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Abstract. This paper presents the studies of time domain inverseesitegtfor a two dimensional homogeneous dielectric
cylinder buried in a half-space which are based on the fiiififterdnce time domain (FDTD) method and the dynamic dififticd
evolution (DDE). For the forward scattering, the FDTD methi® employed to calculate the scattered E fields, while fer th
inverse scattering the DDE scheme is utilized to deterntieeshape, location and the permittivity of the buried cyiical
scatterer with arbitrary cross section. The subgirddimdprtegque is implemented for the FDTD code in order to model the
shape of the cylinder more smoothly. In additions, in ordedéscribe an unknown cylinder with arbitrary cross sectimme
effectively during the course of searching, the closed@sbiine expansion is adopted to represent the scattenewanstead

of the frequently used trigonometric series. Numericalltesdlemonstrate that, even when the initial guess is fay dwean

the exact one, good reconstruction can be obtained. Iniaddihe effects of Gaussian noise on the reconstructianteeare
investigated. Numerical results show that even the medsgattered fields are contaminated with Gaussian noise, iIBDE
able to yield good reconstructed quality.

Keywords: Time domain inverse scattering, FDTD, subgridddynamic differential evolution, homogenous dielentsilinder

1. Introduction

The objective of the inverse problem of the buried scatisrerdetermine the electromagnetic proper-
ties of the scatterer from the scattering field measureddrit®ue to large domain of applications such
as non-destructive problem, medical imaging, geophypitapecting and determination of underground
tunnels and pipelines, etc, the inverse scattering prabletated to the buried bodies have a particular
importance in the scattering theory. This kind of problemapected to be difficult due to the fact that
the information about the buried unknown scatterer obthimethe limited-view measurement is less
than the full-view measurement. Although the incomplessrad the measurement data and the multiple
scattering of the scatterer bring out the intrinsic norgueness and ill-posedness of these problems that
appear consequentially in the inverse scattering probj&rgdg the study can be applied in widespread
use.
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Most of the inversion techniques are investigated for theromiave imaging by time-harmonic EM
wave illumination [3—10]. However, the application of wibnd incidence is important for the microwave
imaging because the available information content abokihonwn objects is more than the only single
frequency scattering data alone. The main methods to shévénterse scattering problems in time
domain are Born iterative method (BIM) [11,12] and optintiaa methods [13-15]. The inverse
scattering problems are usually treated by the traditiatedérministic methods which are founded
on a functional minimization via some gradient-type schemide major drawback of these kinds
of deterministic methods is that the final reconstructedgens highly dependent on the initial trial
guess [4]. In general, they tend to get trapped in local nmanivhen the initial trial solution is far from
the exact one. Thus, some population-based stochastiodgthuch as genetic algorithm (GA) [5,6,
16], differential evolution (DE) [7,8], and particle swaoptimization (PSO) [9,10,17,18], are proposed
to search the global extreme of the inverse problems to owegcthe drawback of the deterministic
methods. Inthe 2006, the dynamic differential evolutioD@) was first proposed to deal with the shape
reconstruction of conducting cylinders [19]. Moreoveryvis shown that DDE outperforms traditional
DE in terms of convergence speed. To the best of our know|ddgee is still no investigation on using
the DDE to reconstruct the electromagnetic imaging of hoenegus dielectric cylinders with arbitrary
cross section in a half space under time domain.

This paper presents a time domain computational schembdanicrowave imaging of a 2D homo-
geneous dielectric cylinder with arbitrary shape buriethsnsubsurface. The forward problem is solved
by the FDTD method, for which the subgridding technique [@0mplemented to closely describe the
fine structure of the cylinder. The inverse problem is forated into an optimization one, and then
the global searching scheme DDE is used to search the pamaspetce. Cubic spline interpolation
technique [21] is employed to reduce the number of parametded to closely describe a cylinder of
arbitrary shape as compared to the Fourier series expanisid®ection I, the theoretical formulation
for the electromagnetic imaging is presented. The geneiradiple of the DDE scheme and the way we
applied it to the imaging problem are described. Numeriesiilts for various objects of different shapes
are given in Section Ill. Section 1V is the conclusion.

2. Theoretical formulation

Consider a 2-D homogeneous dielectric cylinder embeddadhadf-space material medium as shown
in Fig. 1. The cylinder is parallel to z axis buried below ar@ainterface separating two homogeneous
half-spaces: the aie(, ;1) and the eartlies, 2). The cross section of the object is starlike that can
be representation in polar coordinates in the x-y plane vapect to the center positidiXo, Yo).
The permittivity and permeability of the buried dielectdbject are denoted by, 113), respectively.
The dielectric object is illuminated by Gaussian pulse Boarce located at the points denote by Tx in
the first layer and scattered waves are recorded at thostsmEnoted by Rx in the same layer. The
computational domain is discretized by Yee cells. It shdadlanentioned that the computational domain
is surrounded by the optimized PML absorber [22] to redueadflection from the environment-PML
interface.

2.1. Forward problem

The direct scattering problem is to calculate the scattelectric fields while the shape, location and
permittivity of the scatterer are given. The shape functit(d) of the scatterer is described by the
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Fig. 1. Geometry for the inverse scattering of a dielectyilnder of arbitrary shape in free space.

trigonometric series in the direct scattering problem.

N/2 N/2
F(0) = Z By, cos(nf) + Z C,, sin(nd) (1)
n=0 n=1

In order to closely describe the shape of the cylinder fon ot forward and inverse scattering procedure,
the subgridding technigue is implemented in the FDTD cduedetails are presented next.

2.2. Subgrid FDTD

A major problem in EM modeling by FDTD method is about locakfstructures. These structures
require a finer cell size than elsewhere and overload the atatipnal cost. The subgridding scheme is
proposed to overcome the above drawback in FDTD. A subgrifdgcheme is employed to divide the
problem space into regions with different grid sizes. Thé gize in coarse region is abo%(w 1—10)\max)
asin normal FDTD, while in the fine region the grid size is eddly an integer ratio. As an example, the
Yee cells with subgridding structure are shown in Fig. 2, bfol the scaling ratio is 1:3. The capital and
small case letters stand for EM fields on the major grids acal lgrids, respectively. If the scaling ratio
is set at odd-ratio, then the fields are collocated in spaceate and fine region. Thdields inside the
fine region can be updated through the normal Yee-cell algurexcept those at the MG-LG boundary.
The noncollocated magnetic field at the MG-LG interface caplitained by linearly interpolation. The
time interpolation of the fine grid magnetic field at the MG-lrfBerface is performed using the parabolic
interpolation calculation. The above is only a brief intngtlon to the subgriding FDTD. More details
on subgriding FDTD can be found in [20]. The flow chart asseciavith subgrid FDTD computing
procedure is shown in Fig. 3.

For the time domain scattering and/or inverse scatterinblpm, the scatterers can be assigned with
the fine region such that the fine structure can be easily idescrIf higher resolution is needed, only
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Fig. 2. The structure of the TMFDTD major grids and local grids for the scaling ratio (1:B),fields are aligned with the
MG-LG boundary.
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Fig. 3. The flowchart to update th&( H) fields on the major grids and,(k) fields on local grids.

the fine region needs to be rescaled using a higher ratio fogrglding. This can avoid gridding the
whole problem space using the finest resolution such thatghgutational resources are utilized in a
more efficient way, which is quite important for the compiatiaél intensive inverse scattering problems.

2.3. Inverse problem

For the inverse scattering problem, the shape, locationpamdhittivity of the dielectric cylinder
are reconstructed through the given scattered electritsfightained at the receivers. This problem is
formulated into an optimization approach, for which thebglbsearching scheme DDE is employed to



C.-L. Li et al. / Time domain microwave imaging for a buriedldctric cylinder by DDE 77

minimize the following objective functiondF):

N, M K
Z Z Z |ngp(na m, kAt) - Egal (n’ m, kAt)|
_ n=1m=1k=0
OF = N, M K 2)

> 2 2 |EZP(n,m, kA

n=1m=1 k=0
whereES and B¢ are the experimental electric fields and calculated etefigrids, respectively. The
N; and M are the total number of the transmitters and receiversemtisgely. K is the total time step
number of the recorded electric fields.

2.4. Dynamic Differential Evolutio(DDE)

Differential evolution (DE) is a population-based, salfaptive and parallel direct search optimization
method that is proposed by Storn and Prince in 1995 [23]. REsstvith an initial population of
potential solutions that is composed by a group of randorahegated individuals which represents the
dielectric constant, center position and the geometrigdiuses of the cylinders. Each individual in
DE is aD-dimensional vector consisting @ optimization parameters. The initial population may be
expressed byz;: i =1, 2,---, Np}, whereNpis the population size. After initialization, DE performs
the genetic evolution until the termination criterion isttmBE, like other EAs, also relies on the genetic
operations (mutation, crossover and selection) to evodveetation by generation. In general, a typical
DE optimizer goes through the following six procedures:

1. Initialize a starting population: DE is initialized with population that is composed by a group
of randomly generated candidate individuals. IndividualBE represent a set dp-dimensional
vectors in the parameter space for the problém,: i = 1,2,---, Np}, whereD is the number of
parameters to be optimized aNg is the population size.

2. Evaluate the population using objective function: Aftgtialization, DE evaluates the objective
function Eq. (2) for each individual in the population.

3. Perform mutation operation to generate trial vectorse ifutation operation of DE is performed
by arithmetical combination of individual. For each paréeneectorz; of the parent generation,
a trial vectory; is generated according to following equation:

Uig = mZest to- (1'?“1 - .%';?2)7 i 7& 1 7& r2 (3)
wherey > 0, is weighting factor that control the amplification of thiéetential variation ¢7; —
xf!Q). The indiceg, r; andry of individuals are randomly chosen. The subscgigtands for the
generation index of the parent generation. Dstrefer to the optimal individual in the parent
population.

4. Perform crossover operation with probability of crossd®@R to deliver crossover vectors: The
crossover operation in DE is performed to increase the siiyeof the parameter vectors. This
operation is similar to the crossover process in GAs. Howé\uee crossover operation in DE just
allows to deliver the crossover vectarby mixing component of the current vectorand the trial
vectoruv;. It can be expressed as:

9(j :{”f(j)v if Rand(j) < CR

zJ(5), otherwise

(4)

whereCR is the probability of crossovef;R € (0,1). Rand(j) is the random number generated
uniformly between 0 and 1.



78 C.-L. Li et al. / Time domain microwave imaging for a buriedldctric cylinder by DDE

A

‘global Y axis

A

/—0\\.(81")1)

global X axis
X, Y,) -
Pl(e) (90>p0):(9N’pN5
0:.p:) P, (0)
Pi+l (9 (6N719pN71)
(6.0

Fig. 4. A cylinder of arbitrary shape is described in terma afosed cubic spline.

5. Perform selection operation to produce offspring: S&lemperation is conducted by comparing
the parent vector? with the crossover vectors!. The vector with smaller objective function
value is selected as a member of the next generation. Etkplitie selection operation for the
minimization problem is given by:

L9+ _ {“?7 if OF(uf) < OF(af) (5)

7 g

x;, otherwise

6. Stop the process and print the best individual if the teatidn criterion is satisfied, else go to step
Il.

A modified DE namely dynamic differential evolution, DDE,psoposed to speedup the convergence
of the DE [19]. The key distinction between a DDE and a typid&l is on the population updating
mechanism. In a typical DE, all the update actions of the fadjmn are performed at the end of the
generation of which the implementation is referred to ascstgpdating mechanism. Alternatively, the
updating mechanism of DDE is carried out in a dynamic wayhemrent individual would be replaced
by her offspring if the offspring has obtained a better otiyecfunction value than its parent. Thus,
DDE can respond the progress of population status immeylete yield faster convergence speed than
the typical DE. Based on the convergent characteristic oOEP®e are able to reduce the numbers of
objective function evaluation and reconstruct the micranianage efficiently.

2.5. Cubic spline interpolation technique

In order to reduce the unknowns required to describe a wtinflarbitrary cross section, the shape
function of the cylinder is expressed in terms of a cubicrepliAs shown in Fig. 4, the cubic spline
consists of the polynomials of degreef3(0), i = 1,2, ---, N, which satisfy the following smooth
conditions:

Pi(6;) = Pit1(6;) = pi

PI(HZ) = PilJrl(Hi) i=1,2,--- N (6)

2



C.-L. Li et al. / Time domain microwave imaging for a buriedldctric cylinder by DDE 79
Pi”(ei) = i’iul(@i)
and
Py(0o) = Pn(0n)
P{(00) = Pn(On) = py ("
P (6:) = Py (O)

Through the interpolation of the cubic spline, an arbitramyooth cylinder can be easily described
through the radius parameters p2, - - -, p and the slope’y,, of which the details are referred to [21].

It should be noted that the dielectric constant and centstipo of the cylinder plus the radiuses of the
geometrical spline used to describe the shape of the cylimitidoe determined by the DDE optimization
scheme.

3. Numerical results

As shown in Fig. 1, the problem space is divided in 2288 grids with the grid sizé\z = Ay =
5.95mm. The homogeneous dielectric cylinder is buried gslless half space{ = 05 = 0). The
transmitters and receivers are placed in free space abevethogeneous dielectric. The permittivities
in region 1 and region 2 are characterizedby= ¢o andsy = 2.3¢q, respectively, while the permeability
1o is used for each region, i.e., only hon-magnetic media ane@med here. The distance between
half-space interface and the original cylinder is 89.2mnhe Tylindrical object is illuminated by a
transmitter at two different positiond]; = 2, which are located at{143mm, 178.5mm) and (143mm,
178.5mm), respectively. The scattered E fields for eachiliation are collected at fifteen receivers,
M = 15, which are equally separated by 47.8mm along the linesthdce 48mm from the half-space
interface. The excitation wavefori(¢) of the transmitter is the Gaussian pulse, given by:

Ae—a(t—ﬁAt)Q’ t < Ty
A AN ©®)
where = 32, A = 1000,A¢ = 13.337ps, T,y — 28At, anda — (ﬁf

The time duration is set to 3QQ¢(K = 300). Note that in order to describe the shape of the cylinder
more accurately, the subgridding FDTD technique is empldy@h in the forward scattering (1:9) and
the inverse scattering (1:5) parts — but with different isgptatios as indicated in the parentheses. For
the forward scattering, the E fields generated by the FDTID fifiter subgrids are used to mimic the
experimental data in Eq. (2). The reconstruction ideas arged out through a home-made Fortran
program that runs on an Intel PC (2.83 GHz/ 2G memory/500 G).

Four examples are investigated for the inverse scattefittgegoroposed structure by using the DDE
scheme. There are twelve unknown parameters to retrievehwitlude the center positioX(, Yo),
the radiusp;, i = 1,2,---,8 of the shape function and the slopg plus the relative permittivity of
the object,e, = e3/20. Very wide searching ranges are set for the DDE to optimizedbjective
function given by Eq. (2). The parameters and the correspgrearching ranges are listed as follows:
—208.3mm<g Xp < 208.3mm,—137.8mm< Yo < 77.4mm, Omm< p; < 71.4mm,i = 1,2, -+,
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Table 1
The errors of the reconstructed shape
function and the dielectric constant by
using different subgridding ratios

Subgridding ratio DF DIPE

11 8.25% 1.16%
1:3 5.85% 0.16%
1:5 1.9% 0.15%
1.7 0.89% 0.14%
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Fig. 5. The reconstructed shapes of the cylinder for exarhplg using different scaling ratios for the subgrid.

8, -1 < ply < 1and 1< ¢, < 16. The operational coefficients for the DDE are set as belbae
crossover rat€’ R = 0.8. The weighting factop = 0.8 and the population siz€p = 120.

The key distinction between standard uniform grid FDTD amio-grid FDTD is on the convergence
and the computation time. As the complicated geometry featwith high dielectric material are
confined to a small region of the coarse main grid; applicatibsub-grid technique can result in large
savings of computer time and memory for the FDTD method. Tlhushis study, sub-grid FDTD
technigue is implemented to efficiently describe the det#ithe dielectric cylinders shape. For the first
example, the dielectric cylinder with shape functiBf¥) = 29.75 (unit: mm) and relative permittivity
e = 3 is tested. In Fig. 5, the standard FDTD with uniform grid dfl) case is compared with the
sub-grid FDTD cases of different scaling ratios (1:3), Y1Jahd (1:7), respectively. The reconstructed
details are listed in Table 1. Obviously, the results olgdiby using the standard FDTD with uniform
grid (1:1) are not as good as those of the sub-grid FDTD casesdso suggests that the scaling ratio
(1:5) is suitable for the following examples to be studied. tle other hand, in order to achieve the same
accuracy for the standard FDTD with uniform grid, the girgdesof the whole space has to be reduced
to smoothly describe the geometry of the dielectric cylmdewever, the cost of the computation time

would be increased quite a lot, 4.17 times as compared touthgrisl FDTD scheme of (1:5) case, for
example.
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Fig. 7. The reconstructed shape of the cylinder at diffegemierations for example 2.

For the second example, the dielectric cylinder with shapetion £'(#) = 35.7 (unit: mm) and
relative permittivitys,, = 3.7 is considered. The average convergence curve of olgdatiction versus
generation as the DDE executed seven times is shown in Fichéreconstructed shape function is the
best individual of the population is plotted in Fig. 7 forfdifent generations. The r.m.s. error (DF) of the
reconstructed shagec® () and the relative error (DIPE) af* with respect to the exact values versus
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generation are shown in Fig. 8. It is shown that the DDE schisrable to achieve good convergences
within 50 generations. Here, DF and DIPE are defined as

N/

DF = (53 (F0) — PP /F(0)) ©
=1

DIPE = @ (10)

where theN’ is set to 720. The r.m.s. error DF is about 0.97% and DPE14% in final generation.

The reconstructed images for different generations anabthtive error of the third example are shown
in Figs 9 and 10, respectively. The shape function of thiecth given byF'(6) = 23.88+11.9 cos(6) —
5.95sin(26)mm and the relative permittivity of the objectds = 2.8. Figure 10 shows that the relative
errors of the shape and the permittivity decrease quickty good convergences are achieved within
30 generations. The r.m.s. error DF is about 2.8% and DHE42% in final generation. From the
reconstructed results these two objects, we conclude the §lbeme can be used to reconstruct buried
dielectric cylinder successfully even initial guess isdaray from exact one.

In the fourth example, let us consider the problem for digiecylinders with high permittivity. The
shape function of this object is given BY6) = 29.7 + 5.95 cos(36)mm and the relative permittivity of
the objectis, = 8.2. The reconstructed images at different generationghenelative error of the final
example are shownin Figs 11 and 12, respectively. As showigirl2, the r.m.s. error DF is about 1.7%
and DIPE= 0.67% in final generation. From the reconstructed resultsisfexample, we conclude the
proposed method is able to reconstruct buried dielecttinagr successfully when the dielectric object
with high-contrast permittivity. In order to investigateet sensitivity of the imaging algorithm against
random noise, the additive white Gaussian noise of zero riseadded into the experimental electric
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Fig. 10. Shape-function error and permittivity error vergenerations for example 3.

fields. Normalize standard deviations of 0 1072, 102, 10~!, 0.2 and 0.5 are used in simulation
purpose. The normalized standard deviation is defined astéimelard deviation of the Gaussian noise
divided by the r.m.s. value of the scattered fields. Figureldvs the reconstructed results under the
condition that the experimental scattered field is contaieith by noise. It could be observed that good
reconstruction has been obtained for both the relative itirity and shape of the dielectric cylinder
when the relative noise level is below10
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Fig. 12. Shape-function error and permittivity error vergenerations for example 4.
4. Conclusion

We present a study of the time domain inverse scattering ofdgeneous dielectric cylinders of
arbitrary cross section in half space. By combining the FDW&thod and the DDE scheme, good
reconstructed results are obtained. The subgridding seli®employed to closely describe the shape
of the cylinder for the FDTD method. The forward problem i$/ed by using the subgridding FDTD
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method and the shape function of the cylinder is expresséetins of Fourier series expansion. The
inverse problem is reformulated into an optimization ome then the global searching scheme DDE
is employed to search the parameter space. Interpolatibmitgue through cubic spline is utilized to
reduce the number of parameters needed to describe amgrisitiape for the inverse scattering problem.
Through the DDE scheme, the shape, location and dielearistant of the object can be successfully
reconstructed even when the dielectric constant is fa@gd. This study shows that even when the
initial guess is far from the exact one, the DDE can still gialgood solution for the properties of the
object, while the gradient-based methods often get studdcial extremes. The effects of noise upon
the microwave imaging are examined, and good reconstrubts been obtained even in the presence
of white Gaussian noise in experimental data.
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