=G.

2. In my long survey paper “A cone-theoretic approach to the spectral the-
ory of positive linear operators ...”, there appears in Theorem 6.3 a result which
says that if A € w(K), where K is a polyhedral cone with m maximal faces,
then there exists an m-by-m nonnegative matrix B and some B-invariant subspace
W of R™, W[int RT # 0, such that the cone-preserving maps A € 7(K) and
Blw € m{(W [RT) are equivalent. This result may also have some connection with
our work, but I have not yet explored it.

3. We may also consider A € m(K7, K3), where K, K, are proper cones, possibly
in different euclidean spaces. For each such A, we can associate with it two bipartite
graphs: The first bipartite graph has bipartition {£(X,), £(K3)} for which there is an
edge joining Fy, Fs, where By € £(K,) and F, € £(K,) if and only if £, C ®(AE)).
Similarly, we can define a bipartite graph with bipartition {F'(K;), F'(K3)}. 1 think
Theorem 1 and Corollary 1 also have corresponding results in this setting, because
their proofs rely on [Tam 3}, but the latter paper is done in this general setting. Of
course, in this case, we do not have the concept of K-irreducibility or K-primitivity.

4. We may even work in the setting of non-linear cone-preserving maps, say,
in the class of monotone homogeneous maps on a fixed proper cone, or even in a
broader class. I think we can always associate A with a digraph (£(K), P(4, K))
defined in the same way as in this paper as long as A is a map which preserves
K and possesses the following property: for all z,y € K, if ®(x) = ®(y} then
®(Az) = ®(Ay). (Is the latter property equivalent to, for all z,y € K, if ®(z) C
®(y), then ®{Az) C ®(Ay) 7), We can still have the concepts of K-irreducibility
and K-primitivity and, I believe, many of our results can be carried over to this
more general setting.

5. In the nonnegative matrix case, we can describe the A-invariant faces com-
pletely. (See my paper with Hans “On the invariant faces associated with a cone-
preserving map.) If the digraph (£,P(A, K)) for A (€ #(K)) is given, I am won-
dering to what extent we can describe all the A-invariant faces ?
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The following example was constructed in my initial attempt to determine y(K,}. -
Of course, it is superseded by the now known fact that v(K,) > n. I keep the
example here in case it may be useful.

Example. Let K, be the n-dimensional ice-cream cone, n > 3, ie., K, =
{(&,.. ., &)T 1 &> (€24 -+ £2_)Y?}. Choose any two distinct extreme vectors
zy, 3 of K. Suppose z, is the (unique) extreme vector of K, (= K3) orthogonal to
zy. Let z; be any extreme vector of K, distinct from z; and not orthogonal to z;.
Let A = 3127 + 7,21, We are going to show that A is K-primitive and v{A) = 3.
Let y be the extreme vector of K, orthogonal to z;. If z is any (nonzero) extreme
vector of K, which is not a multiple of x5 or of , then it is clear that Az € int K. In
particular, Az, € int K. By calculation, we have Ay, = (23 y)za, Azo = (2] 12)71,
where 23 z, are both positive numbers. So it is clear that A is K-primitive and

v(A) = 3.
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1 Introduction

By the classical Perron-Frobeniug theory, if A is a (square, entrywise) nonneg-
ative matrix, then its spectral radius p(A) is an eigenvalue of A and there is a
corresponding nonnegative eigenvector. If, in addition, A is irreducible, then p(A)
is a simple eigenvalue and the corresponding eigenvector can be chosen to be posi-
tive. Moreover, for an irreducible nonnegative matrix with index of imprimitivity
m > 1 (i.e., one having exactly m eigenvalues with modulus p(A)), Frobenius has
also obtained a deeper structure theorem: The set of eigenvalues of A with modulus
p(A) consists precisely of p(A) times all the mth roots of unity, the spectrum o(A)
of A is invariant under a rotation about the origin of the complex plane through
an angle of 27 /m, and A is an m-cyclic matrix, i.e., there is a permutation matrix
P such that P'AP is a matrix of the form

0 Ay
0 Aq
' . , {1.1)
0 Ay im
_Am1 0

where the zero blocks along the diagonal are all square. To establish the above
structure theorem, the most popular proof is to use Wielandt’s lemma. (Some
relevant definitions and a full statement of Wielandt’s lemma will be given later
on. For the logical relations between the various conditions that appear in the
above-mentioned Frobenius's result, in the setting of a complex matrix, see the
recent paper [1'2] by the second author.)

By now, the Perron-Frobenius theory of a nonnegative matrix is very well-
known. Almost every textbook of matrix theory contains a chapter on the subject,
and there are also monographs specially devoted to nonnegative matrices and their
applications. On the other hand, there is not much literature on the numerical
range of a nonnegative matrix, although it is well-known that the numerical range
of a matrix and its spectral properties are related. As a matter of fact, as early as
1966, Issos [I] in his unpublished Ph.D. thesis has obtained some Perron-Frobenius
type results on the numerical range of an irreducible nonnegative matrix. However,
for many years, except for a reference by Fiedler [F], it appears that Issos’s work was
almost unnoticed. Recall that the numerical range of an n-by-n complex matrix 4
is denoted and defined by

W(A)={z"Az 2 € C", 2"z = 1}.

Here is the main result obtained by Issos [I, Theorem 7):



Theorem A. Let A be an irreducible nonnegative matriz with index of imprim-
wwity m. Denote the numerical radius of A by w(A). Then

{Ae W(A): |A = w(A)} = {w(A)e*™ /™ ¢t =0,1,...,m — 1}.

Issos’s proof depends on a number of auxiliary results and is rather tedious.
Recently, the second author and Yang [TY] also obtained Issos’s main result as a
side-product of their treatment. The proof given in [TY, Corollary 2] for Issos’s
result may not be easily accessible to the general readers. This is because the proof
is indirect, graph-theoretic, and depends on results from the previous paper [T2] of
the second author, on the less well-known concepts of the signed length of a cycle
{which is different from that of a circuit) and matrix cycle products, and also on
a characterization of diagonal similarity between matrices in terms of matrix cycle
products due to Saunders and Schneider. (Indeed, it is a purpose of the papers [T2]
and [TY] to demonstrate the usefulness of these less well-known concepts and the
characterization of Saunders and Schneider.) This research was initiated by our
attempt to find a direct, self-contained proof of Issos’s main result. In a graph-free
manner, we are able to do this and also obtain an extension of the result in the
setting of a nonnegative matrix with irreducible real part. Then, in terms of certain
graph-theoretic concepts, we put the latter result in a more concrete usable form,
depending our proof on some results of {T1, T2]. ,

Since the literature on numerical range analogs of the Perron-Frobenius theory
is scanty, we also think it is worthwhile to offer a complete and, as far as possible,
self-contained development here.

The results we obtain also enable us to solve the open problem of characterizing
nonnegative matrices whose numerical ranges are regular polygons with center at
the origin. We treat this problem and related problems in the second half of the

paper.

2 Preliminaries

We assume knowledge of the Perron-Frobenius theory of nonnegative matrices,
which is available in many standard textbooks such as [BP{, [H]1], or [M], as well
as familiarity with numerical ranges (see, for instance, [GR] or [HJ2]).

Below we give a list of notations which we will follow. We always use A to



denote an n-by-n complex matrix for some fixed positive integer n.

M, the set of all n-by-n complex matrices;
R% the nonnegative orthant of R™;
W(A) the (classical) numerical range of A;
w(A)  the numerical radius of A;
o(A)  the spectrum of A;
p(A)  the spectral radius of A;
Al the transpose of A;
A the conjugate transpose of A;
ReA  the real part of A, ie., (A + A%)/2;
|A|  the matrix (|a,|) (where A = (a,))
Rez  the real part of z (where z is a complex number)
|z] the vector (|&],...,|&a])* (where z = (£1,..., &)%)
Amax(H) the largest cigenvalue of H (where H is hermitian)
P the imaginary unit v/—1,
{n) the set {1,2,...,n}.

For a vector z € €", we use ||z|| to denote the Euclidean norm of z, i.e,
|zl = (z"x}'/%. For a matrix A, we use ||A|| to denote the operator norm of A,
e, maxjq=, || Az|/[|z]-

For real matrices A, B of the same size, we use A > B (respectively, A > B) to
mean a,s > b,s (respectively, a,s > b,s) for all indices v, s. The notation will also
apply to vectors.

We call a matrix A € M, irreducible if n = 1, or » > 2 and there does not exist

a permutation matrix P such that

B C
t _
P'AP = l 0D J ,
where B, D are nonempty square matrices.
Given A, B € M,, A is said to be diagonally similar to B if there exists a
nonsingular diagonal matrix D such that A = D='BD:; if, in addition, D can be
chosen to be unitary, then we say A is unitarily diagonally similar to B.

It is known [TY, Remarks 2 and 5] and not difficult to show the following:

Remark 2.1. For any A € M,, and any unit complex number £, we have:

(1) A is unitarily diagonally similar to £A if and only if A is diagonally similar
to £A;

(ii) Re A is unitarily diagonally similar to Re{£4) if and only if Re A is diago-
nally similar to Re(£A).



For graph-theoretic definitions, we follow those of [T2] and [TY]. We need, in
particular, the concepts of cyclic index of a matrix, a cycle in a digraph, and the
signed length of a cycle, which we are going to explain.

For any A € M, as usual, by the digraph of A, denoted by G(A), we mean the
directed graph with vertex set (n) such that (r,s) is an arc if and only if a,, # 0.
By the undirected graph of A we mean the undirected graph obtained from G{(A)
by removing the direction of its arcs. We call an undirected graph connected if
either it has exactly one vertex or it has more than one vertex and every pair of
distinet vertices are joined by a path.

It is well-known (see, for instance, [HJ1, Theorem 6.2.24]) that a matrix A € M,
15 irreducible if and only if its digraph G(A) is strongly connected (in the sense
that given any two vertices r, s of G(A), there is a directed path in G(A) from r
to s and vice versa). It is not difficult to show the following:

Remark 2.2. For any A € M, if Re A is irreducible, then the undirected
graph of A is connected. The converse also holds if A is nonnegative.

We call a matrix A € M, m-cyclic if there exists a permutation matrix £ such
that P*AP is of the form (1.1) where the zero blocks along the diagonal are all
square. The largest positive integer m for which a matrix A is m-cyclic is called
the cyclic index of A. We call A a block-shift matriz if for some integer m > 2, A
is of the form {1.1) and with A,,; = 0. An m-cyclic matrix (respectively, a matrix
which is permutationally similar to a block-shift matrix) can be characterized as
one whose digraph is cyclically m-partite (respectively, linearly partite) (see [T2]
for definitions).

We reserve the term “circuit” (in a digraph) for its usual meaning, i.c., a simple
closed directed path. For instance, a sequence of arcs, like (1,2), (2,3), (3,4), and
(4,1), forms a circuit of length 4. The term “cycle” in our usage means something
different. For example, a sequence of arcs, like

l1—2-33+—4-—0+1,

forms a cycle of length 5 and signed length 1. Here we use r — s to denote the
arc (r, s) traversed from 7 to s and referred to it as a positive link, and use s +— r
to denote the arc (r, s) traversed from s to r and referred to it as a negative link.
The number of positive links minus the number of negative links in a cycle gives
the signed length of the cycle. (For formal definitions, see [T2, Section 2|.)



3 Numerical Range Analogs of the Perron-Frobenius Theory

Let A be an n-by-n nonnegative matrix. In parallel to the Perron-Frobenius
theory, it is natural to assert that w(A) € W(A) and there is a unit nonnegative
vector x such that *Az = w(A). The assertion is, indeed, true and is also pretty
obvious. The reason is, for any unit vector z € C", we have |z*Az| < |z|*A|z[;
hence

w(A) = sup{|z"Az| : |lzll = 1} =sup{y'Ay : [yl = 1,y € R}}.

Clearly, the continuous real-valued map y — y'Ay attains its maximum on the
intersection of the unit sphere with the nonnegative orthant R”, which is a compact
set. Hence our assertion follows. (The foregoing discussion has essentially appeared
in [T, Theorem 1 and its proof], where it is assumed that the matrix A is irreducible
nonnegative. )

The next thing one may try to prove is that, if A is irreducible nonnegative,
then there is a positive unit vector = such that z*Az = w(A4), and furthermore z
is unique. It is desirable that we can somehow apply the Perron-Frobenius theory.
The following general result enables us to do this.

Lemma 3.1. Let A € M, and let £ be a unit complex number such that
Ew(A) € W(A). Then

(1) Amax(Re(£4)) = p(Re(€A)) = w(A);

(i) the set V = {z € C": z* Az = Ew(A)|z||*} is equal to the eigenspace of
Re{£A) corresponding to Amax(Re(£A)).

Proof. (i) Since {w(A) € W(A), we can find a nonzero vector u that satisfies
w*Au = Ew(A)||ul|®>. Then w{€A)u = w(A)||u|?, and so u*(€A")u = w(A)||u|?.
Adding the two equations, we obtain u*Re(é4)u = w(A)||u|? or w*{w(A)L, —
Re(£A))u = 0. Note that the matrix w(A)f, — Re(€A) is positive semidefinite, as
we have

w(4) = w(€A) > w(Re(EA)) = p(Re(€A)) > Amax(Re(€A4)).

Hence, u is an eigenvector of Re(£4) corresponding to w(A), and also it follows
that we have w(A) = p(Re(£A4)) = Anax(Re(£A4)).

(i) If z is any nonzero vector in V, then by what we have done in the proof
of part(i) (with = in place of u), we see that z is an eigenvector of Re(£A) corre-
sponding to Amax(Re(£4)).



Conversely, if z is an eigenvector of Re(£A4) corresponding to Apa.(Re(€A4)) (=
w(A)), then we have

w(A)||zl|* = 2"Re(§A)z = Re(z*(£A)z) < [2*(€4)] < w(A)|lz|?,

and hence z*(£A)z = w(A)|z|?, ie, z € V. O

Lemma 3.1(ii) is well known to researchers of numerical range. For example, it
is essentially contained in [DW, Corollary 1.4], and is also partly a consequence of
the following result in [E] (see also [{GR, Theorems 1.5-1 and 1.5-2]):

A point o € W(A) is an extreme point if and only if the associated subset
{z € C": z*Az = a||z||?} is a linear subspace.

We take a digression here. By examining the above proof of Lemma 3.1 (or the
proof of [DW, Corollary 1.4]) carefully, one can see that our argument also shows
the following:

Remark 3.2. Let A € M,. For any unit complex number &, the set {z € C" :
z* Az = £w(A)||x]i?} is equal to the nullspace of w(A)l, - Re(€A). Consequently,
Ew(A) € W(A) if and only if det(w(A)I, — Re(£A)) = 0.

The last part of the above remark (the “only if” part of which is implicit in
the proof of [TY, Lemma 6]) enables us to check whether a given nonnegative
matrix A with irreducible real part has a circular disk centered at origin as its
numerical range, or whether it satisfies e*™/™W(A) = W(A) for a given positive
integer m. This is because, by [TY, Theorems 1 and 2], for such a matrix A,
W (A) is a circular disk centered at the origin if and only if for some real number
¢ which is an irrational multiple of 7 or is a rational multiple of the form 27p/q,
where p, ¢ are relatively prime integers with ¢ > n, we have e?w(A4} € W(A);
™MW (A) = W(A) if and only if e?™/™y(A) € W{(A).

Now back to numerical range analogs of the Perron-Frobenius theory. If A is a
nonnegative matrix, we already know that w(A) € W{A). So in this case we can
apply Lemma 3.1 to A by taking £ = 1. Then we see that we have

Amax{Re A) = p(Re A) = w(A),

and the set {z € C™: z* Az = w(A)||z||*} is equal to the eigenspace of the nonnega-
tive matrix Re A corresponding to its spectral radius p(Re A). If, in addition, Re A
is irreducible (which is the case if A is irreducible), then by the Perron-Frobenius

7



theory, p(Re A) is a simple eigenvalue of Re A and the said subspace is of dimension
1, spanned by a positive vector.
Summarizing, we have obtained the following:

Proposition 3.3. Let A € M, be nonnegative. Then w(A) € W(A) and each
of the following numbers is equal to w(A) :

max{y’Ay : y € RL, (lyll = 1}, Amax(Re A), and p(Re A).

Moreover, there is o unit nonnegative vector x such that x*Azx = w(A). If, in
addition, Re A is irreducible, then the vector = is unique and is positive.

The relation w(A) = p(Re A) for a nonnegative matrix A was shown in [GT).
It also appeared implicitly in the proof of [I, Theorem 1].

We make another digression and take note of the following interesting conse-
quence of the fact that w(A) € W(A) for a nonnegative matrix A:

Corollary 3.4. Let A = (a;;) be an n-by-n nonnegative matriz. If W(A) is a
(possibly degenerate) elliptic disk or a regular polygon, then the center p of W{(A)
must be a nonnegative real number such that p > mini<j<, aj;.

Proof. Since A is a real matrix, W(A4) must be symmetric about the real axis
(see, for instance, [NT, Lemma 3.1]). So p must lie on the real axis. Let o denote
min <;<p G55, and assume to the contrary that p < . Then A — al, is still a
nonnegative matrix and its numerical range is W(A) — «, with center at p — a,
which is a negative number. If W(A) is an elliptic disk, then, clearly, the left ver-
tical supporting line for W{(A — «[,,) is farther away from the origin than the right
vertical supporting line. Hence, w{A — al,) ¢ W(A — al,,), which contradicts the
result of Proposition 3.3. On the other hand, if W(A) is a regular polygon, then
the distance from the origin to the vertices of W(A — al,) other than w(A) — « is
greater that w(A) — «, which again contradicts Proposition 3.3. &

The above corollary may suggest that, in general, if A = {a;;) i1s an n-by-n
nonnegative matrix, then the centroid p of W(A) satisfies p
next example will show that this is not true.

Y

miny <j<n ay5. Our
Example 3.5. Consider the nonnegative matrix

010
A=100 1 @l(l)(l]]
1 00



Here W (A) is the convex hull of the equilateral triangle with vertices 1, e2™/3 and
e'™/® and the line segment with endpoints 1 and —1. So we have Mili<j<n Gjj =
0 > p, where p denotes the centroid of W(A). By perturbing the above A a little
bit, one can also give an irreducible nonnegative matrix as an example.

Next, we turn to a comparison of w(A) and w(B) for nonnegative matrices A
and B with A > B. For spectral radius, the following is well known (see [M, p. 38,
Corollary 2.2{):

Let A, B € M, be nonnegative, and suppose that B < A. Then p(B) < p(A).
If, i addition, A is irreducible and A # B, then p(B) < p(A).

Using the relation w(A4) = p(Re A) for a nonnegative matrix A, we immediately
obtain the following corresponding result for numerical radius. Below we also give
an alternative short proof of the result.

Corollary 3.6. Let A, B € M, be nonnegative, and suppose that B < A. Then
w(B) < w(A). If, in addition, Re A is irreducible and A # B, then w(B) < w(A).

Proof. Since 0 < B < A, we have

I

w(B) max{z'Bz: z € R}, l|z|| =1}
max{z*Azx : z € RY, ||z|| = 1}

w(A).

A

Now assume that Re A is irreducible, and suppose that w(B) = w(A). Choose a
nonnegative unit vector x such that z*Bz = w(B). Then we have

w(A) =w(B) =2"Bz < 2" Az < w(A).

Thus, the two inequalities become equalities. Since Re A is irreducible, by the last
part of Proposition 3.3, the vector z is positive. So we have z*(4 — B)z = 0, and
together with the assumption A > B, it follows that A = B, which is a contradic-
tion. u

We want to emphasize that in the last part of Corollary 3.6 {also Proposition
3.3) we are assuming that Re A is irreducible instead of A being irreducible. And
this is the right setting for results on numerical radius. For the corresponding re-
sults on spectral radius, we do need the irreducibility assumption. As an example,

consider A = l 8 é ] and B = [ 8 g ] Then Re A is irreducible, but not A,



and we have p(A) = p(B) = 0, and w(A4) > w(B).

In the above we have treated the rudimentary part of the numerical range
analogs of the Perron-IFrobenius theory. To proceed further, we need the following
Wielandt’s lemma [W]:

Wielandt’s Lemma. Let A, B € M, and assume that A is nonnegative. If
|B| < A, then p(B) < p(A). Assume, in addition, that A is irreducible. If p(A) =
p(B) and & is a unit complex number such that £p(B) € o(B), then B = ({DAD™!
for some (unitary) diagonal matriz D.

In the above formulation of Wielandt's lemma, in order to emphasize its non-
trivial part, we have deliberately omitted the obvious converse part for its second
half {cf. [M, p. 36, Theorem 2.1]).

Now consider an irreducible nonnegative matrix A with index of imprimitiv-
ity m. By the Perron-Frobenius theory, we have e2™/™p(A) € o(A), and so by
the second half of Wielandt’s lemma (with B = A and £ = *"/™), 2™ 4 ig
{unitarily) diagonally similar to A. But the numerical range of a matrix is un-
changed if we apply a unitary similarity to the matrix, hence we have e2™/™W (A) =
W (e*m/™A) = W(A), i.e., W(A) is invariant under a rotation about the origin of
the complex plane through an angle of 27/m. But we also have w(A4) € W(4),
hence w(A)e?™/™ ¢ W(A) for t = 0,1,...,m — 1. This proves the easy half of
Theorem A. (An argument almost the same as the preceding one can be found in
[I, Theorems 6 and 7], except that Issos used the m-cyclicity of A to deduce the
diagonal similarity between A and e2"/™ A4 instead of applying Wielandt’s lemma.)
To prove the reverse inclusion, we need the following:

Proposition 3.7. Let A € M, be nonnegative, and suppose Re A is irreducible.
If & is a unit complex number such that {w(A) € W(A), then DAD™! = £A for
some unitary diagonal matriz D.

'To see how Proposition 3.7 can be used to establish the remaining inclusion for
Theorem A, consider any unit complex number £ for which &w(A) € W(A4). By
the proposition, £A is similar to A. But p(A) is an eigenvalue of A, hence so is
§p(A). By the Frobenius theorem for an irreducible nonnegative matrix, it follows
that £ must be an mth root of unity, where m is the index of imprimitivity of A.
This completes the proof of Theorem A.

Note that when A is an irreducible nonnegative matrix with index of imprimi-
tivity 1 (or, equivalently, when it is a primitive matrix, i.e., a nonnegative matrix,
one of whose powers is positive}, Theorem A tells us that the numerical range of
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A contains exactly one point with modulus w(A}, namely, w(A) itself. Our above
proof also covers this special case.

Theorem A first appeared in [I, Theorem 7] and then in [T, Corollary 2|;
whereas Proposition 3.7 is contained in [TY, Lemma 1], but not in [I]. The proof
given in [TY] for Theorem A is longer than necessary; it makes use of [TY, Lemma
1], but not in the best way. Graph-theoretic arguments as well as results from
(T2] are needed in [TY] to establish its Lemma 1. We shall give two proofs for
Proposition 3.7, which are self-contained and graph-free.

First Proof of Proposition 3.7: Since A is nonnegative, we have p(Re A) = w(A)}.
By Lemma 3.1(i}, we also have w(A4) = p(Re(£4)) = Amax(Re(£A4)), and hence
p(Re(£A)) = p(Re A). From the above, it is also clear that p(Re(£A)) is an eigen-
value of Re(£A). In view of |[Re(£4)| < Re A and the irreducibility of Re A, by
the second half of Wielandt's lemma, it follows that there is a unitary diago-
nal matrix D, say, D = diag(dy,...,d,), such that D(Re(€A))D ! = Re A, i.e,
D(EA+EAY D! = A+ A'. By equating the corresponding entries of both sides, we
obtain d.{fa,, + £asr)d, ! = ars + 0y for all v, s € (n). Since |d,£a,,d]'| = a,; and
|d aed] | = a5 (as |d.| = |ds| = |&] = 1), it follows that we have d.£a,.d;} = ar,
(and d,€as,d;" = ag) for all », s € (n). Hence, we have D(EA)D"! = A, or
DAD ! = €A. O

Our second proof of Proposition 3.7 will depend on the following numerical
radius analog of Wielandt’s lemma, which is of independent interest.

Lemma 3.8. Let A, B € M,, and assume that A is nonnegative. If |B| < A,
then w(B) < w(A). Suppose, in addition, that Re A is irreducible. If w(A) = w(B)
and & is a unit compler number such that Ew(A) € W(B), then B = EDAD™! for
some unitary diagonal matriz D,

Proof. The first half of this lemma can be readily proved by modifving the
argument given in the proof for the first half of Corollary 3.6. Alternatively, apply
the first part of Wielandt’s lemma to the pair of matrices Re(e'? B), Re A (where
# € R), and use the fact that for any matrix A, we have

w{A) = max{Ana(Re(e? 4)) 1 8 € R} = max{p(Re(e'?4)) : § € R).

The proof for the second half of this lemma runs parallel to a known proof for
the corresponding part of Wielandt’s lemma (cf. [M, pp. 37-38]). Let y be a unit
vector such that y*By = fw(A). Then

w(A) =" (EB)y < lyl'|Blly] < |yl*Aly| < w(A);

11



hence, the above inequalities all become equalities. Since |y|*Aly| = w(A) and Re 4
is irreducible, by the last part of Proposition 3.3, we have {y| > 0. Now, in view of

ly["(A ~ B){y| = w(4) —w(A) =0, A—|B| >0 and jy| >0,

we have |B| = A. Let D denote the unitary diagonal matrix diag(m /|m!, .. .. 7/ I7al),
where y = (ny,...,n,)". Then we have

lyi' D™ (EB)Dlyl = v (EB)y = w(A),

where the second equality has already been established above. But we also already
have [y*Aly| = w(A), so

W' D*(€B) Dly| = |y[tAly).

And since |D*(§B)D! = |B| = A and [y| > 0, it follows that £D'BD = A, or
B=¢(DAD !, .

Second Proof of Proposition 3.7: Apply Lemma 3.8 with B = A. O

It is easy to show that for any A € M,, and any unit complex number &, if 4 is
(unitarily) diagonally similar to £ A, then Re A is also (unitarily) diagonally similar
to Re(£A) (see [TY, Remarks 2,4,5]). The converse is not true in general. In [TY,
Lemma 2] it is shown that the converse is true if we assume, in addition, that the
entries of A satisfy a,,a,, = 0 for all v, s € (n). In view of the argument given in
the last part of the first proof of Proposition 3.7, we now have another situation
when the converse is true:

Remark 3.9. Let A be a nonnegative matrix. For any unit complex number
¢, €A is diagonally similar to A if and only if Re(£A) is diagonally similar to Re A.

The above remark is actually implicit in the work of [TY]. This is because, by
[TY, Lemma 3], we readily obtain our remark under the additional assumption that
Re A is irreducible (as Apnax(Re(£A4)) = Amax(Re A) whenever Re(£A) is similar to
Re A), and then after a simple calculation we can drop the additional assumptior:.
Certainly, our present proof s more direct and easter.

For more equivalent conditions for fw(A) € W(A) (when A is nonnegative and
€| = 1), see [TY, Lemma 3].

We would like to make another observation.

Corollary 3.10. Let A be a nonnegative matriz with trreducible real part. Let
€ be a unit complez number such that Ew(A) € W(A). Then the subspace {z €
C": z* Az = w(A)||z||*} is of dimension 1.
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Proof. By Lemma 3.1, the set {z € C": z* Az = fw(A)||z?|!} is equal to the
eigenspace of Re(£A) corresponding to Amac(Re(£€4)) (= w(A)). By the first
proof of Proposition 3.7 or by the proposition itself {and Remark 3.9), Re(£A)
is diagonally similar to ReA. Since Re A is irreducible nonnegative, by the
Perron-Frobenius theory, p(Re A) (= w(A)) is a simple eigenvalue of Re A. Hence,
Amax(Re(€4)) is also a simple eigenvalue of Re(€A), and the said subspace is of
dimension 1. g

We are going to extend Theorem A to the case when A is a nonnegative matrix
with irreducible real part.
For any A € M, it is easy to verify that the set

H={{cC: )¢ =1, £Ais (unitarily) diagonally similar to A}

forms a subgroup of the group of all unit complex numbers, and moreover it is
included in the set {£ € € : & = 1, EW(A) = W(A)}. If A is nonnegative,
then since w(A) € W(A}, the latter set, in turn, is included in {§ € C : |£] =
1, éw(A) € W{A)}. Now assume, in addition, that Re A is irreducible. Then, in
view of Proposition 3.7, the three sets are all equal. The group H may be infinite
or finite. If H is infinite or has more than n elements, then the numerical range
of A contains more than n points with modulus equal to w{A). In this case, by a
known result due to Anderson (see, for instance, [TY, Lemma 6]}, W(A) is equal to
the circular disk with center at the origin and radius w(A). Hence, H is precisely
the group of all unit complex numbers. On the other hand, if H is a finite group,
say with order m (< n), then by Lagrange’s theorem in group theory, for any
£ € H, we have £™ = 1, i.e., each element of H is an mth root of unity. But the
cardinality of H is m, so it follows that H is precisely the group of all mth roots
of unity. Summarizing, we have, in fact, established the following:

Proposition 3.11. Let A be a nonnegative matriz with irreducible real part.
(i) For any unit complex number £, the following conditions are eguivalent:

(a) €A is diagonally similar to A.

(b) EW(A) = W(A).

(e} Ew(A) € W(A).

(i) The set {E€ C: [€]| =1, Ew(A) € W(A)} is a group under multiplication,
and 13 either the group of all unit compler numbers or is o finite (necessarily cyclic)
subgroup of it.

(iil) If W(A) is not a circular disk with center at the origin, then

{zeW(A): 2] = w(d)} = {w(A)e™: t=0,1,...,m — 1},
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where m is the largest positive integer such that A is diagonally similar to e2™/™m A,

So far we are graph-free. Next, in terms of certain graph-theoretic concepts, we
are going to rewrite part (iil) of Proposition 3.11 in a readily usable form.

In [T1, Theorem 1], the second author gave equivalent conditions on a complex
matrix A with the property that the numerical range of any matrix with the same
digraph as A is a circular disk centered at the origin. One equivalent condition
is that A is permutationally similar to a block-shift matrix. Another equivalent
condition is that all cycles of G(A) have zero signed length. In [TY, Theorem
1], a long list of further new equivalent conditions were added. In particular,
rather unexpectedly, it was found that in the case when A is nonnegative and
has a connected undirected graph (or equivalently, with irreducible real part), the
condition that W(A) is a circular disk centered at the origin is also an equivalent
condition.

On the other hand, by [T2, Theorem 4.1], for any A € M, and any positive
integer k, if A is k-cyclic, then A is diagonally similar to ¢*™/* A4; if, in addition, the
digraph G{A) has at least one cycle with nonzero signed length, then the converse
also holds.

In view of the above (and Remark 2.2), we can now rewrite Proposition 3.11
(iii) as follows:

Theorem 3.12. Let A be a nonnegative matriz with connected undirected graph.
Suppose that the digraph G(A) has at least one cycle with nonzero signed length.
Then

{ze W(A): lz| = w(A)} = {w(A)e*™ /™ m=0,1,...,m—1},
where m 1s the cyclic indez of A.

By [T2, Corollary 4.2 (i)}, when the digraph G(A) has at least one cycle with
nonzero signed length (A not necessarily nonnegative), the cyclic index of A is
equal to the greatest common divisor of the signed lengths of the cycles in G(A).
S0, the cyclic index m considered in Theorem 3.12 can be determined.

We have already offered a self-contained proof (via Proposition 3.7) for Theorem
A. Now let us show that Theorem A can be recovered also from Theorem 3.12: If A
is irreducible, then, by part (iit) of the above-mentioned corollary of [T2], the cyclic
index of A is also equal to the greatest common divisor of the circuit lengths of
G(A). But it is well-known (see, for instance, [BP, p. 35, Theorem 2.30]) that the
index of imprimitivity of an irreducible nonnegative matrix is equal to the greatest
common divisor of the circuit lengths of its associated digraph. And, of course, the
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digraph of an irreducible matrix, being strongly connected, has at least one cycle

with nonzero signed length (as every circuit can be regarded as a cycle with signed

length equal to its length). Hence, we can recover Theorem A from Theorem 3.12.
More generally, we have the following:

Remark 3.13. Let A be a nonnegative matrix whose digraph has at least
one cycle with nonzero signed length. Suppose A is permutationally similar to
AL @ --- 9 Ay, where A, ..., A; are nonnegative matrices each with connected
undirected graph. Then:

(1) The cyclic index of A equals the greatest common divisor of the cyclic indices
of those A; whose digraphs have cycles with nonzero signed lengths.

(ii) The set {£ € C: || =1, &w(A) € W(A)} is equal to U;{ € C: [¢] =
1, Ew(A;) € W(A;)}, where the union is taken over all j for which w(A;) = w(A).
If there is at least one j for which w(A;) = w(A4) and the digraph G(A;) has no
cycles with nonzero signed length, then W{A) is a circular disk and, consequently,
the above set is precisely the group of all unit complex numbers. Otherwise, the set
is a union of certain Z,’s, where Z, denotes the group of all complex pth roots of
unity, and moreover it always includes the set {w(A)e2™/™ : t =0,1,... ,m — 1},
where m is the cyclic index of A.

4 Nonnegative Matrices whose Numerical Ranges are Regular
Polygons

In his thesis [I, p. 24] Issos asked the question of when the numerical range of
an irreducible nonnegative matrix is a regular (convex) polygon (with center not
necessarily at the origin). In [TY, Problem 2] Tam and Yang also posed the problem
of characterizing nonnegative matrices whose numerical ranges are regular polygons
with center at the origin. In this section, we are going to treat these problems.

A point « lying on the boundary of W(A) is called a sharp point of W{A) if
W(A) is included in an angular sector with apex at @ and angle less than =. For a
nonnegative matrix A, if W(A) is a polygon, then w(A) (being an extreme point) is
necessarily one of the vertices and hence is a sharp point of W{A). The problem of
characterizing when w(A) is a sharp point of W{A4) for a nonnegative matrix A has
been solved by Tam and Yang [TY, Theorem 4]. But we are going to rederive the
result in a different way, relying ourselves on a general result about radial matrices.
As the reader will see, our present approach has the merit that it gives us a better
understanding, throws light on a known result in [NT] and in addition yields more
new results.
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A matrix A € M, is called spectral if p(A) = w(A); A is radial if ||A|l = p(A)
or, equivalently, w(A) = ||4||. (For equivalent conditions on a radial matrix or a
spectral matrix, see [HJ2, p. 45, Problem 27; pp. 61-62, Problem 37].)

Proposition 4.1. Let A € M,, be a radial matriz. Then:

(i) There ezists a unitary matriz U € M, such that U*AU = D @ B, where D
is a diagonal matriz each of whose diagonal entries 1s of modulus w(A) and B is a
(possibly empty) matriz that satisfies w(B) < w(A).

(ii) W(A) is the convex hull of the polygon whose vertices are all the points in
W(A) with modulus w(A) and a (possible empty) compact conver set, included in
the open circular disk centered at the origin with radius w(A).

(iii) Every point z in W (A) with modulus w(A) is a sharp point.

Proof. Part (i} was proved in [P]. Part (ii) follows from the fact that W(A) =
conv(W (D) UW{(B)), where W(B) is in the open disk centered at the origin with
radius w(A). Part (ii) follows readily from (iii). O

Concerning the problem of characterizing when w(A) is a sharp point, we treat
the case of a nonnegative matrix with irreducible real part first. The following
result is a strengthening of [TY, Remark 16]. We give an independent proof.

Theorem 4.2. Consider the following conditions for a nonnegative matriz A:

A 18 spectral.
p(A) = p(Re A).

(i) We always have the implications (a) = (b) == (c) <= (d) == (e).

(ii) When Re A is irreducible, conditions (a)-(e) are all equivalent.

(iii) If Re A is irreducible and conditions (a)-(e) are all satisfied, then A is
necessarily irreducible.

Proof. (i) (a)==(b): This follows from Proposition 4.1 (ii), as we always have
w(A} € W(A) for a nonnegative matrix.

(b)==(c): This follows from a result of Kippenhahn [HJ2, Theorem 1.6.3],
which says that if « is a sharp point of W{A), where A is any complex matrix,
then o must be an eigenvalue of A.

The equivalence of (¢) and (d) follows from the relation w(A) = p(Re A) for a
nonnegative matrix A.
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The implication (¢)==(e) can be deduced from known results about normal
eigenvalues; see {HJ2, Theorem 1.6.6 and Section 1.6, Problem 11]. To make this
proof self-contained, we offer an argument: Let z be a unit nonnegative eigenvector
of A corresponding to p(A). Then

' (Re A)z = z' Az = p(A) = w(4).

Since A is nonnegative, w(A) is also equal to Apnax(Re A}, This, together with our
choice of z, implies that x is the desired common nonnegative eigenvector of A and
At corresponding to p(A) (= Apa(Re A)).

(i) In view of part(i), it suffices to show that when Re A is irreducible, we
have the implication (e)==(a}. Let z be a common nonnegative eigenvector of A
and A' corresponding to p(A). Then clearly z is also a nonnegative eigenvector
of the irreducible nonnegative matrix Re A (corresponding to p(A4)). As such, z
must be a positive vector (see, for instance, [M, p. 7, Theorem 2.2]). But we
also have A'Az = p(A)%z, and it is well-known that a positive eigenvector of a
nonnegative matrix must correspond to its spectral radius (see, for instance, [HJ1,
Corollary 8.1.30]), so p(A*A) = p(A)?. Hence we have [|A||? = p(A*A) = p(A)?, or
I|A|| = p(A4), i.e., A is radial.

(iii) It suffices to show that if A is a nonnegative matrix with irreducible
real part, and if A is spectral, then A is irreducible. We assume to the con-
trary that A is reducible. By applying a permutation similarity, we may assume
that A is already in the Frobenius normal form, i.e., a (lower} triangular block
form with, say, p irreducible blocks Ai1,..., Ay, along the diagonal (see, for in-
stance, [BP, p. 39]). Let B denote the matrix 4;; © -+ & Agp. Then we have
p(A) = max,cj<p p(A;} = p(B). Since A is reducible and the undirected graph of
A is connected, clearly we have p > 2, A > B and 4 # B. By Corollary 3.6, it
follows that we have w(A) > w(B) > p(B) = p(4), which is a contradiction. O

Our next example will show that, for a general nonnegative matrix 4, the
missing implications in Theorem 4.2 (i) do not hold in general.

Example 4.3. Consider the nonnegative matrix A = 4; & A,, with 4; = [1]

0 «
0 0

we have p(A) = 1, w(Ad) = max{l,a/2} and [jA|| = max{l,a}. Moreaver,
W(A,) = {1}, W(A2) is the circular disk centered at the origin with radius a/2,
and W(A) = conv(W(A;) UW{Ay)). It is clear that A and A' always have a
common nonnegative eigenvector corresponding to p(A) (= 1), namely, the vector

and A, = { }, where « is a positive number to be chosen. Note that
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(1,0,0)". If @ > 2, then w(A) = /2 > p(A4), and so A is not spectral. This
shows that for the conditions (a)-(e) of Theorem 4.2, (¢)=%(c). If @ = 2, then
p(A) = w(A4) =1 and so A is spectral. However, in this case, W (A) is the circular
disk centered at the origin with radius w(A), and w(A) is not a sharp point of
W{(A). This shows that (¢)=#(b). Finally, if 1 < o < 2, then clearly w(A)} is a
sharp point of W(A). Since ||A|| = @ > 1 = p(A4), A is not radial. This shows that

(b)=(a).

It is clear that we can use Theorem 4.2 (and an argument given in the first
paragraph of the proof of [TY, Lemma 5]) to recover [TY, Lemma 5]. Now we use
Theorem 4.2 to derive [TY, Theorem 4J:

Corollary 4.4. Let A be a nonnegative matriz, and suppose A is permutation-
ally similar to Ay B - - @ A, where Ay, ..., Ay are nonnegative matrices each with
connected undirected graph. A necessary and sufficient condition for w{A) to be a
sharp point of W(A) is that, for any j, 1 < j <k, we have

(a) If p(A;) = p(A), then A; is itself an irreducible matriz and p(A;) = w(A;).

(b) 4f p(A;) < p(A), then w(4;) < p(A).

Proof. “Necessity”: Consider any j € (k) for which p(A;) = p(A). Since w(A)

is a sharp point, of W (A), we have p{A) = w(A} > w(A;) > p(A;) = p(A), hence

w(A;) = p(Ay), i.e., Aj is spectral. Since Re A; is 1rreduc1ble by Theorem 4.2 (ii)
and (111) it follows that A, is irreducible.

Now consider any j € (k) for which p(A;) < p(A4). If w(A;) = p(A), then we
have p(A;) < w(4;), and so w(A4) (= w(A;)) is not a sharp point of W(A4;), and
hence also not a sharp point of W(A), which is a contradiction.

“Sufficiency”: When conditions (a) and (b) are satisfied, clearly we have w({A) =
max;<j<x W(A;) = p{A). For any j for which p(4;) = p(A4), by condition (a) and
Theorem 4.2, w(A;) is a sharp point of W(4,) and the matrix A; is radial. More-
over, by Proposmon 4.1 (ii), for any such j, W(4;) is the convex hull of w(A)
(= w(Aj)) and some compact convex set C; not containing w(A). On the other
hand, if j is such that p(A;) < p(A), then, by condition (b), W(A;) is a compact
convex set not containing w(A) (= p(A) > w(A;)). It is clear that the convex
hull of all C; for which p{A;) = p(A) and all W(A;) for which p(4;) < p(A) is a
compact convex set C' that does not contain w(A). But W(A) is the convex hull
of w(A) and C, hence w(A) is a sharp point of W{A). ;

In [NT, Theorem 1.2] Nylen and Tam proved that if A is a primitive doubly
stochastic matrix, then W (A} is symmetric about the real axis and is the convex
hull of the point 1 and a compact convex set included in the open unit disk.
Motivated by their result, we have the following for a nonnegative matrix:
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Proposition 4.5. Let A be a nonnegative maotriz, and suppose A is permu-
tationally similar to Ay @ - @ Ay, where Ay, ..., Ay are nonnegative matrices
each with irreducible real part. If w(A) is a sharp point of W(A), then we have
W(A) = conv(PJC), where P is the polygon with vertices consisting of all points
in W(A) with modulus w({A), and C is some compact conver set included in the
open circular disk centered af the origin with radius w(A).

Proof. Since w(A) is a sharp point of W{A), conditions {(a) and (b) of Corollary
4.4 are fulfilled. Consider any j € (k). If p(A4;) < p(A), then W(A;) is a compact
convex set included in the open circular disk centered at the origin with radius
w(A). If p(A;) = p(A), then w(A;) is a sharp point of W (A;) (see the “necessity
part” of the proof of Corollary 4.4), and by Theorem 4.2 (ii), the matrix A; is
radial. In this case, by Proposition 4.1 (ii), W(A;) is the convex hull of a polygon
with vertices all of modulus w(A;} (= w(A)) and some compact convex set in-
cluded in the open circular disk centered at the origin with radius w(A). In view of
W(A) = conv(W (A} U---UW(AL)), it is ready to see that our assertion follows.O

Corollary 4.6. Let A be a primitive matriz. If A satisfies one of the conditions
(a)—(e) in Theorem 4.2, then W(A) is symmetric about the real azis and is the
convez hull of the point p(A) and ¢ compact convez set included in the open circular
disk centered at the origin with radius p{A).

In view of Theorem 4.2 (iii) and the following result, in solving the problem of
characterizing nonnegative matrices whose numerical ranges are regular polygons
with center at the origin, we may focus our attention to irreducible nonnegative
matrices.

Theorem 4.7. Let A be 0 nonnegative matriz. Suppose A is permutationally
similar to A} @ - - @ Ag, where Ay, ..., Ay are nonnegative matrices each with
irreducible real part. Then W(A) is a regular polygon with center at the origin if
and only if there exists s € (k) such that W(A;) is a regular polygon with center at
the origin, and for every j € (k), j # s, we have W{A;) C W(A,).

Proof. The “if” part is obvious. Since w(A) is always an extreme point of
W(A) (as A is nonnegative), to prove the “only if” part, we may suppose that
W (A) is the regular polygon with center at the origin given by

W(A) = conv {w(A)e™ ™ t+=0,1,...,m ~ 1} for some m > 2.
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By our assumption on A, clearly, W(A) = conv(W{A4}U---UW{(A;)). But
w(A)e®™/™ is an extreme point of W(A), so it must belong to one of the sets
W(A;),. .., W(Ag), say, W(A;). Then w(A,} = w(A) and, by Proposition 3.11
(i), W(A;) contains each of the points w(A4)e*™™ ¢ =0,1,...,m — 1. Hence, by
the convexity of the numerical range of a matrix, we have

W(A,) D conv {w(A)e* /™t =0,1,...,m -1} = W(A).
Certainly, we also have W{A,;) C W{(A4). So our assertion follows. O

We would like to mention that a similar result also holds for the question of
when a general complex matrix has a circular disk with center at the origin as its
numerical range (see [TY, Theorem 3]). We also want to emphasize that in Theorem
4.7 the nonnegativity assumption on A cannot be dropped. Counterexamples can
be easily constructed.

An application of Theorem 3.12 yields the following related result:

Proposition 4.8. Let A be a nonnegative matriz with connected undirected
graph. Suppose that the digraph G(A) has at least one cycle with nonzero signed
length. Assume that the cyclic indez of A is greater than 1. Then W{A) cannot be
a circular disk, and moreover if W(A) is a regular polygon then its center must be
at the origin.

Proof. Let m (> 1) be the cyclic index of A. Assume first that W (A4) is a circular
disk. In view of Theorem 3.12, each of the m points w(A)e*™ /™ t =0,1,...,m—1,
is an extreme point of W{A). Certainly, all of them lie on the circumference of
the circular disk W (A), and the center of the disk must be equidistant from all of
them. It follows that the center of the disk is the origin of the complex plane. In
other words, W{A) is the circular disk with center at the origin and radius w({A),
in contradiction with the result of Theorem 3.12.

The same argument also shows that if W(A4) is a regular polygon, then its center
must be at the origin. @

Corollary 4.9. If A is an irreducible nonnegative matriz with indez of imprim-
itivity greater than 1, then W(A) cannot be a circular disk.

It seems plausible that this is the case for any irreducible nonnegative matrix
A. Here we verify it for 2-by-2 matrices.

Proposition 4.10. No irreducible nonnegative 2-by-2 maetriz can have a cir-
cular disk as its numerical range.
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Proof. Let A = [ z be a 2-by-2 irreducible nonnegative matrix whose nu-

b
d
merical range is a circular disk with center A and radius v. It is known that in this
2r
0 A |
We have a + d = 2) and ad — be = A% It follows that ad — bc = (@ + d)?/4, and
thus 0 < {@ — d)? = —4bc < 0. This shows that b = 0 or ¢ = 0. In either case, A is
reducible contradicting our assumption. g

case both eigenvalues of A are equal to A and A is unitarily similar to

An alternative way to complete the proof of Proposition 4.10 is to apply the

é 2;], we have, A

Perron-Frobenius theory: since A is unitarily similar to [
equals p(A) and is not a simple eigenvalue, contradiction.

The preceding argument can also be used to show that if A is a 3-by-3 or 4-by-4
primitive matrix with zero trace, then W (A) cannot be a circular disk. For if W ({A)
is a circular disk with center A, then by [CT, Remark 2] A is a (real) eigenvalue of A
with multiplicity at least two, hence A < p{A). On the other hand, by Corollary 3.4
and also the fact that p(A) is the only eigenvalue of A with modulus p{A), A must
be a positive number. If A is 3-by-3, then tr 4 = p(A4) + 2X > 0, contradiction. If
A is 4-by-4, then the eigenvalues of A are p(A), A, A, and —(p(A) + 2}), which is
again a contradiction, as |—(p(A4) + 2A)| > p(A).

In [NT, Example 4.5] Nylen and Tam gave an example of an irreducible doubly
stochastic matrix with index of imprimitivity two for which W(A) is not a line
segment {2-polygon). In related to that, we make the following simple observation:

Remark 4.11. Let A be a real matrix. Then W(A) is a line segment if and
only if either A is symmetric or A is the sum of a real scalar matrix and a skew-
symmetric matrix. If A is nonnegative, then W{A4) is a line segment if only if A is
symmetric.

Indeed, first note that W (A) is symmetric with respect to the real axis for
the real A. Hence if W(A) is a line segment, it will either be lying in R or be
perpendicular to R. In the former case, A is symmetric. For the latter, assuming
that W(A} lies in the vertical line z = a, we have W(i(4 — al)) C R. Thus
A =al + B with B = —i(i(A — al)) skew-symmetric. The converse is trivial. If A
is nonnegative and W (A) is a line segment, then W{A) cannot be perpendicular
to the real axis for otherwise w(A) would not be in W{A). In this case, W{4) C R
and hence A is symmetric.

The more general question of when the numerical range of an irreducible non-
negative matrix is a regular polygon with center at the origin is actually already

21



answered by Tam and Yang [TY, Remark 15];

Remark 4.12. For any irreducible nonnegative matrix A with index of im-
primitivity m > 2, W(A) is a regular polygon (necessarily with center at the
origin) if and only if W(A) = conv {p{A)e*™/™ : ¢t =0,1,...,m — 1}.

Remark 4.12 also settles Issos’s question, mentioned at the beginning of this
section, for almost all cases except for the primitive matrix case. Qur argument
can also be used to show that, if A is a primitive matrix, then W(A) can never be
a regular polygon with center at the origin. Certainly, there are primitive matrices
whose numerical ranges are regular polygons. For instance, take an irreducible
nonnegative matrix A with index of imprimitivity m > 1 such that W(A) is a
regular polygon with center at the origin. Then for any o > 0, A + af is a
primitive matrix whose numerical range is a regular polygon {with center at o).
The problem of characterizing primitive matrices with regular polygons as their
numerical ranges remains open.

Contrary to what is said in [TY, p. 218, first paragraph], the condition given
in Remark 4.12 can be transformed to a checkable condition. First, we observe the
following:

Lemma 4.13. Let A € M,. Let p be a positive real number and let m > 2 be
a given positive integer. In order that

W (A) C conv {pe?™/™ . t =0,1,...,m — 1},
i 15 necessary and sufficient that for t =0,1,...,m — 1, we have
Amax (Re(e”E=D7/m A)) < peos T—Z—

Proof. The polygon conv {pe?™/™ : t = 0,1,...,m — 1} can be expressed as

ﬂ;’i‘ol H;, where H, is the closed half-plane given by:
2t -1 —1
H = {z:x—l—z’y eC: mcosu—#ysinu < pcosl}.
m m m

In order that W{A) be included in the said polygon, it is necessary and sufficient
that W(A4) C H; for all . Now W(A) C H, if and only if W{e~#-1m/m 4) js
included in the half-plane {z € C: Rez < pcos(nr/m)}, and the latter condition
is fulfilled if and only if Ay (Re(e ~U7/mA)} < pcos(n/m). So our assertion
follows. a

Now we have the following:
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Proposition 4.14. Let A be an irreducible nonnegative matriz with index of
imprimitivity m. In order that W(A) be a reqular polygon with center at the origin
it is necessary and sufficient that the following conditions are both satisfied:

(a) p(4) = p(Re(A))

(b) Fort =10,1,. — 1, Amax(Re(e™EDm/mA)) = p(A) cos(m/m).

(In condition (b), we may repZace the last equality by “<".)

Proof. “Necessity”: Suppose that W(A) is a regular polygon with center at the
origin. Then w(A) must be a sharp point of W(A) and, as noted before, condition
(a) necessarily holds. Furthermore, by Remark 4.12, in this case we have

W (A) = conv {p(A)e*™™ . t =0.1,...,m —1}.
It follows from Lemma 4.13 that for £ =0,1,...,m — 1, we have

Amax(Re(e™E0mm 4)) < p(4) cos %
Here we can replace each of the latter inequalities by an equality, because W{A) is
precisely the convex hull of the m points p(A)e?™/™ t =0,1,...,m — 1, not just
a subset of it. So we have condition (b}.

“Sufficiency”: Again by Lemma 4.13, condition (b) implies that W{A4) is in-
cluded in the regular polygon with vertices p{A)e?™/™ t =0,1,...,m — 1. These
are the same as w(A)e?™™ by condition (a). But by Theorem A, W(A) also con-
tains each of these m points. Hence, W{A4) is equal to the said regular polygon. O

In view of Corollary 4.4, Theorem 4.7 and Proposition 4.14, in theory (assuming
that all numerical quantities can be computed exactly), we can determine whether
the numerical range of a nonnegative matrix is a regular polygon with center at
the origin in the following way:

By a permutation similarity, we may rewrite the given nonnegative matrix A
as A1 @ - @ Ag, where Ay, ..., Ag are each nonnegative matrices with connected
undirected graph. Then we follow the steps given below. If we obtain positive
answers at each step, then W (A) is a regular polygon with center at the origin.
Otherwise, W{A) is not.

Step 1. For each 7 = 1,...,%, determine the values of p(A;) and w(A;) (=
p(Re A;)). (Then p(A) = maxy<;<k p(4;) and w(A) = max;c;<xw(A4;).) Answer
the following question: Is there a 7 such that p(A;) = p(A) and A; satisfies the
criterion for W(A;) to be a regular polygon with center at the origin, as given by
Proposition 4.14 7
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Step 2. Let A denote the set of all j for which p(A;) = p(A) and W(A,) is a
regular polygon with center at the origin. For each j € A, determine the index
of imprimitivity m; of A; (for instance, by finding the greatest common divisor of
the circuit lengths of G(A;)). Answer the following question: Is there a j; € A
such that m; divides m;, for each j € A7 (If such j; exists, hopefully W(A) equals
W(4,).)

Step 3. Answer the following question: Is it true that, for each j for which
p{A;) < p(A) or p(A;) = p(A) but j ¢ A, we have W(A;) C W(A;)? (Use Lemma
4.13 here.}

If we expect that W{A) is not a regular polygon with center at the origin, we may
also add the following step at the beginning:

Step 0. For j =1,...,k, determine p(A,) and w(A;) (= p(Re 4;)). Answer the
following questions:

(i) Is p(A) = w(A)?
(ii} For each j for which p(A;) = p(A), is A; an irreducible matrix and do we
have p(A;) = w(A;)?
(iii) For each j for which p(A;) < p(A), do we have w{A;) < p(A)?
(If the answers are all “yes”, then w(A)} is a sharp point of W(A).)

Now we would also like to address the question of when the numerical range of
a nonnegative matrix A has weak circular symmetry, i.e., e2™/™W (A) = W (A} for
some integer m, 2 < m < n, where n is the size of A. The question was solved for
the special case when the undirected graph of A is connected (see [TY, Theorem
2]}). Clearly, the convex sets W(A) and W (e?"/™A4) are equal if and only if they
have same supporting lines in all directions. So one may give the following answer
to the above question:

W(A) if and only if

627ri/mW( ):
= Amax(Re{e®+27/m) 4} o ¢ [0, 27).

Amax(Re(e? A))

But this is not a satisfactory answer, as there are infinitely many conditions we
need to check. One may also try to reduce the problem to the case of a nonneg-
ative matrix with connected undirected graph, and suspect that a result similar
to Theorem 4.7 or [TY, Theorem 3] also holds for the question of weak circular
symmetry. The following example shows that this is not the case.

Example 4.15. Choose an irreducible nonnegative matrix A; whose numerical
range is the triangle /A = conv{1, e*™/* ¢'/3}  Also choose a nonnegative block-
shift matrix A, with connected undirected graph such that the numerical range of
A, is a circular disk, centered at origin, radius r, where r is greater than the radius
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of the inscribed circle of A but is less than that of the circumscribed circle. Now
let A = A; @ Ay. Then e2™/3W{(A) = W(A), but we have neither W{A;) C W (A,)
nor W(As) C W(A,).

Note that in the above example W(A) is not a polygon. But by modifying the
example, we can easily construct one in which W (A) is a (nonregular) polygon.
The method of construction of our examples also suggests the following question:

Question 4.16. Let A be a nonnegative matriz which is permutationally sim-
ilar to A, @ -+ - @ Ay, where Ay, ..., Ay are nonnegative matrices cach with a con-
nected undirected graph. If, for some positive integer m > 2, we have e*™/™W (A) =
W (A), does it follow that there exist distinct indices iy,...,1, € (k), p > 1, such
that ™MW (A;) = W(A;,) forr = 1,...,p, and W(A;) € conv(W(A;)U---U
W(Ay)) for all j #i1,...,4,7

We do not know the answer to the above question even when W(A) is assumed
to be a polygon. Also, note that if we drop the nonnegativity of A, the answer to
the above question is clearly “no”.
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T :V — V alinear mapping, S C V st.span S =V,
T preserves (resp., strongly preserves) S if T(5) C S (resp., T(S) = 5).

P(n) : the group of n x n permutation matrices;
A(n) : the group of n X n even permutation matrices;
DS(n) : the set of m x n doubly stochastic matrices;
SDS(n) : the set of n x n symmetric doubly stochastic matrices.
E(C) : the set of extreme points of the convex set C.

Theorem A (Li, Tam & Tsing). LetT be a linear map on span(DS(n)).
T.F.A.E.

(a) T(DS(n)) = DS(n).

(b) T(P(n)) = P(n).

(¢) T is given by T(X) = PXQ or T(X) = PX'Q for some P,Q € P(n).
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Lemma A (Chiang & Li). For n > 4, span A(n) = span DS(n) =
the space of n X n real matrices with equal row and column sums.
Theorem B (Chiang & Li).
(1) A(2) = {I2}; the identity operator is the only strong linear preserver.
(ii) A(3) consists of 3 lin. indep. matrices; so T(A(3)) = A3) iff T
permutes the elements of A(3).
(i) Hy:={Pe A(4): P*=1,}
= {14, P((1,2,)(3,4)), P((1,3,)(2,4)), P((1,4)(2,3)) };
Hi, H,, cosets of Hy in A(4);

If T' is a strong linear preserver of A(4), then

HN._ANH@.V = mf \.Qﬁ.w. = Ou “_.um \Esmb A?“ous.fg.ww = A_ﬁO“ nguv A*v



Conversely, if ¥ : A(4) — A(4) is a bijection s.t. () holds, then v
can be extended uniquely to a linear map on span A(n).

(iv) Let n > 5. A linear map T : span A(n) — span A(n) satisfies
T(A(n)) = An) iff 3 P, Q € P(n) with PQ € A(n) s.t. T is given
by :

T(X)=PXQ orT(X)=PX'Q.

Theorem 1 (Lin & Tam). Let T be a linear map on span SDS(n),

n>3. TFAE.:

(a) T(SDS(n)) = SDS(n).

(b)IP € P(n) s.t. T(X)=P'XP VX.

The implication (b) == (a) is obvious.

Will sketch the proof of (a) == (b).



Hereafter, we assume that T is a strong linear preserver of SDS(n).

We need the following characterization:

Theorem (M. Katz, 1970): The extreme points of SDS(n) are those
matrices which are permutationally similar to direct sum of (some of) the

following three types of matrices:
(i) [1], 1 x 1 matriz,

(i1) 01 , 2 X 2 matriz,
10
Y 1/2
12 0 1/2
(i) /2 0 - k>3, odd.
1/9
1/ 2 0|




Lemma 1. C, := the collection of all transposition matrices of P(n).

Then Co U {1,} is a basis for span SDS(n).
Assertion 1. T(I,) =T(1l,).
A difficult part of the proof, will come back later.

I

I

the n X n matrix with all entries equal 1

In — I

I

o~ ~—

Assertion 2. T(J,) = J,.

T permutes the elements of £(SDS(n)).

T Y Pl=)TMP)=) P

Pe £(SDS(n))



By symmetry, Y~ P = msN:Jr\FH: where 3, v, > 0. So T fixes Q:?Jr\?ww.
But T also fixes I, so T fixes My

Assertion 3. T(Cy) = Cs.

T fixes Mummnw A, as the latter equals J + A:LV%TS I,: so

(n—2)Cs) = ) trA

A
E)
l
e
)
»7

hence T(A) € C; V A € Cs.

Assertion 4. Suppose that T(P(i,7)) = P(p,q) and T(P(k,l)) = P(r, s).
If {i,7} N {k,l} is a singleton, then so is {p,q} N {r, s}.
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Assertion 5. 3P € P(n) s.t. T(X)= P'XP VX € (C,.

In view of Lemma 1 and Assertion 5, we have (a) = (b).

Now back to the proof of Assertion 1, that T'(1,,) = I,.

In [Li-Tam-Tsing|, by replacing 7" by T defined by ﬂ@m ) =T(I,)'T(X), it
is assumed that a strong linear preserver T" of DS(n) fixes I,,.

Here we exploit the concept of neighborly extreme points of a polytope.

Two extreme points x, y of a polytope C are neighborly if the line segment

T+Y

-7) contains precisely

joining x, y 1s a face of (', or equivalently, the face ®(

two extreme points, namely, x and y.
N(z) :={y € E(C) : y is neighborly to z} (z € £(C)).

Let T be a strong linear preserver of C. Then TN(x) = N(T'z) Vz € £(C),
T maps & = {x € £(C) : |N(z)| = k} onto itself, for any k € Z,, and
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Ve € E(C), |Ex N N(x)| =|ENN(Tx)| Yk € Z,.

By the graph of an n x n symmetric matrix A, denoted by G(A), we mean
the graph with vertex set (n) :={1,...,n}, where (¢, 7) is an arc iff a;; # 0.

We call a graph an LOCC graph if its connected components are each either
a line segment or an odd cycle (including a loop).

By Katz’s theorem, for any A € £(SDS(n)), G(A) is an LOCC graph.

Two LOCC graphs G, H on the same vertex set are neighborly if their union
(G U H contains G and H as its only spanning LOCC subgraphs.

For any A, B € £(SDS(n)), A and B are neighborly iff the LOCC graphs
G(A) and G(B) are neighborly.

N(G) := collection of LOCC graphs neighborly to G.

G .= collection of LOCC graphs on (n) having precisely i line

1



segments among their connected components.

Theorem 2. Givenn € Z,, n > 3. Fori =0,...,[n/2], |N(G)| is
independent of the choice of G from G7'. If N denotes the common value
of IN(G)| for G € G?, then

Ng < N{ < -+ < Np o

Assuming Theorem 2, we have

Proof of Assertion 1. Forcach¢=0,...,[n/2],

ET :={A € £SDS(n)): G(A) € G}}
= {A € £(SDS(n)) : [N(4)| = N}'}

So T(E!) = E!



For even n:

We have Mummm_ p A= QaHH for some «, > 0, so T fixes Hﬁ But T also

fixes Mmmmabm?: A, which is of the form 5,1, + Q\:H.@ with 5,, v, > 0.
So T fixes I,,.

For odd n, n > 5 (n = 3 can be treated separately):
We have ) ,. B A = ay, J,, for some a,, > 0, so T fixes J,.
We have Ey o ;= LUT,

where £ := {A € Ej, 5 ; : G(A) contains three loops}

T = {A € Ej 51 : G(A) contains a 3-cycle}.
Using a technical lemma on LOCC graphs, we show that T" preserves the sets

L and T. So T fixes Y ,. + A, which is of the form wJ,, where w > 0. But we
already have, T fixes J,, so T fixes I,.

I
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The proof of Theorem 2 relies on the following:

Theorem 3. A connected graph s the union of two neighborly LOCC

graphs iff it is one of the following:
(a) a path of length > 1 with odd cycles attached at its two ends (such
that the path and the two odd cycles are pairwise internally disjoint);

(b) an odd cycle of length > 3 with an odd path (open or closed, internally
disjoint from the cycle) joining two (not necessarily distinct) vertices
of the cycle; or

(¢) an even cycle of length > 4.

The proof of the “it” part is more straightforward.

For instance,
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(a)

1
tho
-
6
3

is the union of the neighborly LOCC graphs

1
[
and
6
g

(b) 1 z 6
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18 the union of the neighborly LOCC graphs

1 2 5 1 2 6
3 and
>4 7 5¢ 4 7
(c) 1 2
4 3
is the union of the neighborly LOCC graphs
lo o2 1 2
and
49—3 4 3

The proof of the “only if” part takes 5 single-spaced typed pages.
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A crucial step in the proof of Theorem 1, (a) = (b) is Assertion 1 (i.e.,
T'(I) = I). Originally, we tried to prove it without using the concept of LOCC

graphs. We succeeded in reducing the problem to proving the following conjec-

ture:

Conjecture. Let h(n) denote |[£(SDS(n))|. For each positive integer
n > 3, (n — 1)h(n — 1) is not divisible by hA(n) — h(n — 1).

We know we have the following recurrence relation, which holds for all n > 4:

1
h(n) = h(n—1)+ (n —1)*h(n — 2) — mg —1)(n — 2)h(n — 3)
—(n—1)(n —2)(n — 3)h(n —4)
where h(0) := 1. But we cannot solve the recurrence relation. By running a
computer, we verify the conjecture for n = 3,...,171. But for n > 172, the

numbers involved are too large (larger than 10°%) and data overflow.
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A related result:

Theorem 4 (Lin & Tam). Let T be a linear map on the space of nxn
real symmetric matrices, n > 1. Let SDsS(n) denote the polytope of all
n X n real symmetric doubly substochastic matrices. T.F.A.E.:

(a) T(SDsS(n)) = SDsS(n).

(b) AP e P(n) s.t. T(X)=P'XP VX.
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