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FAVEIRE A K EE L — ey ®@O. Let T be a one-dimensional torus
over (J, and let P be a nontorsion point on 7(@). Under Generalized Riemann
Hypothesis, we derive an explicit density formula for the set of rational primes
p such that P modulo p generates T(F),).
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— 3 X 4% F(Abstract):

We exploit an analogue of Artin's primitive roots conjecture for one dimension
tori over @. Let T be a one-dimensional torus over @, and let P be a nontorsion
point on T(Q). Under Generalized Riemann Hypothesis, we derive an explicit

density formula for the set of rational primes p such that P modulo p generates
I(F,).

B 4233 (Key Words): primitive root, torus, density.
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Let T be a one-dimensional torus over the rational numbers, and let
P=(xy,35) be a nontorsion rational point. We are interested in the set M)
consisting of rational primes p where T has good reduction and P modulo p
generates the abelian group T(F,). The case T= G,, dates back to Artin. The
well-known Artin's conjecture (1927) asserts that for every nonzero non-square
rational integer a# X1 , the set of rational primes p for which « is a primitive
root possesses a positive density. This conjecture was proved by Hooley[3] in
1967 under the Generalized Riemann Hypothesis (GRH). The purpose of this
project is to generalize Hooley's Theorem to all one-dimensional tori over the
rational numbers.
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£ ¥ — (Theorem 1) :

Let T be a one-dimensional torus over @, and let P be a nontorsion point,
Assume GRH holds. Then the set M has a (Dirichlet) density, given by
den(Mp)=06 - A, where 4 is the Artin's constant and & is a rational number,
which can be explicitly determined from (7, P). Moreover, we have & if and
only if P 1s not a point in 7¢ @)“ for all primes g dividing # Tor( T(Q)).



Z£ 3 = (Theorem?2) :

Let K be a quadratic field and given & in element in K with norm 1, which is not
a root of unity. Assume GRH holds. Then den(M.)=¢ + 4, where O is a rational
number explicitly determined from (K, a ). Moreover, we have ¢ >0 if and only
1f (1) a 1s not a square when K is not equal to Q( «3), or (2)  is neither a square
nor a cube when K is equal to Q( «3).
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