行政院國家科學委員會專題研究計畫 成果報告

生物活性化合物和有機光學材料的合成方法及應用研究

計畫類別: 個別型計畫

計畫編號: NSC92-2113-M-032-005-

執行期間: 92年08月01日至93年07月31日

執行單位: 淡江大學化學研究所

計畫主持人: 李世元

報告類型: 精簡報告

處理方式:本計畫可公開查詢

中華民國93年11月1日

With compliments of the Author

Synthesis of β -Amino and β -Methoxy Ketones by Lewis Acids Promoted β -Substitution Reactions of β , γ -Unsaturated Ketones

Adam Shih-Yuan Lee,* Shu-Huei Wang, Yu-Ting Chang, Shu-Fang Chu

Department of Chemistry, Tamkang University, Tamsui, 251, Taiwan Fax +886(2)26223830; E-mail: adamlee@mail.tku.edu.tw

Received 23 September 2003

Abstract: A reaction mixture of β,γ -unsaturated ketone and BF₃·OEt₂ in CH₃OH was stirred at room temperature and β -methoxy ketone was produced in high yield. The β -amino ketone was obtained as the major product from a reaction mixture of β,γ -unsaturated ketone, AlCl₃ and Ts-NH₂ in CH₂Cl₂ at room temperature. This Lewis acid promoted β -substitution reaction mechanism was proposed as that the process occurred via in situ isomerization of β,γ -unsaturated ketone to α,β -unsaturated ketone followed by the 1,4-addition reaction.

Key words: β,γ-unsaturated ketone, β-amino ketone, β-methoxy ketone, α,β-unsaturated ketone, 1,4-addition reaction

β-Alkoxy and β-amino carbonyl compounds are potentially biologically active molecules and important synthetic intermediates in organic synthesis. ¹⁻⁴ Specific formation of a new bond on the β-position to the carbonyl functionality is typically produced by Aldol-type reaction, ^{5,6} organocopper addition reaction ^{7,8} and 1,4-addition reaction. ^{9,10} Conjugate addition of organometallic reagent to α ,β-unsaturated ketone is the most direct and commonly used method for the preparation of β-substituted ketone. ¹¹ Recently, our laboratory reported a simple and an effective method for the synthesis of β , γ -unsaturated ke-

tone, which is the synthetic precursor of α,β -unsaturated ketone. 12 Thus, we expected that the preparation of α,β unsaturated ketone may be achieved by the isomerization of β , γ -unsaturated ketone under mild acidic reaction condition. A reaction mixture of 1-phenylpent-4-en-2-one and Lewis acid (BF₃·OEt₂) in CH₂Cl₂ was refluxed for two hours and only 40% yield of isomerized enone, 1-phenyl-pent-3-en-2-one (**I**), was obtained (Scheme 1). When the reaction mixture of 1-phenylpent-4-en-2-one and BF₃·OEt₂ was stirred in CH₃OH at room temperature for two hours, 4-methoxy-1-phenylpentan-2-one was produced as the major product and isomerized enone I as the minor product. The reaction rate for the formation of β alkoxy ketone decreased when the more sterically hindered ethanol was introduced under the reaction conditions. It should be noted that neither β-substitution reaction nor isomerization reaction occurred in the absence of Lewis acid and more than 98% of β , γ -unsaturated ketone was recovered even if the reaction mixture was stirred in MeOH at room temperature for 48 hours. Both Lewis acid and alcohol are necessary for the formation of β-alkoxy ketone.

The amount of Lewis acid used was investigated and the results are shown in Scheme 2. The ratio of 0.7 to 1.0

Scheme 1

Scheme 2

SYNLETT 2003, No. 15, pp 2359–2363 Advanced online publication: 21.11.2003 DOI: 10.1055/s-2003-42472; Art ID: U20003ST © Georg Thieme Verlag Stuttgart · New York 2360 A. S.-Y. Lee et al. LETTER

molar equivalents of Lewis acid to substrate afforded the highest yield of β -methoxy ketone. Interestingly, higher or lower ratios than this molar range led to a dramatic decrease in the yield of β -methoxy ketone obtained. The $BF_3 \cdot OEt_2$ amount was determined to be in equal molar ratio to the substrate and it was introduced to provide the β -substitution reaction conditions. Other Lewis acids such as $AlCl_3$, $ZrCl_4$ and Me_3SiOTf also can behave as promoters for the β -substitution reactions of β , γ -unsaturated ketones. The experimental results showed that $BF_3 \cdot OEt_2$ is the best choice of Lewis acid for the synthesis of β -methoxy ketone.

β-Methoxy of ketones are extensively observed in many naturally occurring compounds and exhibit a wide range of biological activities. $^{13-17}$ A series of β,γ-unsaturated ketones was investigated under the typical reaction conditions and the results are shown in Table 1.

All β, γ -unsaturated ketones were transformed into their corresponding β-methoxy ketones in moderate to high yields and α,β -unsaturated ketones also were generated under the reaction conditions. The β -methoxy ketones were obtained in reasonable yields even if relatively acidic α -protons existed on β, γ -unsaturated ketones (Table 1, entries 1–4, 7–10). β-Amino carbonyl compounds exhibit as an important structure in many natural products and a useful synthetic intermediate in organic synthesis. $^{18-23}$ β -Amino ketone is typically produced by the addition reaction of nucleophilic amine to α,β -unsaturated ketone in the absence of acidic α -protons. According to the results β , γ -unsaturated ketones were transformed into their corresponding β -methoxy ketones by Lewis acid promoted β substitution reactions. This new Lewis acid promoted β substitution reaction may provide a useful method for the synthesis of β-amino ketone under mild reaction conditions. Thus, we expected and that the relatively acidic 4-

Table 1 Synthesis of β-Methoxy Ketones

Entry	Substrate	Product	Time (h)	Yield (%) ^a
1	nBu O	O OCH ₃	2	$76+8^{b}$
2	BrCH ₂ CH ₂ CH ₂	O OCH ₃ BrCH ₂ CH ₂ CH ₂ CH ₃	2	$58 + 13^{b}$
3		O OCH ₃	1	60
4		O OCH ₃	3	50 + 12°
5		O OCH ₃	3	$73 + 8^{b}$
6	MeO	O OCH ₃ CH ₃	1.5	80 + 12 ^b
7		CH ₃ O OCH ₃	2	$89 + 7^{b}$
8		CH ₃ O OCH ₃	4	$82 + 8^{b}$
9	S O	CH ₃ O OCH ₃	4	77 + 7 ^b
10	MeO ₂ C	$OOCH_3$ OCH_3 CH_3	8	$64 + 8^{b}$

^a The yields were determined after chromatographic purification.

^b The yield of isomerized enone after chromatographic purification.

^c The yield of *endo* double bond isomer.

toluenesulfonamide (Ts-NH₂, pK_a = 16)^{24,25} may possibly react as a nuclephile rather than a base under this Lewis acid promoted β-substitution reaction conditions and investigated this reaction. A reaction mixture of 1-phenylpent-4-en-2-one, BF₃·OEt₂, and Ts-NH₂ in CH₂Cl₂ was stirred at room temperature for 20 hours and a very low yield (<3%) of the expected product was formed with many undetermined side products. The 47% yield of the expected β-amino ketone A and 28% of 1-phenylpent-3en-2-one (I) were obtained when the amount of BF₃·OEt₂ was decreased to 0.5 molar equivalents with respect to the substrate (Scheme 3). Other Lewis acids such as AlCl₃, ZrCl₄ and Me₃SiOTf were also investigated and AlCl₃ proved to be the best choice for β -amination reaction of β,γ -unsaturated ketone. The yield of β -amino ketone **A** was improved dramatically to 79% when 1.5 equivalents of Ts-NH₂ were introduced. It should be noted that the yield of β -amino ketone decreased when more than 0.5equivalents of the amine were introduced. The best β -amination reaction conditions were determined to be 0.5 equivalents of AlCl₃ and 1.5 equivalents of Ts-NH₂ to 1 equivalent of substrate in CH₂Cl₂ solvent. Other more basic amines such as n-Bu-NH₂, Ph-NH₂, pyrrolidine and Et₂NH were investigated and none of the expected β-amino ketones were produced. Only low yields of α,β -unsaturated ketone and some unidentified side products were obtained under these reaction conditions.

A series of β , γ -unsaturated ketones was investigated under the typical reaction conditions and the results are shown in Table 2. All β , γ -unsaturated ketones were transformed into their corresponding β -amino ketones as the major product and β -chloro ketones and α , β -unsaturated ketones as the minor products. The β -amino ketones were obtained in moderate to high yields even if relatively acidic α -protons exist on β , γ -unsaturated ketones (Table 2, entries 1–4, 7–9).

The mechanism for Lewis acid promoted formation of β -amino ketone and β -methoxy ketone from β , γ -unsaturated ketone was investigated. A reaction mixture of 1-phenyl-

pent-3-en-2-one (I) and BF₃·OEt₂ in MeOH was stirred at room temperature for 2 hours yielding 80% of β-methoxy ketone while 9% of the starting material was recovered (Scheme 4). The reaction mixture of 1-phenylpent-3-en-2-one (I), Ts-NH₂ and AlCl₃ in CH₂Cl₂ was stirred at room temperature for 96 hours and 65% of β-amino ketone A and 10% β-chloro ketone C were obtained. It is interesting to note that a higher yield of β-amino ketone or β-methoxy ketone was obtained by reaction with β,γ-unsaturated ketone instead of α,β -unsaturated ketone under this Lewis acid promoted β-substitution reaction conditions. The β -substitution reaction did not occur when the carbon-carbon double bond isomerization process of β , γ unsaturated ketone was inhibited. When a reaction mixture of 1-phenyl-pent-4-en-2-one and BF₃·OEt₂ in THF was refluxed for 14 hours only 21% of 1-phenyl-pent-3en-2-one (I) and 66% of starting material were obtained. These results showed that the isomerization rate is much faster in MeOH than in THF. Thus, we believed that the formation of β -substituted ketone proceeded firstly by the in situ isomerization of β, γ -unsaturated ketone to α, β -unsaturated ketone followed by the 1,4-addition reaction.

In conclusion, this Lewis acid promoted β -substitution reaction of β , γ -unsaturated ketone provides a simple and highly efficient method for synthesis of β -amino and β -alkoxy ketones. The C–N and C–O bonds are selectively formed on the β -position to the carbonyl group even if the acidic α -protons exist. The extension of this reaction to differently β -substituted β , γ -unsaturated ketones and α , β -unsatured ketones using this Lewis acid promoted β -substitution reactions is underway.

Typical Procedure for the Synthesis of β -Methoxy Ketone

A reaction mixture of β , γ -unsaturated ketone (1.0 mmol) and BF $_3$ -OEt $_2$ (1.0 mmol) in anhyd CH $_3$ OH (5 mL) was stirred at r.t. After the reaction was completed (monitored by TLC), the organic solvent was removed directly under reduced pressure. Further purification was achieved by flash chromatography with EtOAc/hexane as eluant.

2362 A. S.-Y. Lee et al. LETTER

Table 2 Synthesis of β-Amino Ketones

Entry	Substrate	Product	Time (h)	Yield ^a
1	nBu O	O NHTs nBu CH ₃	78	68% (0%, 4%) ^b
2	BrCH ₂ CH ₂ CH ₂	O NHTs BrCH ₂ CH ₂ CH ₂ CH ₃	61	51% (0%, 17%) ^b
3		O NHTs CH ₃	48	34% (0%, 20%) ^b
4		CH ₃ O NHTs	50	39% (4%, 11%) ^b
5		O NHTs CH ₃	50	40% (6%, 23%) ^b
6	MeO	O NHTs CH ₃	96	69% (0%, 7%) ^b
7		CH ₃ O NHTs	96	79% (4%, 12%) ^b
8		CH ₃	96	66% (0%, 14%) ^b
9	S	CH ₃ O NHTs	50	57% (4%, 19%) ^b

^a Yields were determined after chromatographic purification.

Scheme 4

Typical Procedure for the Synthesis of β-Amino Ketone

The reaction mixture of β , γ -unsaturated ketone (1.0 mmol), AlCl₃ (0.5 mmol) and Ts-NH₂ (1.5 mmol) in anhyd CH₂Cl₂ (5 mL) was stirred at r.t. After the reaction was completed (monitored by TLC), the organic solvent was removed directly under reduced pressure. Further purification was achieved by flash chromatography with EtOAc/hexane as eluant.

Acknowledgment

We thank the National Science Council in Taiwan (NSC 91-2113-M-032-004) and Tamkang University for financial support.

 $[^]b$ Yields of $\alpha,\beta\text{-unsaturated}$ ketone and $\beta\text{-chloroketone}.$

References

- (1) Mann, J. Nature (London) 1994, 367, 594.
- (2) Panek, J. S.; Jain, N. F. J. Org. Chem. 2001, 66, 2747.
- (3) Schreiber, S. L. Science 1991, 251, 283.
- (4) Corey, E. J.; Trybulski, E. J.; Melvin, L. S. Jr.; Nicolaou, K. C.; Secrist, J. A.; Lett, R.; Scheldarke, P. W.; Falck, J. R.; Brunelle, D. J.; Haslanger, M. F.; Kim, S.; Yoo, S. J. Am. Chem. Soc. 1978, 100, 4618.
- (5) Mukaiyama, T.; Narasaka, K. Org. Synth. 1987, 65, 6.
- (6) Evans, D. A. In Asymmetric Synthesis, Vol. 3; Morrison, J. D., Ed.; Academic Press, Inc.: New York, 1984, 1–274.
- (7) Rossiter, B. E.; Swingle, N. M. Chem. Rev. 1992, 92, 771.
- (8) Krause, N.; Gerold, A. Angew. Chem., Int. Ed. Engl. 1997, 36, 186.
- (9) (a) Oare, D. A.; Heathcock, C. H. *Top. Stereochem.* 1989, 19, 227. (b) Oare, D. A.; Heathcock, C. H. *Top. Stereochem.* 1991, 20, 87.
- (10) Yoshikoshi, A.; Miyashita, M. Acc. Chem. Res. 1985, 18, 284.
- (11) Larock, R. C. Comprehensive Organic Transformations-A Guide to Functional Group Preparations, 2nd ed.; John

- Wiley and Sons, Inc.: New York, **1999**, Chap. 15, 1567–1616
- (12) Lee, A. S.-Y.; Lin, L.-S. Tetrahedron Lett. 2000, 41, 8803.
- (13) Mukai, C.; Hanaoka, M.; Kataoka, O. Tetrahedron Lett. 1994, 35, 6899.
- (14) Kernan, M. R. Tetrahedron Lett. 1987, 28, 2809.
- (15) McDogal, P. G. J. Org. Chem. 1986, 51, 4494.
- (16) Mahmoud, E. N. Phytochemistry 1985, 24, 369.
- (17) Gupta, R. K. Phytochemistry 1977, 16, 1104.
- (18) Xie, W.; Mirocha, C. J.; Wen, Y.; Cheong, W. J.; Pawlosky, R. J. *Agric. Food Chem.* **1991**, *39*, 1757.
- (19) Remuinan, M. J.; Pattenden, G. Tetrahedron Lett. 2000, 41, 7367.
- (20) Kaseda, T.; Kikuchi, T.; Kibayashi, C. Tetrahedron Lett. 1989, 34, 4539.
- (21) Bashwira, S.; Hootele, C. Tetrahedron 1988, 44, 4521.
- (22) Hocquemiller, R. Tetrahedron 1977, 33, 645.
- (23) Iida, H.; Fukuhara, K.; Murayama, Y.; Machiba, M.; Kikuchi, T. J. Org. Chem. 1986, 51, 4701.
- (24) Bordwell, F. G. Acc. Chem Res. 1988, 21, 456.
- (25) Taft, R. W.; Bordwell, F. G. Acc. Chem Res. 1988, 21, 463.