0 O O
PA91050280C /] .P)

FERBEMASEBGFARRITERRRSE
Exact inference based on exponential distribution for
censored samples
s [ Amipis s ogrithaiiniEm
st NSC 90 - 2118- M- 032- 005
sk 9048 A18az9147A318

FHAL AT
HELHAR REHAEHE

¥ %
$479#) A Huffer and Lin (2001) #9538 F2E &
BAFts sy A 1 R A AR
MR R TRRE R

423 AR RETN, §HRE,
FAREM.

Abstract

In this paper, we make use of an algorithm of
Huffer and Lin {2001) in order to develop the
exact interval estimation for the exponential
scale parameter based on doubly Type-II and
general progressively Type-II censored sam-
ples.

Keywords: best linear unbiased estimators,
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1 Introduction

It is well known that the normalized spac-
ings from an exponential distribution are in-
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dependent and identically distributed as ex-
ponential; see, Sukhatme (1937) and Renyi
(1953). Similarly, this property can be ex-
tended to the general progressively Type-1l
censored samples; see Viveros and Balakr-
ishnan (1994). The property of normalized
spacings allows the development of exact chi-
square confidence intervals for the scale pa-
rameter of an exponential distribution based
on Type-II right censored samples. How-
ever, when the available sample from the
life-testing experiment is doubly Type-II cen-
sored and general progressively Type-1I cen-
sored, such an elegant result does not exist in
the literature.

In this work, we develop exact confidence
intervals for the exponential scale parameter
based on doubly Type-11 censored and gen-
eral progressively Type-II censored samples
by utilizing an algorithm of Huffer and Lin
(2001). Our results obtained in the case of the
Type-II right censored samples (case r = 0)
and the progressively Type-II right censored
samples (case r = 0} all agree with those of



Lawless (1971), Balakrishnan and Aggarwala
(2000), and Viveros and Balakrishnan (1994).
Moreover, they can also serve as a criterion to
evaluate the accuracy of a chi-square approxi-
mation proposed by Balakrishnan and Gupta
(1998) for the distribution of the BLUE of
the scale parameter. Finally, we present two
examples to illustrate the exact methods of
inference developed here.

2 Algorithm

QOur work relies heavily on the algorithm
proposed by Huffer and Lin (2001). For

completeness, we now introduce the ba-
sic idea of this algorithm. Suppose
that Z;,Z,,...,Z,41 are iid. exponen-

tials with mean 1. We define 2™ =
(Zy,Za,...,Zns1)". Huffer and Lin (2001) re-
cently developed an algorithm for evaluat-
ing the probabilities involving linear combi-
nations of i.i.d. exponentials with arbitrary
rational coefficients of the form

P(AZ™ < tb), (1)
where A is any matrix of rational values, b
is any vector of rational values, and ¢ > (0 is
a real-valued scalar. This algorithm depends
on the repeated, systematic use of the two
recursions [given in Eqgs. (3) and (4) below]
which are stated in terms of a function @ de-
fined by

Q(A,b,2,p) = p! R(p, A)

xP ((1-At)AZ"P) > b) |
where R(p,\) = %e ™, for integers p >
0 and real values X > 0. In particular,
Q(9,0, ), p) = p! R(p, A).

Result 1 Let A be an arbitrary matriz. Let
r and q be the number of rows and columns
of A. For any r x 1 vector =, we define A;;
to be the matriz obtained by replacing the i**

@)

column of A by ©. Let ¢ = (¢y,...,¢q) be
any q X 1 vector satisfying 3°7_, ¢; = 1. Define
£ = Ac. Then

q _ .
Q(A,b, )\ p) = Z ciQ(Ai,& b,Ap). (3

This recursion is an immediate conse-
quence of the more general recursion given by
Huffer (1988). See Huffer (1988), Lin (1993),
and Huffer and Lin (1999, 2001) for applica-
tions of this general recursion.

Result 2 If a matriz A = (a;;) and vector
b = (b;) satisfy (for some k > 1) the follow-
ing three conditions

(R1) ay; =0 for 7 >k,

(RZ) Qi; = Q4 fO'l‘"j S k, (i.e., the ﬁT’St k

columns of A are identical),

(R8) a1; >0 and by > 0,

then
—! 5
Q(A,b,,p) Z 3
=0
Q( (- ‘l)lb* da” ,/‘\+(5,p+2')‘ (4)
where § = b)/ay, A" is o matriz oblained

by deleting the first row of A, A(_; 15 a ma-
triz obtained by deleting the first ¢ columns
of A*, b* is a vector obtained by deleting the
first entry of b, and a* is a vector obtained
by taking the first column of A and deleting
the first entry.

Each recursion is used to re-express a prob-
ability as in (1) by decomposing it into a
sum of similar, but simpler components. The
same recursions are then applied to each of
these components and so on. The process is
continued until we obtain components which
are simple and easily expressed in closed
form.



3 Exact Interval Estima-
tion Based On Doubly
Type-II Censored Sam-
ples

Let X(r+1) < X(r+2) <. < X(n—s): 1<r+
1 < n— s < n, be a doubly Type-II censored
sample from the one-parameter exponential
distribution with probability density function
(pdf)

f(z;0) = ée’”", r>0,0>0 (5
Denote S; = (n — 1+ 1){X() — X(i—1y). Then
the best linear unbiased estimator of ¢ based
on this sample is given by [see Balakrishnan
and Cohen (1991)] o* = £ 10, a;X() =
n S¢S, where K = (n—r—s— 1)+

=

{E?zn—r %}2/{E?=n—r g%}}

( Z“:n—rl‘/e

:—_ T/ —(n—r—-1)
fori=r+1,

ai=< 1
forr+2<i<n-s-—1,
s+1
| fori=n-s,
and
1 —_
K(n—it+1) ?=:+1‘1j

fori=1,2,...,r+1,

1 n--5
Kn—itD) Yi=i 4
fori=r+2,...,n—s.

From the property of normalized spacings
. and the algorithm of Huffer and Lin {2001),
we can find the exact values of ¢ satisfying

P(o*/o > t) = P(Xi5 ¢y > t) = a for
specified values of c.
Example : This example comes from Law-

less (1982, pp. 138) withn = 12,7 = 2,s =1,
and the doubly Type-II censored sample is as
follows:

——,——,24.4,28.6,43.2,46.9,

70.7,75.3,95.5,98.1,138.6, ——

In this case, we have ¢* = 71.1385 and A in
(2) as

9955 3620 3982 10981

A = (
120609 20203 40203 120609
10981 10081 10081 10981

120609 120609 120609 120609
10981 10981 10981

120609 120609 120609) '

The approximate 95% confidence interval
for o obtained by Balakrishnan and Gupta
(1998) was [220*/36.78071, 220" /10.98232) =
[42.5508, 142.5060), which is quite close to
our exact 95% confidence interval for o
given by [220%/36.79546,220*/10.97781] =
[42.5337, 142.5646].
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mo:Theorem 5.1 [f g denotes Q = Q(A;t,z), Q¥ = QW (4;¢,z), Qin) = QAL 2) or elt, z)
then the distribution of the random varisble /R(§ — g} tends to the narmal law with the mean 0 angd the
wvariance V(#). The asymptotic variances are:

V@™ = [ {wa) [ Kiayem {~ [ ¥e0ar000 ) an W} w2,
[ e {- [ e {-I Wo,a)aa0) | arig
" 3
+exp - / Winapaa } ey,
V@Y =1~y [ i apari
Vi, z) = .\ a:_,@. a)y? * \g s:.?.a - h(y, 6}k’ (u, ) sl - \. i h._?&%ﬁ.:i dA(y)
+{hl3,0) ~ bz o) - I z?.aga.;axu do*(y).

2.4 Estimation of the ideal relahility characteristics
It may seem that the ideal characteristics could be estimated using the model with a smaller number of

failure modes. This is incorrect because the ideal characteristica are estimated using data about failures
of all modes, not only of modes with indexes from the set o,

.m_.._u_ucaa that ¢ is any unconditional reliability characteristic and o, i3 the corresponding ideal charac-
teristic. The formulas for the estimator gy, and its asymptotic variance are obtained frag corresponding
formulas for the estimator § replacing AL by A} and (=4 3y AWAMAY, where Af9)(z) = T A¥(z)
at_:&;uu = M__mt:.: __..wﬁ;uv. hEw B

3 Semi-parametric and parametric estimation

Suppose that tha ?.um.mon A®(2) is from the class A (2.1}, where 9, is a (possibly multi-dimensional)
parameter. The maximum likelihood estimators 4, (in the case of the linear degradation model) verify
the following equations:

1)

[i] = 8
MHI.IF»::N“- P |M”hl M2 %) =
Fum- { i)} {Vimk} < .m»._a (Ziia) =0,

The E&.oa AN z) = AW (2, 9, are emimated by At¥(z) = Ate)(z %s). Semi-parametric estimators
[Of the main reliability characteristics are obtained replacing all functions AW¢) by their estimators

4 Analysis of real tire wear data

We analysed failure time and wear data of 101 bus tires 01-73 B manufactured at the Omsk tire plant

Mun_ used in the first quarter of 2000 at the Tashkent by park N7 on buses DEU-BS-106 made in South
orea,
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Abstract

In this paper, we make use of an algorithm of Huffer and Lin (2001) in order to develop the
exact ioterval estimation for the exponential seale parameter based on doubly Type-II and
general progressively Type-II censored samples. This approach enables us to determine the
exact perceatage points of the pivotal quantity based on the best linear unbiased estimator,
and construct the exact prediction intervals for the f-th order statistic in a sample of size n
based on doubly Type-II censored samples.

1 Introduction

It is well known that the normalized spacings from an exponential digsribution are independent and
identically distributed as exponential; see, Sukhatme (1937) and Rényi (1953). Similarly, this property
can be extended to the general progressively Type-II censored samples; see Viveros and Balakrishnan
(1584). The property of normalized spacings allows the development of exact chi-square confidence
intervals for the scale parameter of an exponential distribution based oz Type-It right censored samples.
It has also been utilized by many authors to construct exact prediction intervals for failute times of items
having observed the first n - 5 failures from a sample of n items placed on a life test; see, for example,
Lawless (1971, 1977}, Liked (1974), and Lingappaiah (1973), However, when the available sample from the
life-testing experiment is doubly Type-II censored and general progressively Type-II censored, no exact
distributional resuit is available for the appropriate pivotal quantity based on the hest Lnesr unbiased
estimator (BLUE) of the scale parameter thas is useful for the interval estimation in the one-parameter
exponential distribution,

In this paper, we develop exact confidence intervals for the exponential scale parameter based on
doubly Type-II censored and general progressively Type-II censored sampies by utilizing an algorithm
of Huffer and Lin (2001). We also construct exact prediction intervals for the &th order matistic in a
sample of size n based on doubly Type-Il censored samples. Qur results obtained in the case of the
Type-11 right censored samples (case r = 0) and the progressively Type-IT right censored samples (case
r = 0) all agree with those of Lawless (1971), Likea (1974}, Balakrishnan and Aggarwala (2000), and
Viveros and Balakrishnan (1994). Moreover, they can also serve as a criterion to evaluate the accuracy
of a chi-square approximation proposed by Balakrishnan and Gupta (1998) for the distribution of the
BLUE. Finaily, we present two examples 1o illustrate the exact methods of inference mmicma here.

2 Algorithm

Our work relies heavily on the algorithm proposed by Huffer and Lin (2001). For completeness, we now
introduce the basic idea of this algorithm. Suppose that Z), 23,00y Znyy are idd. exponentials with
mean 1. We define Z{") = (Z,,2,,..., Z,,,)". Huffer and Lin {2001) recently developed an algorithm
for evaluating the probabilities involving linear combinations of §.i.d. exponentials with arbitrary rational
coefficients of the form

P(AZ™ < th), )
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where A is any matrix of rational values, b is any vector of rational vaiues, and ¢t > 0 isa real-valyeq
scalar. Thia algorithm depends on the repeated, systematic use of the two recursions [given in Eqs. 3
and (4) below] which are stated in terms of a function @ defined by

Q(A,8,7.p)=p! R(p,) P ? —AAZIR av i @
vhere Rlp2) = fre™, for integeis p 2 0 and real values A > 0. In particular, Q(8,0,1,5) = P! Rp, %),

Recursion 1 Let A be an arbitrary matriz. Let r and ¢ be the number of rows and columny of A, For
n.,w. rxl1 cnnhm.. T, we define A;; to be the Matriz obtained by replacing the i** column of A by x. Let
e=(e1,...,e,) be any g x 1 vector satisfying 3% o= 1. Define £ = Ac. Then

¢
Q(A.b,Ap) = MP.OT—...? b, A, p). I
N =i

M”M recursion m...y an immediate consequence of the more general recursion given by Huffer (21988). See
er (1988), Lin (1993), and Huffer apd Lin (1999, 2001) for applications of this general recursion.

Recursion 2 If ¢ matriz A = (q,: = ] ;:
ersio If & ma (a3;) and vector b ~ (b5} satisfy (for some k 2 1} the following three
(R1) ar; =0 forj >k,
(R2) ay; = ay forj Sk fic., the first k columns of A are identical),
ﬁmh\ a >0 and b, >0,
then
=l
QA 6,40} = M TRAL b ~8a", 2 +8,p+1), (4
¥
“u_:u_d d= F\a:.. A" i3 a matriz obtained by deleting the first row of A, hmn.._._ 3 a moetriz obtained by
eleting n.__K. first i Em..:ﬂ:.. of A*, b° is a vector obtained by deleting the first entry of b, and a* is 3
vertor obtained by taking the first column of A and deleting the first eniry.

cEE H_.unnnm.un iz used 10 re-expresy 3 _.uzuvnam:a. as in {1) by decompesing it inte a sum of similar,
umpler components, The same recursions are then applied to each of these componenta and 0 on.

The process is conti i i i i i
e | ntinued until we obtain tomponents which are simple and easily expressed in closed

3 Exact Interval Estimation Based On Doubly Type-IT Censored Samples

Let Xryr) € Xpia) €+ € Xyp_p1 < .
< S 2 A=l 2r+1<n 5 <n, be adoubly Type-I1 censoted sample from
the one-paramerer exponential distribution with probability density function (pdf) ’

1
= —g—%
J(z0) e r>0,0 >0 (5}
Denote §; = (n = ¢ + DiXy - Xii-iy). Then the best linear unbiased estimator of ¢ based on this

sample is given by (see Balakrishnan and Coben (1991)] o* = L T=r n=
= Xy = T .5,
K== (T T g R T s X = TITES, whee

MM”“.ualL\nTﬁMuwual. n\%‘._ =(R-r-1) fori=r+1,
1 forr+2<i<n=y-1,
a+1 fori=n =3,

a; =

66

b
|

. o = ﬂaluﬂ.dmh.ﬂ_..ia._. fori=1,2,....,r+1,
N?n.|$&ﬂ.ﬂ....3 fori=r+2,...,n-a.

O

From the property of normalized spacings and :he aigorithm of Huffer and Lin {2001}, we can find the
exact values of t satisfying P{o*/a 2 t) = P(L_0" ;2 > t) = a for specified valyes of a. In a similar
fashion, we can construct exact prediction intervals for the order statistic Xy, n— s < £ < n, by finding

' the exact values of ¢ such that P([X(5 ~ X(n_}/o* > ) = P(EL, diZi > 0} = o with

Im.ﬂw..ﬂqmmﬂnt a; fori=12,...,r+1,

fori=n-s+1,...,L

L di=S gt it fori=r+2,...,n-4
1
T

n—i+

4 Exact Interval Estimation Based On Genera! Progressively Type-II
Censored Samples

Suppose kmﬂwa,..."._u.hlu < Rmmmﬂ.ﬁ..m’v <... % kﬁm.ﬂ__.......xnv is a general progressively Type-II censored
sample from a distribution with pdf in (5). With X% < 0, let Dy = (n — i + 1)(X[Betrfm) _
XN o i = 1,2 r o Loand Wy = (n = TI0N, Rim j o+ 1)(X (i) - x(Bess vy

i—-Ll:min

for j =r+2,...,m. Then, the best linear unbiased estimator of the exponential scale parameter o based
on this general progressively Type-II right censored sample fsee Balakrishnan and Sandhu (1996)} can

a. bl
be expressed as ¢, = —_— mlﬁ_MUNq.E W; + ﬂwlrl:m...w_ ..Il.ln_.wir where e, = “.H._ .T_.+_ and
mor=le gl
+1
h1+— = Mﬂl_ ﬂ.n.._.vluqq Define
Aral L
A= A E..v;:.nl_i:.wom.__?u.+: fori=12,...,r+1,
. = a1 y —
ey ooy g fori=r+2,... m.

Then, from the property of normalized spacings and the algoerithm of Huffer and Lin (2001) again, we
can easily find the exact values of ¢ satisfying Plejfe >t) = __uOHH_ hiZ; > t} = a for specified values
of a.

5 Illustrative Examples

Example I: This example comes from Lawlesa (1982, pp. 138) withn = 12,r = 2,5 = 1, and the doubly
Type-II censored sample i3 as follows:

-=,——,24.4,28.6,43.2,46.9,70.7,75.3,95.5,08.1, 138.6, ——

In this case, we have ¢* = 71.1385 and A in (2) as

A= 0955 3620 3982 10081 10981 10981 10981 10981 10981 10981 10381
"~ \ 120609 40203 40203 12009 120609 120605 120609 120609 120600 120609 12060/ °

The appradmaze 95% confidence interval for ¢ obtained by Balakrishnan and Gupta (1998) was
hMMQ.\um.qmcd.uuQ.:omeun_ = [42.5508, 142.5060), which i quite close to our exact 95% confi-
dence interval for o given by {226°/36.79546, 220*/10.97781] = [42.5337, 142.5646). Let ¢ = 12 Since
P(IX1y = X(n-s}fo* > 4.38371) = 0.025 and P([X() — X(n-n)l/o* > 0.02535) = 0.975, an exact 95%
prediction interval for the last failure time X[)g) Is obtained as

{138.6 + 0.02535 x 71.1385, 138.6 + 4.38371 x 71.1385) = [140.403, 450.451).
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Example 2: Consider Nelson’s data (1982, p. 228, Table 6.1) which gives data on times to breakdown
of an insulating fluid in an accelerated test conducted at various test voltages. For the purpose of
lustrating the methods of inference presented here, we generated the following general progressive Type-
Il censored sample from the n = 19 observations recorded at 3¢ KV in Nelson’s Table 6.1 {with one
smallest observation censored and three stages of progressive censoring)

i 1 2 3 4 5 6 7 8
Ximn §— 078 096 131 278 4.85 6.50 7.35
B [- o 3 0 3 0 0 5

If %% assume a one-parameter exponential distribution for the data at hand, we get oy = 9.110 and
Var(o;) = 2*/7.99937 from Balakrishnan and Sandhu (1996). Using the method described here, we have
Plog/o > 0.431705) = 0.975 and Pio;/o > 1.802934) = 0.025. Thus, an exact 95% confidence interval
for o ts obtained as (o7 /1.820934, 0;/0.431705) = [5.002027, 21.102373).
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ABSTRACT

In evaluating the reliability of a product or system. an .::._uc:wn_. a._m_._S.
variable is the lifetime of a product. Our focus is on the H_.ﬂw_xa & mﬂ.s.u:_._n
plans for life testing on preducts and components to ma_..n._.a_:a their v?_:.w” to
perform the intended purpose for the desired period of time. These sampling
plans are also useful for many other experiments. . .

Variable-sampling plans such as MIL-STD-414 can be only pc_u__nwc_m i
all specimens in the sample are tested te failure. However, ?._. many *.:m__
reliability products that are designed to operate for .uoam _v.m:cmm of :_.dn.
testing under normal use conditions Bmm:". be nxnnnm_um_x time consuming
and expensive. In Type [ censoring experiments, all specimens are put on
tegt simultaneously and the test is terminated at a prespecified time, sm_z_a
in Type 11 censoring experiments, the test is "nam.znwga_. when a vnnm.vnn_mnm
number of fajlures is observed. In some experimentations, successive cen-
soring also occur at many stages of the mxmnzﬂmsp due to various factors.
For example, to study the process of deterioration of 2 Eom:n." or a com-
peonent, it might be necessary to anuﬁcn”?.m_w test specimens withdrawn at
various stages of the experiment. The specirnens may ,a..w withdrawn at the
time of failure of a few units (Type I progressive censoring) at prespecified

KO



